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SUMMARY

This article proposes the use of sliding regimes, defined on a suitable input-dependent sliding surface, as a
means of making more robust any model-based smooth feedback control scheme designed for the
stabilization of a general nonlinear plant. The approach naturally produces a, robust, ‘outer loop’
redundant discontinuous feedback scheme, with several advantageous properties regarding insensitivity to
external perturbation signals, modelling errors and sudden failure of the smooth portion of the feedback
loop.
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1. INTRODUCTION

The advent of differential algebra into the realm of sliding mode control analysis and design
for nonlinear controlled systems' % has resulted in a rather significant departure from traditional
discontinuous feedback design schemes utilizing only state-dependent surfaces. Continuous,
rather than bang-bang, control input signals, and substantially smoothed chatter-free trajectories
have been shown to be some of the several advantageous properties exhibited by the use of
input-dependent sliding surfaces in dynamical sliding mode control schemes of nonlinear
systems. The possibilities of using discontinuous feedback control policies, such as sliding
mode control, pulse-width-modulation, and pulse-frequency-modulation based strategies, in
nontraditional application areas, such as chemical processes and mechanical systems, is also one
of the new developments emerging from this approach.”®

In this article we propose to utilize an input-dependent sliding surface directly suggested by
a model-based designed smooth feedback control law, assumed to ideally stabilize the
nonlinear system according to a preselected stabilization criterion (optimal performance, pole
placement, exact linearization, etc.). Such a sliding surface coordinate prescription has the
interpretation of a feedback control implementation error in the sense that any deviation of
the implemented input signal, from the required value generated by the smooth state feedback
control law, yields an error which immediately triggers a discontinuous feedback control
correction signal and forcefully imposes the designed feedback control law. The scheme thus
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operates as a parallel feedback scheme with a ‘high gain’ loop that enforces the originally
designed smooth feedback control law. The activation of the resulting discontinuous feedback
controller mechanism, here proposed, complements the original feedback scheme in a
redundant fashion, which is capable of tolerating sudden failures in the main smooth designed
feedback loop. Feedback implementation error signals are frequently caused by the presence
of independent perturbation input signals to the actuator, by feedback designs carried out
under unknown modelling errors and, also, by sensor failures, among many other causes. The
benefits of our proposed discontinuous feedback control scheme are: (1) enhanced robustness
for the actual operation of the designed smooth feedback control law, (2) feedback correction
based on smoothed discontinuous feedback control actions, (3) redundancy, in the form of a
dynamical discontinuous feedback law, of the designed smooth control scheme and (4)
robustness, with respect to sudden failures, in the smooth portion of the proposed parallel
feedback scheme.

Section 2 presents the general feedback control scheme based on utilizing the designed
smooth feedback control law as an input-dependent sliding surface. In this section we derive and
analyse some of the advantageous features of such an approach. Section 3 is devoted to an
application example drawn from the chemical process control area. Simulation studies are
included. Section 4 contains the conclusions and suggestions for further research.

2. MAIN RESULT

2.1. A dynamical sliding mode controller based on a prescribed smooth feedback control law.

Consider a nonlinear n-dimensional single input smooth system of the form:

x=f(x,u) 1

Suppose, furthermore, that a smooth feedback controller has been designed which locally
stabilizes the trajectories of the control system to a desirable constant equilibrium point X(U),
dependent upon a constant value of the input signal U. ie., f(X(U),U)=0. We assume,
without any loss of generality that U is nonzero. The stabilizing feedback control law is
assumed to be explicitly given by

u=-k(x) ?
in other words, the closed-loop system,

x=f(x, —k(x)) (3)

is assumed to locally exhibit desirable asymptotic stability features towards the equilibrium
point. In equilibrium, the value of the feedback signal —k(X(U)) is compatible with the
equilibrium value for u, i.e., U= —-k(X(U))+0.

Suppose now that an auxiliary input-dependent function of the form:

s(x, u)=u+k(x) 4

is synthesized, and proposed as a sliding surface candidate on which the following
discontinuous dynamics is imposed:

$(x, u)=—-Wsign [s(x, u)] (5)

with W being a sufficiently large, strictly positive, constant quantity. Notice that the trajectories
of (5) reach the condition s(x, u) = 0 in finite time T given by: T = | s(x(0), u(0)) | /W.
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Upon reaching of the condition s(x, u) =0 by the scalar value s(x, ) of the sliding surface
coordinate, a sliding motion’® is created on such an input-dependent manifold. The sliding mode
condition is then sustained in an indefinite manner. The ideal sliding motions associated with the
sliding regime, thus created, imply that the control input variable u precisely complies with the
designed feedback control law. In other words, ideally speaking, under the sliding mode
condition one has: u= —k(x).

Replacing (4) into (5) leads to the following dynamical discontinuous sliding mode controller
for the nonlinear system:

. [ék(x).} flx,u) - W sign[u + k(x)] ©)

X

Equation (6) represents a time-varying nonlinear first-order differential equation for the
control input signal u, with a discontinuous right-hand side. The additional complication
incurred in building such a dynamical discontinuous feedback controller is superseded by the
many advantages it bestows on the closed-loop features of the controlled system.

A block diagram of the feedback controller (6) is shown in Figure 1. A straightforward
integration of the above expression (6) allows for the reinterpretation of the controller in terms
of a redundant ‘hybrid’ controller comprising the original feedback law (3) implemented in
parallel to an integrated (i.e. smoothed) discontinuous feedback signal, triggered by the sign of
the feedback error u + k(x). Indeed, integration of (6) yields

u= —j‘ [[gkgx(a)z] f(x(0), u(0)) + W sign[u(o) + k(x(o)}} do + u(0)

U ox
= —k(x(®)) - L: W signfu(o) + k(x(0))] do + [4(0) + k(x(0))]

:wmm—wﬁgywm+mmmmm”u©m@

A block diagram depicting this reinterpretation of the controller (6) is shown in Figure 2.
From the previous expression one also immediately obtains, upon rearrangement,

(0, u(t)) = $(x(0), u(0)) - W [ signlu(@) + k(x(0)] do 9
from where it easily follows that, regardless of the initial value of s(x(0), u(0)) of the sliding

surface coordinate function, s(x, u), the condition s(x(T), #(T)) =0 is indeed reached in the
previously given finite time 7.
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Figure 1. Dynamical sliding mode controller enforcing a designed smooth feedback control law
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Figure 2. Reinterpretation of dynamical sliding mode controller enforcing a designed smooth feedback control law

By virtue of the above developments, we finally rewrite the dynamical controller (6) as

u=v-k(x)

= —W sign [u+ k(x)] ®

2.2. Some properties of the proposed dynamical discontinuous controller

The dynamical controller (6) exhibits several advantageous properties which are summarized
below.

(1) The discontinuities associated with the underlying sliding motion, taking place along the
input-dependent manifold: s(x, u)=0, are relegated to the first-order time derivative of the
control input signal u. Hence, the resulting controller is, indeed, continuous. Bang-bang input
signals, otherwise characteristic of sliding mode control schemes,’ are thus effectively
suppressed by the dynamic nature of the proposed controller.*-¢

(2) Suppose that at certain time ¢ = T, the smooth portion of the feedback loop, feeding the
signal component —k(x) to the control input signal u, fails for an indefinite period of time (see
Figure 3). Assume, furthermore, that at the failure time 7, the discontinuous portion of the
controller was currently exhibiting a sliding mode behaviour (i.e., ideally s(x(T;), u(T;)) =0).
Suppose also that the system’s state was already stabilized at its equilibrium value x= X(U)
and, hence, u(T;) = —k(X(U)) = U. The feedback control law being enforced at any time ¢> T,
after the failure of the smooth portion of the feedback loop, satisfies

=-W j + sign(u(o) + k(x(a))] do ©)
ie.,
u(t) = —W sign [u(t) + k(x(1))] (10)
SRR o R
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Figure 3. A feedback signal failure in the smooth portion of the redundant controller
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It follows that the value of u(¢) is instantaneously set to zero at T';. It easily follows from (9) and
(10) that u evolves, for ¢t > T, in such a fashion that the feedback error signal: s(x, u) = u + k(x)is
being constantly diminished in absolute value. The discontinuous part of the controller locally
sustains the motions of the system in a sliding regime around the manifold: u+ k(x) =0, thus
recovering, on the average, the original feedback control law u = —k(x). Indeed, consider the value
of the product s(x(#), u(t)) ds(x(?), u(t))/dt for t > T,, when (10), rather than (6), is valid

ok
s(x(8), u()s(x(0), u()) = s(x (1), u(t))[li 5 f@x, u)]

= s(x(n), u(t))[—W sign[s(x(s), u(f)] + %k‘ Sflx, u)}
X

1
k
= —W|s(x(), ue) | + sx(2), u(t))[%; Sflx, u)]

ok
= <—|s(x(2), u())| [w += SO, w)sign(s(x(s), u(t)»]

Thus, for a sufficiently large value of the constant W, the sign of the above expression can
always be made negative on an open neighbourhood defined around s(x, u) =0, and, hence, a
sliding regime is seen to locally exist on s(x, u) =0.

Remark. Tt should be pointed out that the region of attraction of the sliding manifold
s(x, u) =0, for control laws satisfying (10) must be precisely determined in each case. It may
very well happen that after a feedback loop failure, such as the one described above, the
surviving discontinuous portion of the controller is incapable of achieving a sliding motion on
the zero error manifold: s(x, u) = 0. Such possibility is highly dependent upon the possibility of
complying with the negativity of the final expression in (11).

(3) Sliding mode controllers are known to be highly insensitive to external perturbation signals
and to modelling errors. Thus the above scheme always imposes, in a robust fashion, the ‘right
feedback control law’. Changes in state, due to external perturbation inputs to the system, result in
corresponding changes in the feedback control law ~k(x), both, at the smooth and discontinuous
portions of the proposed controller. If the designed smooth control law is known to enjoy
robustness properties, with respect to a certain class of perturbation input signals, the proposed
controller simply inherits those properties and results in a forceful imposition, on the average, of
the required smooth control law. Owing to the abundance of results in the area of robustness of
sliding mode control schemes, the reader is referred to the literature and is kindly invited to
become convinced of this important feature of discontinuous feedback control schemes.

3. AN APPLICATION EXAMPLE

3.1. A continuously stirred tank reaction system

Consider the following simple nonlinear dynamical model of a controlled CSTR in which an
isothermal, liquid-phase, multicomponent chemical reaction takes place:'*"'

x'l=—(l+Dal)x1+u v
JZ2=D,,x,—x2—Dl2x22 (12)
y=x+x-Y
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where x, represents the normalized (dimensionless) concentration C,/Cp, of a certain species P
in the reactor, with Y = Cp, being the desired concentration of the species P and Q measured in
moles per cubic metre. The state variable x, represents the normalized concentration Co/Cp, Of
the species Q. The control variable u is defined as the ratio of the per-unit volumetric molar feed
rate of species P, denoted by Ny, and the desired concentration Cpy, i.€., u=N pe/ (FCPO)
where F is the volumetric feed rate in cubic metres per second. The constants D, and D,, are
respectively defined as k,V/F and k,VCp/F with V being the volume of the reactor, in cubic
metres, and k, and k, the first-order rate constants (ins™').

It is assumed that the species Q is highly acidic while the reactant species R is neutral. In
order to avoid corrosion problems in the downstream equipment, it is desired to regulate the
total concentration y to a prescribed set-point value specified by the constant Y. It is assumed
that the control variable u is naturally bounded in the closed interval [0, U,,,] reflecting the
bounded (physical) limits of molar feed rate of the species P.

A stable constant equilibrium point for this system is given by

w=Uin(U) = — 2 iUy = = - [—1 . \ﬁ+ iD“D“U] (13
(1+D,) 2D, (1+Dy)

3.2. A smooth linearizing controller design for the CSTR system

It is easy to verify that the following smooth state feedback controller results in an exact
input—output linearization of the given system (12):

u=(1-2) (x,+x,)+ D, X2+ AY (14)

where A is a positive quantity regulating the exponential decay in the imposed linear
asymptotically stable dynamics for the output y:

y=Ay (15)

It may be verified, after some tedious but straightforward computations, that the closed-loop
system (12), (15) exhibits a locally asymptotically stable zero dynamics around the equilibrium
point (13).'°

3.3. Redundant dynamical sliding mode controller design for the CSTR system

According to the results of Section 2 we choose as a sliding surface the input dependent
sliding surface:

s(,uy=u—-(1-24) (x,+x,)-Dy35-AY (16)

and by imposing the dynamics (2.5) on s(x, u) one obtains the following dynamical sliding
mode controller:

u=v+(1-1) (x;+x,)+D 5+ AY o
o= —Wsign [u— (1= 1) (x,+ %) - Dpx;— AY]

3.4. Simulations

Simulations were performed for the system (12) with the dynamical controller (17). The
numerical values adopted for the system parameters'® and for the dynamical sliding mode
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controller parameters W and A were
D,=1D,=1,Y=3
W=10; A=4

The equilibrium points for the control input and the product concentrations, corresponding to
these parameters, are computed from (13). These result in

U=4;x,(U)=2 x(U)=1

Figure 4 shows the state responses of the dynamically sliding mode controlled system
asymptotically converging to their corresponding equilibrium points. Figure 5 depicts the
continuous trajectory of the control input, while Figure 6 shows the evolution of the input
dependent sliding surface coordinate function s(x, u), converging to zero in finite time.

In order to check the robustness of the proposed dynamical sliding mode control scheme
with respect to sudden failures in the originally designed smooth feedback loop we also
simulated the performance of the system with the following dynamical discontinuous feedback
controller:

u=v+x[(1-4) (x, +x,) + Dui3+ AY]

(18)
v=—-Wsign [u—(1-1) (x;+x,) - Dypx5— AY]
2 _ __x}t}
1.5
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Figure 4. State trajectory responses of dynamically sliding mode controlled system
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Figure 5. Continuous trajectory of the control input signal
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Figure 6. Evolution of the input-dependent sliding surface coordinate function

where the variable x, simulating the feedback loop failure, was allowed to be

with T, =2:5.

1fort<T;

X =
Ofort>T;

(19)

Figure 7 shows the state responses of the dynamically sliding mode controlled system
subject to the sudden failure of the form (19). The sliding mode controller is seen to
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Figures 7. State trajectory responses of dynamically sliding mode controlled system subject to a sudden failure in the

smooth portion of the feedback controller
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Figure 8. Trajectory of the control input signal subject to a sudden failure
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Figure 9. Behaviour of the input-dependent sliding surface coordinate function subject to a sudden failure

restabilize the state trajectories to their corresponding equilibrium points. Figure 8 depicts the
corresponding trajectory of the failed control input, showing, at failure time Ty, the
instantaneous resetting to the value zero of the control input signal and its subsequent recovery
to a sliding mode regulation of the system. Notice that the surviving portion of the controller
still generates a continuous feedback signal. Figure 9 shows the behaviour of the input
dependent sliding surface coordinate function s(x, u) before and after the feedback signal
failure.

4. CONCLUSIONS

A robust redundant feedback control scheme, based on dynamical sliding mode control, has
been proposed for nonlinear systems for which a smooth feedback control policy is already
available. The proposed scheme utilizes the implementation error associated with the
designed smooth feedback control policy as a sliding surface and proceeds to forcefully
impose the desirable relation by means of an appropriately induced sliding regime. The
resulting dynamical controller is then reinterpreted in terms of two subsystems, One being
the smooth portion of the controller, represented by the originally designed stabilizing,
static, feedback control law, and the other being a parallel regulator loop based on
dynamically generated (i.e., smoothed) discontinuous control actions of the sliding mode
(i.e., relay) type. The scheme was shown to be advantageous in several respects, among
which, we found local robustness with respect to sudden failures in the static portion of the
proposed feedback controller. An application example, drawn from a nontraditional
application area for sliding mode control, was also presented. The basic features of the
proposed redundant dynamical discontinuous feedback control scheme were illustrated by
means of simulations.

Dynamical sliding mode control of nonlinear systems has been extended, in a unifying
manner, to pulse-width modulation and pulse-frequency modulation based schemes.”'2. Such
unified treatment involves a systematic use of generalized canonical forms of nonlinear systems
as proposed by Fliess."” The redundant feedback controllers, here described, can also be
extended, in a rather similar manner, to the above mentioned classes of discontinuous feedback
control policies. Extension to multi-input systems should have little or no difficulties, provided
decoupled sliding regimes of the form (2.5) are imposed on the several input-dependent sliding
surfaces representing every component of the designed multivariable smooth feedback
controller.
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