INT. J. CONTROL, 1996, voL. 65, No. 2, 205-222

Dynamical adaptive pulse-width-modulation control of DC-to-DC
power converters: a backstepping approach

HEBERTT SIRA-RAMIREZ+, MAURICIO GARCIA-ESTEBAN{ and
ALAN S. . ZINOBER§

Adaptive regulation of pulse-width-modulation (PWM) controlled DC-to-DC power
supplies is proposed using a suitable combination of dynamical input—output
linearization and the ‘ backstepping’ controller design method. A nominal parameter,
input-dependent, state coordinate transformation of the average PWM converter
models leads to a type of pure parameter feedback canonical form associated with the
Fliess generalized observability canonical form of such average models. A back-
stepping design procedure can then be immediately devised which leads to a
dynamical adaptive regulation scheme for the generation of the stabilizing duty ratio
function. The validity of the proposed approach, regarding control objectives and
robustness with respect to unmodelled, yet unmatched, and bounded stochastic
perturbation inputs, is tested through digital computer simulations.

1. Introduction

Feedback regulation of switchmode DC-to-DC power converters is usually
accomplished by means of pulse-width-modulation (PWM) feedback strategies. For
the fundamental background of this important subject the reader is referred to
conference proceedings (such as the yearly Power Specialist Conference Records, the
multi-volume series edited by Middlebrook and Cuk (1981), or the remarkable
collection of articles recently edited by Bose (1992). Also, useful material may be found
in specialized books such as Kassakian et al. (1991), Severns and Bloom (1985) and
Csaki et al. (1983).

PWM feedback regulation strategies for DC-to-DC power converters are usually
based on perfect knowledge of the converter parameters (see, among many other
authors, the articles by Sira-Ramirez and co-workers (1989, 1991, 1992). This
fundamental assumption is sometimes invalid due to imprecise knowledge of the
values of the converter circuit components as well as of the external voltage source.
The situation is often due to either measurement errors, or unavoidable ageing effects
on the circuit components. Automatic control problems which efficiently handle
uncertainty in the system parameter values usually require adaptive solutions
employing different forms of the so-called ‘uncertainty equivalence principle’ (Sastry
and Bodson 1989). In other words, the controller is designed as if the system
parameters were perfectly known, and then the values of the parameters appearing in
the controller expression are regarded as tunable, in an online fashion. Parameter
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tuning is accomplished by the specification of an updating, or parameter adaptation,
law designed to simultaneously guarantee the demands of the regulation objectives
and the stability of the adaptation process.

Adaptive feedback control techniques for PWM controlled DC-to-DC power
supplies have been explored by Sira-Ramirez et al. (1993a, b). The approach in these
contributions incorporated an extension of the results found in Sastry and Isidori
(1989), for the adaptive stabilization of partially linearizable, minimum-phase,
discontinuously controlled nonlinear systems.

In this paper a rather different adaptive feedback strategy is adopted by resorting
to an approach inspired by the recently introduced adaptive backstepping controller
design methodology. Backstepping adaptation was developed for the regulation of a
large class of state linearizable nonlinear systems exhibiting constant, but otherwise
unknown, parameter values. The basic ideas and rather useful variations, of the
backstepping adaptive design procedure can be found in the excellent research articles
of Kanellakopoulos et al. (1991 a, b, ¢) and by Krstic et al. (1992), to which the reader
is referred for enlightening details.

We specifically assume that the circuit converter components are only nominally
known and that their constant discrepancies from the given nominal values are totally
unknown. The use of an input-dependent, nominal parameter based, input—output
linearizing state coordinate diffeomorphism for the unknown system produces an
imperfectly transformed system in generalized phase variables (Fliess 1989). The
structure of the resulting systems, in generalized phase variables, strongly resembles
the pure parameter feedback canonical form, presented by Kanellakopoulos (1991a),
except for the presence of the control inputs in some of the ‘regressor vectors’, as well
as the control input time derivative in the transformed system equations.

Computation of the feedback controllers, and of the associated incremental
parameter update laws, is then carried out by resorting to a backstepping calculation
procedure applied to the obtained generalized pure incremental parameter feedback
canonical form. The net result is that one yields adaptive dynamical duty ratio
synthetizers, rather than traditional static feedback compensators. The advantage of
dynamically generated duty ratio control signals lies in the enhanced smoothed
character of this important feedback regulation signal during the actual (ie.
discontinuous) operation of the converters. Smoothing of the duty ratio function
increases the precision, and qualitative performance features, of the closed-loop
behaviour of the DC-to-DC power converter circuits.

Section 2 is devoted to revisiting, via a ‘ boost’ converter example, the fundamentals
of the input-output linearization of PWM controlled DC-to-DC power converters by
means of a dynamical feedback duty ratio synthesizer. We assume that all parameters
in the system are perfectly known. The input-output linearization scheme achieves
indirect regulation of the average output capacitor voltage by means of average input
inductor current regulation. This strategy, which essentially involves a ‘change of
output’ effectively avoids the non-minimum phase problem in the direct regulation of
the output capacitor voltage variable. This method has already been used by Sira-
Ramirez et al. (1991, 1993) and it was later justified, from a general viewpoint, by
Benvenuti ez al. (1992) for nonlinear systems and by Fliess and Sira-Ramirez (1993) for
linear systems.

Section 3 presents the developments leading to a dynamical adaptive PWM control
strategy for DC-to-DC power supplies of the ‘boost’ and ‘buck-boost’ types with
unknown incremental parameter values. Computer simulations are presented which
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clearly indicate the effectiveness, and robustness, of the proposed adaptive feedback
regulation scheme with respect to unmodelled, and unmatched, external stochastic
perturbation inputs of bounded nature. Section 4 contains the conclusions and
suggestions for further work in this area.

2. A nominal input—output linearization strategy for DC-to-DC power converters

This section contains the developments leading to dynamical feedback duty ratio
synthesizers for the PWM stabilization of nominal average models of DC-to-DC
power converters. The scheme, already exploited by Sira-Ramirez (1991), is presented
here only for the purpose of making the article self-contained. The fundamental idea
is to obtain a generalized nonlinear phase variable representation of the input-output
behaviour of the average circuit for which the control synthesis problem is
straightforward. Due to non-minimum phase problems associated with the output
capacitor voltage variable, the regulated output is chosen as the input inductor
current. Thus, indirect output voltage regulation is achieved.

2.1. Boost converter

Consider the boost converter circuit shown in Fig. 1. This circuit is described by the
state equation model

Ro=—%aﬁme+%

1 ey

V) = 51~ [0 =3 VO

WD) =K

where I and V represent, respectively, the input inductor current and the output
capacitor voltage variables. The positive quantity E is the external input voltage. The
variable u denotes the switch position function, acting as a control input which takes
values in the discrete set {0, 1}. The output y of the system is represented by the input
inductor current 1.
We define
1 1 1 E

= %=re %I ¢l

as the system parameters assumed to be nominally known.

A PWM feedback control strategy for the regulation of the boost converter circuit
is typically given by the following prescription of the switch position function (Sira-
Ramirez 1989a, Sira-Ramirez et al. 1991):

"y I, fore, <t<t+u(t)T
10, fort,+ut)T<t<t,+T 3)
Ly =t,+T, k=0,1,...

where ¢, represents a sampling instant; the parameter T is the fixed sampling period,
also called the duty cycle; and the sampled values of the state vector x(¢) of the
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Figure 1. Boost converter circuit.

converter are denoted by x(r,). The function u(-) is the duty ratio function acting as
a truly feedback policy. The value of the duty ratio function #t,] determines at every
sampling instant 7, the width of the upcoming ‘pulse’ (switch at the position u = 1) as
u[t,] T. The actual duty ratio function u(-) is evidently a function limited to the closed
interval [0, 1] on the real line.

The control problem associated with the stabilization of the discontinuously
controlled system (1) and (3) towards some (feasible) prespecified constant desired
equilibrium point, consists of specifying the duty ratio function u as a static, or
dynamical, feedback control policy, i.e. as a function of the state vector x, or as the
solution of a time-varying differential equation based on the measured values of the
state x. As formulated, the problem of synthesizing a suitable duty ratio function y is
quite involved, owing to the difficulty in performing an exact discretization of the
PWM system model (1) and (3). A conceptually useful, and practical, alternative
consists of resorting to the infinite frequency average PWM model, also known as the
state space average model of the PWM controlled converter (1) and (2) (Kassakian
et al. 1991, Middlebrook and Cuk 1981). The assumption of an infinite sampling
frequency results in a smooth linear average system model of (1) in which the duty
ratio function u is readily interpreted as a control input to the average system in formal
replacement of the switch position function w. In fact, the duty ratio function becomes
the equivalent control input in the corresponding sliding mode (Utkin 1978)
interpretation of the obtained idealization (Sira-Ramirez 1989b).

The above idealization has the fundamental advantage of reducing the duty ratio
synthesis problem to a standard nonlinear feedback control design problem in which
the duty ratio function acts as the required feedback control input. Any of the well
known static, or dynamical, feedback controller design procedures established in the
recent literature (Isidori 1989, Rugh 1986, Fliess 1989) can be applied to the nonlinear
average model of the circuit to obtain the required duty ratio function as a nonlinear
feedback control law.

Consider, then, the following nominal average PWM model of the boost converter
circuit:

(=—0,1-p+0,
(o =0,(1-p)(,—0,(, 4)
n=1={
where {, and {, represent the averaged values of the original state variables I and V.
The average output variable {, is here denoted by #.
For a given constant value u = U of the duty ratio function, the correponding
equilibrium values of the average state variables of the circuit are obtained as

LU
@1 @2(1 - U)Z’

—— @4 -
6,(1-U)

C1(U) = 52(U) = (5)
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Note that by straightforward elimination of the constant parameter U, in the set of
equations (5), the equilibrium values for {, and {, are related by

6 = 20wy

Hence, the prescription of a desired steady-state value for the average output capacitor
voltage {,(U) uniquely determines both the required constant value of the duty ratio
function U and the corresponding average value for the input inductor current {,(U).
This simple fact allows the indirect regulation of the average output capacitor voltage
of the converter through regulation of the average input inductor current. For this
reason our control problem will be formulated in terms of achieving a desired steady-
state equilibrium value, denoted by Y, for the average input inductor current ;.

Consider, then, the following, locally invertible, nominal input-dependent state
coordinate transformation of the nonlinear average model (4):

x, =0, x,=—-6,(1-w){,+06, (6)
and its associated inverse transformation is

i
O(1—p)
Using the above state coordinate transformation (6) and (7), on the average circuit

equations (4), one obtains the following Fliess generalized obserability canonical form
of the average boost converter model:

Li=x, (= @)

X=X,
= =030, =03, = 00y = 0) — 1 (40 ®)
n=Xx

The zero dynamics associated with the equilibrium point x, = {,(U) and x, = 0 are
given by the first-order dynamics,

. 0,
u=—a_U)2-(1—u)(ﬂ—U)(2-=u—U) ®

The zero dynamics exhibits two unstable equilibrium points, y = U—2 <0 and
i = 1. The only stable equilibrium point 4 = U makes the average system minimum
phase in the region of interest.

Let the desired behaviour of the transformed system (8) be prescribed by the
following asymptotically stable second-order linear time-invariant dynamics:

X=X,
Xy = 2w, x,—wi(x,—Y) (10)
n=X

where ¢ and , are design parameters that reflect our need for particular transient
features of the average regulated output y = x,. The constant Y represents a desired
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steady-state closed-loop equilibrium value of the average output variable #. In
our case of perfectly known parameter values, the desired output is obtained as
Y={(U)=6,60,/8,0,(1-U)

From (8) and (10) one readily obtains an expression for the dynamical feedback
controller yielding the required linearizing and stabilizing duty ratio function. In terms
of the transformed variables x, and x, the duty ratio function g is obtained as the
solution of the time-varying differential equation

ﬂ:

1
Xg

hRew, x4 0l = 1) =0,0,(1- ) x— O8] (1)

In terms of the average state variables {, and {,, the dynamical duty ratio synthesizer
is equivalently obtained as

1
A=y 106, 0,(1 = p)* — ) {1 + (280, 6,— 0, 05) (1 — ) {,— 26w, O, + 07, Y] (12)
152
The values of x, obtained from the on-line solution of equation (11), actually represent
the computed duty ratio function, which we still denote by x. However, in order to
implement this dynamical feedback control strategy on the actual (i.e. discontinuously

regulated) converter system the values of x4 must be necessarily limited to the closed
interval [0, 1]. We then define the actual duty ratio function denoted by 4, as

1, for u(s) = 1
(D) = § (), for0<pu(n <l (13)
0, for () <0

Finally, it should be noted that when the sampling period T is sufficiently small, the
actual values of the state variables ¥ and I, rather than their average values, {; and {,,
may be used for the on-line solution of the computed duty ratio funtion g. This
procedure is precisely at the heart of the state average method for PWM designs. A
theoretical justification of this procedure has been given by Sira-Ramirez et al. (1993).

Summarizing, a dynamical PWM controller achieving the asymptotic stabilization
of the average input inductor current of the boost converter circuit (1) to a desired
constant equilibrium value y = Y, is given by

Y 1, fors, <t <t +p,t)T
10, fort+u(t)T<t<t+T (14)
tea=t+T, k=0,1,..
where u,(t,) represents the sampled values of the actual duty ratio function at time z,,

given by (13). The computed duty ratio function () is obtained from the on-line
solution of

1

=g (OOl = =) L)+ (260, 6,— 66 (1 =) V() — 20, 0+ 5, V]

(15)
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3. An adaptive feedback control strategy for indirect output voltage regulation in
DC-to-DC power converters

3.1. Boost converter

With reference to the boost converter circuit, consider the following version of the
average boost converter model:

LH=—0,(1-p {o+0,

$=0,(1-w{ —-8,¢, (16)
y=4

where the 8, i = 1,2, 3,4, represent the actual parameter values, modelled by
0,=0,+40, i=1,234 a7

with @, i = 1,2, 3,4, being the nominal parameters, assumed to be perfectly known.
The quantities 46, i = 1,2,3,4, denote the corresponding constant, but unknown,
incremental variations of the parameters from their nominal values.

Consider, then, the nominal input-dependent state coordinate transformation,
used for exact input—output linearization of the average boost converter model in the

preceding section:
f=b } (18)

x,=-6,(1-p),+6,

Clearly this control-parametrized transformation is invertible everywhere, except
when the duty ratio function u is identically equal to one. The associated inverse
transformation is readily found to be

Cl =X
[ O, (19)
B e,(1—p

When the state coordinate transformation (18) and (19) is applied to the actual boost
converter model (16) and (17), the transformed system is not quite in the Fliess
generalized observability canonical form (8), but rather in what we call the generalized
pure incremental parameter feedback canonical form. The transformed system is
easily shown to be given by

X = x2+A9ryl(xl, xz)

. (—x,+6

fy= 1[04~ 0, 6,01 =3, 0,5,— 00+ A8y (x1

y=1x (20)
where

X,—0,

T x2) =[ 0 0 1]

Ya(xy, Xo, 1) = [0 “@1(1“/4)2)‘1 —-x,+6, 0] (2D
A0T =140, 46, 46, A46,]

1
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For ease of reference we let

:Xg;*- @4
l—p

Ao i 1, 0) = ;z( )— 0,0,(1— 1 x,— O,(x,~ 6)) @2)

The transformed system (20) strongly resembles the more traditional pure parameter
feedback canonical form developed by Kanellakopoulos et al. (1991), except for the
presence of the control input (duty ratio) x in the regressor vector y, and the presence
of the first-order time derivative s of the control input in the second differential
equation. This control input derivative will, in fact, act as the actual control input,
whereas the control input z may be regarded as playing the role of an additional state
variable.

We now proceed to apply the adaptive backstepping algorithm, as developed by
Kanellakopoulos et al. (1991), to the transformed model (20) and (21).

Step0: Let Y be the desired steady-state equilibrium value of the output variable x;
and define the stabilization error z; as

z,=x,—-Y (23)
Step 1: Consider the stabilization error equation
2, = X+ 407y, (%, ;) (24)

Suppose that the transformed variable x, can be used as a ‘ pseudo-control’ in (24) and
proceed to compute the required value of x, which stabilizes the error variable z, to
zero. Computation of x, requires the unknown vector 46. Using the ‘certainty
equivalence principle’ (Kanellakopoulos ef al. 1991) we replace the vector 46 by an
estimate in the fictitious stabilizing ‘control law’. We proceed to devise also a
parameter update law for the hypothesized estimate of the incremental parameter
vector 46, denoted here by 46". This specification must result in simultaneous stable
adaptation and convergence to zero of the error variable z,. The superscript 1 will
denote a first estimate of 46. Let ¢, be a strictly positive design parameter. We then
have as a plausible ‘ pseudo-control” action the following expression for x,:
A’ai a1
X, =—clzl——@ﬁ(x2—@4)—A04, >0 (25)

1

where A@}, i = 1,4, denotes a first estimate of 46,, i = 1,4. A simple Lyapunov stability
argument shows that the pseudo controller (25) and the update law

A8y = 1 7,(xy, %) (26)

yield a closed-loop stable system for which z, is guaranteed to converge to zero.
Since x, is not really a control input, one defines the pseudo-control error variable
z, as the difference between x, and its required value, computed in (25). Let

= _
22=xz—[_qzl_%)el'(xz_@a;)—dgi] @n
1

By solving for x, from (27) and using (23), one obtains a new state coordinate
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transformation defining, respectively, the stabilization error and the pseudo-control
error variables, z, and z,

z,=x—-Y

A@ 46!
Zy =z x| 1+= ) £19,+ 46! (28)
2= 014 2( 0, o,

The corresponding inverse transformation is simply obtained as

X, =z+Y

0, [ A9 A]
X, =— | z,~—C 2, +—16,— 46 (29)
2 @1+A01 2 1°1 @1 4 4

The first equation of the transformed system may then be written as

)y =05

1 46! -1 8,
1 1

which can be briefly expressed as

& = 2= ¢, 2, + (40— 40 wy(z,, 2, 48") 31
where

— i
wf(zl,zz,A01)=[< -ltzz—clzl 01@ A()‘]—g‘) 00 1] (32)

6, + 46! 0,

Note that the update laws corresponding to 463 and A6! will yield constant values
for such estimates. Note, moreover, that these two estimated parameters are not
needed in this first step of the backstepping calculation.

We let W1 denote the first component of the regressor vector w,(z,, z,, A0Y.

The first adaptatlon law (26) may then be rewritten, in terms of the new error
variables z, and z,, as

A8% = 2, w,(2,, 2,, AOY) (33)

Step2: We proceed to complete the state coordinate transformation (28) and (29) of
the original phase variables by considering now the differential equation for the
pseudo controller error z,. Using the definition of z, and z, and the first incremental
parameter update laws for the involved components of the vector 46, one obtains,
after long but straightforward manipulations, the following expression:

Aal # 1H1 2
1+5— —:(XQ(ZI,ZQ,AO )—0,)—0,0,(1 -z +Y)
t

—0Oy(xy(2y, 25, A/gl) -0,)—40,0,1 — ¥ (2, + Y) = 404(x,(2,, 25, A/él) - @4)]

Fey[zy— 2, — A0 W= 402+ z,(1 + (WD) +¢,(46, W+ 46,) (34)

where x,(z,, z,, A6%) is given by the second equation of (29), which we do not substitute
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just to avoid lengthy intermediate equations. In the rest of this section x, stands for
x,(2,,2,, 40").

If we now equate the dynamics obtained in (34) for z, to the dynamics of an
asymptotically stable behaviour for z,, given by

Zy=—CyZy € >0 35)

one can immediately solve for the required control input derivative / upon invoking,
once more, the certainty equivalence principle. In this instance the unknown value of
the vector 46 will be replaced by a new vector of parameter estimates, denoted by 4 T
One then obtains

p=— 106, ){c2z2+cllz2 ¢,2,— (40" wy(2,, 2,, 46Y)]
4

_a-
(6, + 46} )<x2

T 21+ (W] + 00 (212 A’él)—(l ‘”’l)[@ Oyl — 1 (514 )

+ 0,06, 0,)+ 4B 0,(1 — ) (2, + ¥) + 4B (x, — @4)1} (36)

where AH}, j = 2,3, represent the new estimates of the incremental parameter vector
components 46, j = 2,3, and x, is given by (29). The expression for the dynamically
controlled error variable z, (i.e. the closed-loop behaviour of z,) is found to be

Z,=—Cy2Z,+ (l—t-ﬁ)[ (460,— 462) 6,(1— ) (z,+ Y)
—(40,— 46%) (x,— O] + ¢, (40, — — A6 W+ (46, — 462)] 37
which can also be briefly expressed as
2y = =y 2o+ (40— AT wy(z,, 2,, 11, 46", 467 (38)

The regressor vector for the new estimation process is thus given by

— — Al -~ — o~
wy(zy, 25, 11, 46", 46%) = (1 +%€1—> 15(21, 20 i1, AOL, AO?) + ¢, wy(2,, 2,, 40")  (39)
1

Note that the dependence of w, on A6 is implicit through its dependence on g, as given
by the solution of (36).

As in the previous step, an incremental parameter adaptation law for the vector of
new estimates 462 can be devised to achieve simultaneously a stable adaptation
process and an asymptotic convergence to zero of the pseudo-control error variable z,.
Such a new incremental parameter update law is given by

A6 = z, w2y, 2, 1, 40, 46) (40)

3.1.1. Summary of adaptive controller expressions for the boost converter. The adaptive
PWM controller is next summarized in terms of the original state variables of the
system. The constant Y stands for the desired value of the input inductor current I(1).
The constants ¢, and ¢, are positive design constants, satisfying c,, ¢, > 2.
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The adaptive feedback regulated switch position function is synthesized as
Y 1, fort, <t<t+u(t)T
o, fort,+u(t)T<t<t+T (41)
L+T=t,, k=012,..

where u,(t) is obtained from a bounding operation carried out on the computed duty
ratio u in the following manner:

1, ifun<l
w® =1 u@), if0<u@<l (42)
0, ifu(H<0

The duty ratio function u is obtained as the solution of the following time-varying
differential equation from an initial condition which does not cause permanent
saturation of the actual duty ratio u,(?).

1

b= o fa;j{—(’(’)' Y) (L= V(1) + (0, + 465 (1 — )
X [(8,+ 462)(1 — 1) (1) — (6, + 46 V(1)) — (K1) — Y)

—&,[— (O, + A8 (1 — 1) V(1) + (O, + 462)]

T ¢l(O,+ A0 (1~ ) V(1) (8, + A0 — e, (I(1) Y)]} 3)

The estimated values of the controller parameters are obtained as the online solution
of the following system of differential equations:

46} = — ()~ V)1 -0 V(o)

461 =0

A?; =0

40 = —(I()-7Y)

46 = [~ (Y, +48) (1~ ) V() + (8, + 40 + (I = V)] [—e2(1 =) V(D]

463 = [ (Y, + 40D (1 — ) V(1) +(8,+ 46 + ¢, (1()) — V) [— (6, + 40 (1 — p)* I(1)]

462 = [— (Y, + 40D (1~ 1) V(1) + (8, + 482 + ¢,(I()) — )1 (O, + 40} (1 — ) V(D))

46; = [ (8, +40) (1 — 1) V(1) +(8,+ 48 + e, (1) = D] ¢, (44)
3.1.2. Simulation results. Simulations were carried out for a perturbed version of the
boost converter model in conjunction with the adaptive controller described by
(41)-(44). An unmodelled stochastic but bounded, yet unmatched, uncertain signal
(denoted by ¥(r)) was hypothesized to be acting on the circuit through the external
source voltage E. The designed dynamical adaptive PWM controller (41)-(44) was
then directly used for the regulation of the input inductor current variable I(z) of the

converter using the actual discontinuously regulated state variables I(f) and ¥(),
rather than the averaged values {; and {,.
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Figure 2. Adaptively controlled state trajectories of perturbed boost converter, evolution of
controller incremental parameter estimates and perturbation noise signal.
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-

Figure 3. Buck-boost converter circuit.

The perturbed circuit model, used in the computer simulations, were taken to be

E +Lv(t))

(6} =—%(1-=u) V(t)+(

) 45)
V(t) = %(1 — 1) 1(:)—R% V(t) (

y=11)

The simulation results, depicting the behaviour of the controlled converter, are
shown in Fig. 2. The nominal values of the converter parameters were chosen as
L=20mH, C=20mF, R=30% and E = 15 V. These values rendered: &, = 50;
0, =50x10% 0, = 1667 x10° and @, =750. The actual parameter values used
in the simulations were set to 8, = 55, 6, = 45x 10%, 6, = 1-5x10® and 6, = 825.
These values were, however, assumed to be completely unknown in the controller
implementation. In Fig. 2 the response of the input inductor current I(¢) evolves
towards the preassigned (nominal) equilibrium value I(f) = Y = 3-125 A, which
corresponds to a nominal output capacitor voltage, V() = 375V and a duty ratio
U=06V. The PWM sampling frequency was set to 10 kHz. The asymptotically
stable evolution of the duty ratio function u(f) towards its equilibrium value,
u = U =06, along with a small portion (0-1 ms) of the PWM switching actions is
also presented in this figure. The trajectories of the estimated incremental parameter
values, 46X(¢), 4G%1), 462, 49% A6% and AF%, are also depicted in this figure. Finally,
a sample of the computer generated stochastic perturbation input v(¢) is shown at the
end of Fig. 2.

3.2. The buck—boost converter

In this section we briefly summarize the controller expressions obtained from the
backstepping calculation procedure applied to a nominally transformed parameter
uncertain average PWM buck-boost converter model.

Consider the buck-boost converter circuit shown in Fig. 3.

State-space model of the buck—boost converter

1 (6)) =%(1—u) V(t)+%u

1 (46)

V() = —é(l —u)I(t)—~RC 170}

W) =K1
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where I(¢) and V(f) represent, respectively, the input inductor current and the output
capacitor voltage variables. The positive quantity E is the constant external input
voltage. The variable u denotes the switch position function taking values in the
discrete set {0,}. The output y(¢) of the system is represented by the input inductor
current ().

Nominal parameters definitions

@1=%, @2=-IC=,, @3=RTI-C, @4=_LE£ (47)
Uncertainty model for the parameters
0,=6,+40,, i=1,2,3,4 (48)
Average PWM model of the buck—boost converter
b= 01~y +0,u
L =—0,(1-1){,—6,¢, (49)

n=1_{

Nominal transformation of average PWM buck—boost converter model to Fliess’
generalized observability canonical form

=0 &=60,(1-w(+06,u,

- 50
G=x, Zzzic'2 @4#' 0
6,(1-w)
Uncertain buck—boost converter model transformed to generalized phase variables
X, = X, + 40%y,(x,, x,) } 1)
Xy = fUx15 Xg phs 1) + ATy (X, X, 1)

where
AT =46, 46, 46, 48,]

x,—6
y’f(xl,xz)=[*2 o 00 u]
1

}";(xlaxz,ﬂ) =0 -6, —p)? X, —Xx,+60,u 0]
. . X,— 6
R st ) = (0= 210,01~ x,-0,(x,=Ou) (5D

3.2.1. Summary of adaptive controller expressions for the buck—boost converter

={1, fort, <t <t +uG)T
0, fort,+p(t)T<t<t,+T (53)
t+T=t., k=01,2,..
where u,(f) is obtained from the following bounding operation:
1, if u(r) <1

=1 u®, ifo<u@® <l (54)
0, ifu <0



1.5

Dynamical adaptive PWM control of power converters

inductor current I(t)

0f— A R S
0 S5E3 0.015
control (switch) sequence
1
0.5
0

80

40,

0.

P17 T T

0 4E-4 8.E-4

1st estimate of A8, (t)

2nd estimate of Af(t)

-160

-170

-180] —
0 5E3 0.015

— ’f'—‘Tﬁ’*; YTy

0 SE3 0.015

2nd estimate of Ad;(t)

e

R

LR T

0. capacitor voltage V(t)
-10

-20

T T T
0 SE3 0.015

0.6. duty ratio

 a

0 2 T T T 1
0 SE3 0015

1st estimate of A8,(t)

0.4

29.9

29.7

29.5 —

T
0 SE3 0.015

2nd estimate of Af,(t)
-3996.

-3998,

S T T T
0 SE3 0.015
2nd estimate of Ad,(t)

! T T
0 SE3 0.015

random perturbation input v(t)

4

-4

|

T
0 SE3

Figure 4. Adaptively controlled state trajectories of perturbed buck-boost converter,
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We let éi’, i=1,...,4,j=1,2, stand for @,.+A’§{' in the following expressions.
1

T e ()~ Y)Y (1 — ) VE(2)+ 6} 631 —p)* K1)
+ 01001 — ) V() —(I() = Y) p— ¢ (621 — ) V(D) + 63 )
+¢,05(1— ) V(1) + 63+ ¢, (I(1)— V)]} (55)
= ()~ Y)(1— ) V()
61 =0
éa=0
= ()~ Y)u

56
= [0} — ) V() + 0 s+ ¢, (1) — D] [ey(1—p0) V()] 9

= (631 — ) V(0) + 6} s+ e, (1)) — D[ - 011 — ) K(D)]
= [61(1 =) V() + 6} s+ e, (1) = D[ =31 — ) V(D]
=01 =) V() + 60 s+ e, (1) = Dl e, p

3.2.2. Simulation results. Simulations were carried out for the following perturbed
version of the buck—boost converter model:

1(:)_—(1— )V(t)+( +Lv(’))
V(t)———=(1—u)I(t) 1 N0 7
y =11

in conjunction with the adaptive controller described by (53)-(56).

The simulation results, depicting the behaviour of the controller converter, are
shown in Fig. 4. The nominal values of the converter parameters were chosen to be
the same as for the boost converter case: L =20 mH, C =20 mF, R =30, and

= 15V. The actual parameter values used in the simulations were the same as
before. The response of the input inductor current I(?) is seen to evolve towards the
preassigned (nominal) equilibrium value I(r) = Y = 1-5 A, which corresponds to a
nominal output capacitor voltage, V(r) = —21-38 V. The PWM sampling frequency
was also set at 10 kHz. The asymptotically stable evolution of the duty ratio function
u(t) towards its equilibrium value, u = U = 055, along with a small portion of the
switching action is also presented in this figure. The e trajectories of the estimated
incremental parameter values, 49X(¢), 403(r), 462, 462 A2 and A48, are also depicted in
this figure. Finally, a sample of the computer-generated stochastlc perturbation input
v(¢) is shown at the bottom of Fig. 4.

4. Conclusions

An adaptive feedback control approach has been proposed which is based on
nominal dynamical input-output linearization of the average model of PWM
regulated DC-to-DC power converters and the backstepping algorithm. The approach
achieves indirect averate output capacitor voltage regulation by considering the input
inductor current as the regulated output. This procedure sidesteps the non-minimum
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phase problems associated with direct output capacitor voltage regulation. The
simulated behaviour of the closed-loop system exhibits remarkable robustness with
respect to unmatched and unmodelled external perturbation signals of bounded and
stochastic nature.

Over-parametrization is implicit in the backstepping procedure when applied to
systems in pure parameter feedback canonical form (Kanellakopoulos et al. 1991).
This feature substantially contributes to increase the complexity of the controller. An
alternative approach to the one presented here is constituted by the possibility of
avoiding the over-parametrization associated with the incremental parameter update
estimation process. The fundamental developments regarding this technique may be
found in Krstic et al. (1992), and an alternative approach to that of this paper has been
presented by Sira-Ramirez et al. (1995b).

Simulations show that the scheme is quite robust with respect to unmodelled
stochastic, but bounded, external perturbation inputs of the unmatched type. This
type of robust behaviour is inherited from: the underlying input-output viewpoint
present in the generalized observability canonical form, used for the derivation of the
dynamical feedback controller; and the robustness features traditionally associated
with discontinuous feedback control policies of the pulse-width-modulation type.

A topic for further study is the direct output capacitor voltage regulation problem,
which exhibits a non-minimum phase property, and hence an input—output lineari-
zation approach fails. In a recent work Sira-Ramirez er al. (1995a) proposed the
possibility of handling the non-minimum phase case by means of a piecewise unstable
dynamical compensator in which a controller output ‘resetting’ strategy is enforced.
The adaptive version of this resetting controller did not use the backstepping
algorithm.

Another very interesting development has been given by Karsenti and Lamnabhi-
Lagarrigue (1995) in which the backstepping method is generalized to include sliding
mode control strategies in systems with nonlinear parameter dependencies. Ap-
plication of this latter technique to DC-to-DC power converters represents a welcome
contribution, since a more realistic class of (nonlinear) incremental circuit parameter
variations may be efficiently handled with such a method.
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