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On the sliding mode control of multivariable nonlinear systems
HEBERTT SIRA-RAMIREZ}

Sliding mode control of multivariable nonlinear systems is addressed, from the
perspective of linear differential algebra, for a special but large class of linearizable
systems known as differentially flat systems. Essential orders and differential flatness
are shown to be, a relevant concept and a sensible requirement respectively,
associated with the possibilities of designing static or dynamical sliding mode
multivariable feedback regulators for nonlinear systems.

1. Introduction

Discontinuous feedback regulation of nonlinear multivariable systems, such as
sliding mode control, pulse width modulation or pulse frequency modulation
strategies, pose special questions related to the underlying structure at infinity of the
inputs-to-sliding-surfaces relation and the associated feedback decoupling problem.
Most importantly, the feasibility of a well-defined sliding mode strategy for systems
which are not statically decouplable requires suitable dynamical extensions obtained
by invoking the essential structure at infinity. From this viewpoint, the differential
flatness of the system seems to be a most natural restriction for the class of systems
which enjoy feasible dynamical or static sliding mode control strategies. The following
example illustrates the issues in some detail.

Example 1.1: Consider the following example, taken from Charlet et al. (1990):

x1=x2
Xy = Uy
Xy =1U
3 2
(1.1
Xy = Xy — X3y
$ =X
Sy = X,

where s, and s, represent proposed (outputs) sliding surface coordinates which must be
robustly zeroed by means of a discontinuous multivariable feedback control strategy.
The structure at infinity of the inputs to the sliding surface system is obtained from

the following relation:
5y _(0 1 0\[y
()= ol &

The system is clearly not statically decouplable and, hence, a static sliding mode
feedback control policy cannot be directly enforced. Note moreover that, if further
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sliding surface coordinate derivatives are computed for s,, in order to obtain an
explicit dependence on the control input u,, then one obtains

(2) - (—33a1)+((1) 1_01,1)[2] (13)

Clearly, if a sliding regime is devised for s, by imposing on it the discontinuous
dynamics
§, = —AS,— Wysign(§;+1s,), 4A>0 (1-4)

then the first control input u, is of the form
u, = —As, — W;sign (s, + 4s,) (1-5)

As a result, &, is no longer defined after sliding is achieved and the second
derivative of s, is also no longer defined. No sliding mode policy can be devised for s,
in terms of u,.

Clearly, the solution of the sliding mode design problem, for this example, rests on
the possibilities of introducing dynamical decoupling of the given system. Indeed,
extending the given system according to

Xy =X,

Xy = U

u=u

Xy =1, (1.6)
Xg = X3— X3l

S =X

Sy = Xy

where v, is a new auxillary input and , is just an additional state variable, one now has
the following input to sliding surface relations:

s _ (1 0 \[v,
(52)_(_7‘3 1‘_”1)[“2] (1'7)

The extended system is now decouplable and both v, and #, may be simultaneously
defined as discontinuous feedback policies without further complications. Suitable
sliding dynamics to be imposed on s, and s, may be proposed, for appropriate
constants {, w, and 4, as

O = —2w, §— s, — W, sign (5, + 2w, §; + 0% s,) (1.8)

5y =—AS,— W, sign(s,+45,) .

This choice clearly leads to the following well-defined dynamical muitivariable sliding
mode feedback controller with input-dependent sliding surfaces:

U, = — 2w, u, —w? x,— W, sign (u, + 2{w, x, + w}x,)

1 .
ty = 1l = 200, ey — @} x,— Wi sign (i + Ao, Xy + o)) £ (19)
1

— A1 —u) xy— W, sign[(1—u,) xy + Ax,]}
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From a different viewpoint, if we now seek to express all the variables in the
original system (1.1) in terms of the sliding surface coordinates s, and s, we obtain

X, =8
Xy =8
u, = §
Xy =8
(1.10)
S

Xy = =

515,
= Sl=8) + 8,577

2 (1 _51)2

It is also easy to see from the above calculations that the system is not linearizable by
means of static discontinuous state feedback since time differentiation of the input u,
is needed for the synthesis of u,.

Indeed, if 52 and §, are specified as discontinuous autonomous trajectories, as in
(1.8), then the fact that the control input variables are expressible as differential
Sfunctions of s, and s, leads immediately to the definition of a discontinuous feedback
control law for u,. The same fact allows one to conclude that #, must be, necessarily,
taken as an auxiliary control input for which the corresponding discontinuous
feedback policy of (1.8) is readily assignable. Again, the extended system (1.6) had to
be invoked and the dynamical, rather than static, character of the feasible robustly
linearizing sliding mode control policy is apparent.

The above considerations show that decoupled sliding regimes can be synthesized
by means of endogenous feedback, that is one that does not require external variables
to the system in order to be defined. The feasibility of the design rests on the existence
of decouplable linearizing outputs s, and s, in equal number to the control inputs.
These properties identify a class of multivariable systems for which discontinuous
decoupled feedback linearization is indeed achievable. The preceding properties of the
given system are summarized by saying that the system is differentially flat. O

In this article we study the sliding mode controller design problem for multivariable
differentially flat systems. Differentially flat systems constitute a most important class
of systems fully linearizable, by means of endogenous feedback, to controllable linear
systems. Differentially flat systems have been introduced in recent works by Fliess
et al. (1991, 1992a, 1992b, 1993a, 1993b). Practical examples of some mechanical
systems, such as the truck and the trailer, the jumping robot, and the crane were
presented by Fliess ef al. (1991, 1992a, 1992b). Uncontrollable systems and systems
without the strong accessibility property constitute typical examples of non-flat
systems. In the paper by Fliess ef al. (1993a), the Kapitsa pendulum and the double
inverted pendulum were shown to be non-differentially flat systems which can,
nevertheless, be ‘flattened’, in an average sense, by means of high-frequency vibratory
control and the application of averaging techniques to the resulting system. Further
developments and examples can be found in the paper by Martin (1992) and relations
with quasistatic feedback have been given by Rudolph (1993). In a recent article by
Pomet et al. (1992) connections of flat systems with non-exact Brunovsky canonical
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forms is established using equivalent systems of exact 1-forms. Further interesting
relations with Fliess’ differential algebraic approach have been given by Aranda-
Bricare et al. (1995).

Because of the existence of linearizing outputs, differentially flat systems are
naturally decouplable linearizable systems. For differentially flat systems where static
decoupling is possible, sliding mode strategies may be readily prescribed. If decoupled
linearization requires, however, dynamical feedback, then the notion of essential
orders becomes particularly relevant in the specification of well-defined dynamical
discontinuous feedback control strategies. Our presentation uses the recently
developed linear differential algebraic approach to system analysis (see the work of Di
Benedetto ef al. (1989), Glumineau and Moog (1989), Glumineau (1992), Moog et al.
(1991) and Grizzle (1993)). This technique is reviewed, in a tutorial fashion, in§2 of
this article. In § 3 we outline a design procedure for specifying sliding mode control
laws for differentially flat systems and present some illustrative examples. The last
section is devoted to the conclusions and some suggestions for further work.

2. Mathematical preliminaries
2.1. Basics of linear differential algebra in control systems

In this section we summarize, in a tutorial fashion, the main results, which are
applicable to multivariable sliding mode control design, of the linear differential
algebraic approach to control system analysis. The reader is referred to the work of Di
Benedetto et al. (1989), for further interesting details. The presentation here closely
follows that of Glumineau (1992).

We consider finite-dimensional nonlinear control systems of the form

)'c=f(x)+G(x)u}

s = h(x) @D

where x € R" represents the state vector, ue R™ is the control input vector and se R™
represents the set of sliding surface coordinate functions (or system outputs to be
zeroed). The components of the vector function f{x), the columns g(x), i=1,...,m of
the matrix G(x) and the components of the vector function /(x) are supposed to be
meromorphic functions of the components of x, that is they are elements of the fraction
field of the ring of analytic functions on a certain domain 2 of R".

Consider the field o of meromorphic functions of the finite collection of
components of the set {x,u,4,...,u" "V}

Example 2.1: A typical element n of " may be given by
ke T 2.2)

d

One may consider the differentials of the components of x,u,..., u™D as
independent ‘ coordinate directions’ of a formal vector space defined over the field .
This not only provides us with precise ‘tags’ for identifying the dependence of given
system functions over the components of the set of vectors x, 4, ..., u'" 1 but also gives
us the possibilities of formally working over an underlying linear vector space where
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we may express known properties of the given system as ‘ geometric properties’ over
such a space. This simple observation results in a suitable combination of the
simplicity and power of the algebraic reasoning with the intuitive value of geometry.
Consider then the vector space & spanned over the field o by the set of differentials
(also called I-forms, exact differentials, covectors, etc.), {dx,du,du,...,du""""}.

Notationally,
& = span,, {dx,du,du, ..., du"" "V} 2.3)

Here dx stands for dx,, ...,dx,, while du denotes du,, ..., du,, etc.

Example 2.2: The differential dy of a scalar function n = n(x,u, 4, ..., u®), k <n—1,
exhibiting an explicit dependent on the control input and its time derivatives, up to
order k, is given by
n m k
d =3 T ax 43y g0 2.4)

(D i
21 0x; =1 1=0 0U;

L]

Evidently dy computed in (2.4) satisfies dye &. We say dy is a o -linear combination
of the components of the differentials dx, du, ..., du®. O

Example 2.3: Consider the single-input single-sliding surface case of (2.1). Then the
Jjth time derivative of the function s = h(x) depends on u and, at most, on j—1 of its
time derivatives if and only if

ds? ¢ span - {dx}

that is ds? is not in the subspace of & spanned over the field )" by the n possible
coordinate ‘directions’ corresponding to dx. O

Since all differentials of time derivatives of the components of s may be, ultimately,
expressed as f -linear combinations of dx and suitable differentials of derivatives of
u, thatis di/, j = 0,1, 2, ..., one may introduce a sequence of subspaces in & in terms
of differentials of the components of x and the differentials of derivatives of the
components of s. Consider then

&, = span,, {dx}
8, .= span, {dx, ds} 2.5)

&, = span,, {dx,ds, ...,ds™}

Evidently such sequence of subspaces over )" is a growing sequence. They are said to
constitute a chain or, more properly, an ascending chain, satisfyingby &, = £, < ... =
&

Example 2.4: Consider the n-dimensional single-input system x = f{x)+g(x)u.
Let & = span ,{dx} =&, and let % =span,{dy,dy,...,dy" "}, for some scalar
function y = h(x). The system is transformable to a linear controllable system of the
form y'™ = v, with v being a new control input, if and only if there exists such a scalar
function y, for which the following conditions are satisfied:

e, j=0,1,...,n—1
dy™ ¢
dim, (@ nX)=n

ne
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The first and the last condition imply that y, y, ..., y® ™ define a local diffeomorphism
z; = y*V(x), while the second condition simply says that y' = 2 = a(x)+ f(x) u with,
necessarily, f(x) + 0. Evidently, 7, =z,,, i=1,2,...,n—1. The new input v is
immediately defined as v = a(x)+ f(x) u and, hence, y'” =z, = . O

Example 2.5: Consider a multivariable linear time-invariant system X = Ax, s = Cx
and let " = R. If we let & = span {dx} and & = span 4 {ds,ds, ...,ds™ P}, then

ds = Cdxeé,
ds = CAdxeé,
2.6)
ds® ™V = CA"'dxeé,
The system is observable if, and only if,
dimg (¥ n F)=n
If we now let the system be controlled by u, as in ¥ = 4Ax+ Bu, we have
ds = Cdxeé,
d§ = CAdx+CBdueé, < span »{dx, du} 2.7

Note that ds¢ Z if, and only if, the matrix B is not identically zero, similarly
ds¢ span i {dx, du} if, and only if, the matrix CAB is not identically zero, etc. O

2.2. Structure at infinity, invertibility and decouplability

As hinted by the previous examples, it becomes relatively simple, in the adopted
framework, to define the (row) relative degree of a particular sliding surface coordinate
function s, in the vector s (the term vector relative degree has also been used by Isidori
(1990)).

The row relative degree of the sliding surface s, = h(x),i = 1,...,mis defined as the
integer n, > 1 such that

dsPeé&,, for0<j<n~1

ds* ¢, (2.8)

An ill-defined sliding surface s, is constituted by a function which has infinite
relative degree, that is ds® e &,V k > 1 (the time derivatives of such a sliding surface
never depend, explicitly, on the components of the control input vector).

Consider now the quotient space &, /& ,. According to the definition of the involved
subspaces, this quotient space is, evidently, also a vector space, over X', spanned now
by the ‘residual basis’ directions, abusively denoted here by ds. Note that, if the
dimension of this quotient vector space is zero, then necessarily, s depends only on x.
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This is clear since ds in &, can be written as a J¢ -linear combination of the basis
covectors dx spanning &,. On the other hand, if the dimension of such quotient space
is, say o, (necessarily inferior to m), then precisely o, components of d§ cannot be
expressed as a o7 -linear combination of the components of dx alone. As a consequence,
some of the components of du have to be used. This clearly indicates that o,
components of s indeed depend on some of the components of u. The system has then
o, zeros at infinity of order equal to 1.

Suppose then that dim, &, /&, = &,, and consider next the quotient space &,/&,. If
dim , &,/€, = g, + 0, then &, components of d§ cannot be written as X -linear
combinations of the components of both dx and ds, that is as a ¢ -linear combination
of dx and those components of du already present in ds. If g, = ¢,, the new dimensions
present in &, correspond to the differentials of the derivatives of the components of u
already present in ds and no new components of du would appear. If, on the other
hand, o, > g,, it follows that additional components in du have to be invoked. The
increase in dimension of &, over that of &, is clearly conformed by the o, elements in
du, which are inherited from the dependence of ds on du, and the additions of new
components of du. Clearly then o, represents the number of zeros at infinity of order
less than or equal to 2. Moreover g, —a, precisely represents the number of zeros at
infinity of order 2.

The above simple explanation allows one to generalize the situation as follows
(Moog et al. 1991).

The ascending chain £, &, = ... = &, allows one to define the following
sequence of non-decreasing integers: ¢, < g, < ... < g, given by

o, = dim, ;—’ﬂ (2.9)
k-1

One now easily concludes that (Glumnieau 1992)

p, = sup{o,, k = 1}, equals the total number of zeros at infinity
P, = P,—0,_,, equals the number of zeros at infinity of order larger } (2.10)

or equal to i, for i <2

If onelets n, = card {p,; > j} then the list {n;; j > 1} represents the list of orders of zeros
at infinity.

A system is said to be right invertible if the number of independent outputs (sliding
surfaces) equals the number of outputs (Fliess 1989). A system is lef? invertible if the
number of independent outputs equals the number of inputs. For square systems, that
is systems with the same number of inputs as outputs, left and right invertibility are
then equivalent. The input-to-sliding-surface system is said to be decouplable (i.¢. each
sliding surface vector component depends on only one input vector component) if and
only if it is right invertible (Fliess 1989).

The previous result has also been established, in linear differential algebraic terms,
by Glumineau (1992). In our square input-to-sliding surface system case, such a result
is as follows.

The system (2.1) is input-to-sliding surface decouplable if and only if

dim,, (gi) =m @.11)
n-1
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Alternatively, by introducing & = span ,{dx} and ¥ = span,{ds,ds, ...,ds™}, the
square system (2.1) will be decouplable if, and only if,

dim,(F nNSL)=n (2.12)

Example 2.6: Consider the simplified model of the angular velocities evolution ofa
rigid spacecraft provided only with two actuators (jets) acting on two of the principal
axes, while the uncontrolled axis is not an axis of symmetry (see, for instance, Aeyels
(1985))

Xy =4
Xy = Uy
Xy = X1 Xy (2.13)
S =X
Sy = X3

Clearly
dx = [dx, dx,dx,), ds, =dx,, ds,=dx,

ds, = du,, ds, = x,dx;+x,dx,

ds, = du,, d§, = u, dx, +uy dx+ x, du, + x, du, @14)
ds$® = dii,, ds® = 4, dx, 4+, dx, + x, du, + x, di,
From this simple calculation one obtains
&, = span,, {dx, dx, dx;}
&, = span, {dx, dx, dx,;du,} 2.15)
&, = span, {dx, dx, dx, du, du, du,}
&, = span {dx, dx, dx, du, du, du, du, di,}
and then
g,=1 ag,=2, 0,=2 (2.16)

The relative degree of s, is 1, that of s, is 2, the system has one zero at infinity of order
1 and one zero at infinity of order 2. The system is also right invertible and hence
decouplable by means of static feedback. O

2.3. Essential orders

An important definition in nonlinear multivariable control is that of essential
orders. The essential order fundamentally represent the obstructions to decoupled
linearization by means of static feedback. In the context of sliding mode control, the
essential orders represent the structure of the obstructions to defining discontinuous
dynamics for certain sliding surface coordinates. We present here the definition given
by Glumineau and Moog (1989), in a slightly different form.

Define, associated with the ith component of the sliding surface vector s, the
sequence &“® of subspaces in & characterized by

&, = 4% @ span , {ds{¥} 2.17

where @ stands for direct subspace addition.
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The essential order of the sliding surface coordinate s, is said to be n,, whenever

sP¢ &0 for 0 < j<n,—1
) (2.18)
S}""e) ¢ &)}

The essential order of a particular output function represents the smallest order of
the time derivatives of the function for which such a derivative becomes dependent
upon a new input coordinate, irrespective of the fact that such an input may be present
in some other outputs, in their derivatives of any order, or even if it is present in any
of the derivatives of higher order of the considered output function itself. Additionally,
this dependence is such that it does not cause the considered output derivative to be
functionally related to its higher-order derivative expressions, or to other output
functions nor to any of their possible time derivatives.

In the context of dynamical sliding mode control, essential orders precisely
indicate the number of necessary dynamic extensions that must be performed, for
certain input variables, in order to have well-defined required discontinuities in some
of the time derivatives of the system outputs (or system sliding surfaces).

Itis easy to see that the essential orders of output functions are higher than or equal
to but never smaller than their corresponding row relative degrees. This explains the
important obstruction that may be present in the definition of discontinuous feedback
control policies in multivariable systems which are not statically input-to-sliding-
surface decouplable.

Example 2.7: In Example 2.6, the essential orders can be easily computed by
arranging the relations, between the differentials ds{®, k = 0, 1,2, 3 and the state and
input differentials dx, du, du, dii, as a matrix array (also called a jacobian matrix)

[ dx, ]| 1 00 0 0 0 0 0 0)[dx]
dx, 0100 0 0 0 0 0]f]dx,
dx, 0 01 0 0 0 0 0 0]]/adx
ds, 0 001 0 0 0 0 0]|dy
ds, |=]x, x, 0 0 0 0 0 0 0] dy (2.19)
ds, 0 00 0 0 1 0 0 0]/dg
ds, w u 0 x, x, 0 0 0 O du,
ds® 0 000 0 0 0 1 0]]/dsg
| ds@® | u, 4, 0 0 0 x, x;, 0 0) | di, |

The lines in bold type correspond to the first differentials of the derivatives of s, and
s, which cannot be placed as non-trivial /¢ -linear combinations of the state and output
components differentials. The essential orders are then 1 for s, and 2 for s, (everywhere
except at x; = 0). The essential orders thus coincide with the relative degrees. The
differentials ds, and ds, are called essential differentials and the corresponding rows in
the jacobian matrix are addressed as essential rows (Glumineau 1992). O

The importance of the essential orders in the decoupling problem was thoroughly
addressed in Glumineau and Moog (1989) and Glumineau (1992) and it is summarized
by the following statement.

Theorem 2.1 (Glumineau and Moog 1989): If there exists a static or dynamic state
feedback solving the decoupling problem then, for each one of the outputs of the system,
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it is verified that its (decoupled) relative degree is not inferior to its essential order.
Moreover, there exists a (possibly extended) decoupled system, deduced from the original
system, for which the essential orders coincide with the decoupled relative degrees.

The structure at infinity of the system is just the list of row relative degrees of the
outputs in a fixed but arbitrary order. Similarly, the essential structure is the list of
essential orders of the outputs arranged in the same order.

By suitable extension, the structure at infinity of the decoupled system can be made
to coincide with the essential structure of the original system. This precisely identifies
a class of non-statically decouplable multivariable nonlinear systems for which
dynamical sliding mode control policies can be feasibly defined. The additional
restriction of differential flatness focus attention on those systems which are also
linearizable to decoupled controllable systems.

For systems decouplable by means of regular static state feedback the essential
structure coincides with the structure at infinity (Glumineau 1992) and the prescription
of sliding mode policies possess no special problem.

Example 2.8: In Example 2.7, the system has the same essential structure as the
structure at infinity. The system is hence decouplable by means of static feedback.
Indeed, the system decoupling matrix is not everywhere singular as it may be easily

inferred from
s'{| _(1 0) u, 2.20)
8y Xy Xp/ LU .

|

2.4. Differentially flat systems

Differentially flat systems constitute a widespread class of dynamical systems
which represent the simplest possible extension of controllable linear systems to the
nonlinear systems domain. Flat systems (in short) enjoy the property of possessing a
finite set of differentially independent outputs (i.e. coordinates which do not satisfy, by
themselves, nonlinear differential equations), called linearizing outputs, such that all
variables in the system may be expressed as special functions, termed differential
functions, of such coordinates (they are functions of the linearizing coordinates and of
a finite number of their time derivatives). Flat systems are systems linearizable to
decoupled controllable systems. The fact that inputs and state components are
functions of the linearizing (flat) outputs imply that linearization can be carried out
within the class of endogenous feedback policies (the static or dynamical nature of the
required feedback will depend, fundamentally, on the relation between the essential
structure and the structure at infinity of the system with respect to such flat outputs).

The customary statements that identify such linearizing outputs are then the
following.

(1) The number of independent linearizing outputs is identical with the number of
inputs of the system.
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(2) All variables of the system, including the control input variables, can be written
exclusively in terms of differential functions of the linearizing outputs (i.e.
functions of the linearizing outputs and of a finite number of their time
derivatives).

(3) Generally speaking, the linearizing outputs can, in turn, be expressed as
differential functions of the system state vector components. This includes the
possibility of having explicit dependences of the linearizing outputs on the
states, the control inputs and a finite number of their time derivatives.

Since sliding surface coordinates might not all coincide with the linearizing output
coordinates, sliding surfaces and their required evolution, characterized by differential
equations with discontinuous right-hand sides, will also be expressible, in general, as
a set of coupled discontinuous nonlinear differential equations involving only the
linearizing coordinates. This immediately allows one to define the control inputs as
endogenous discontinuous feedback policies. Since control inputs may be constituted by
‘extended inputs’ (i.e. derivatives of original input variables), then flat systems can be
properly said to be robustly linearly decoupled by means of dynamical endogenous
discontinuous feedback control.

Let {y,...,y,} be a set of independent outputs of the system, not necessarily
coincident with the set of sliding surfaces. Denote by y the vector of such scalar
outputs. The components of the vector y satisfy y,e 4", i = 1,...., m. Since the outputs
may depend upon a finite number of control input derivatives, one may avoid counting
time derivatives by considering the infinite-dimensional version of the formal vector
space & which we denote here as

&, = span,, {dx, du, du, dd, ...} 2.21)

This not only bestows further generality but also is in the same spirit of recent
developments in control theory of using an infinite-dimensional space of control input
jets, and the associated infinite-dimensional vector fields, for the analysis of nonlinear
systems (Fliess et al. 1993b, 1993c). Denote by # the quotient field of the ring of
analytic functions of the components of the infinite set {y,y,,...}. We may now
introduce a formal infinite-dimensional vector space of differentials & 4, defined over
the field &, and given by

%, = spang {dy*®;k = 0} 2.22)
Consider also the formal vector space
% = span, {dy*;k = 0} (2.23)
We denote, as before, by & the subspace of & given by
Z = span, {dx} (2.24)

Flat systems are thus characterized by the existence of an m-dimensional vector y of
scalar outputs satisfying the following three conditions:

dyeé,
dim(@& N %) =n
{dx,du}e %,
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A trivial but important property of flat systems is the fact that flatness is invariant
with respect to arbitrary dynamical extensions of the system.

Example 2.9: Consider the kinematics model of a bicycle moving on a horizontal
plane. Let the state variables be defined as the position coordinates (x, y) of the contact
point of the plane with the rear wheel, the angular direction @ of the bicycle’s
longitudinal axis, with respect to the horizontal coordinate axis x, and the angular
orientation ¢ of the front wheel plane with respect to x. The horizontal distance
between the centres of the wheels is /. The describing equations are given by

X = u,cosf
y=u,sind
6= u, t—a?é | (2.25)
$=u
The state coordinate transformation (Murray and Sastry 1993)
Zy =X, Zy= 7%2%, z,=tanf, z,=y (2.26)
and the redefinition of the input variables
v, = u,cosf
3tan®¢sind 1 (2.27)

U=y —— o HUyT— 5
21 Pcostl 2lcostpcos®

takes the system (2.25) into a chained system of the form (Murray and Sastry 1993)

2y =0y, Z,=0,
2y = 2,0, (2.28)
2y = 2,0,
All variables in the transformed system can be expressed as functions of the outputs
y, = z, and y, = z, and of their time derivatives (i.e. as a differential function of the

position coordinates (x,y) of the contact point of the bicycle’s rear wheel with the
plane). Indeed,

Ve
2y =
: Y1
B _Bheht
e =T = B
Z »’ (2.29)
v, =0
v =y(23)}}1_).)2)7)(13)v+3(.}.’:2}"g; "J@(J@
£ ()? 6%

If we take the linearizing outputs as the sliding surfaces, thatis s, = z, and 5, = z,,
then one may easily find that both s, and s, have row relative degrees equal to 1. The
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essential order of s, is equal to 3 and that of s, is also 3. In order to decouple the system,
by means of endogenous dynamical discontinuous feedback, we only need to extend
the input coordinate u, at least twice and leave the rest of the system untouched. []

It should be remarked that, roughly speaking, if a system is not differentially flat,
then it essentially contains an uncontrollable part or else it does not satisfy the so-
called strong accessibility property (see Nijmeijer and van der Schaft (1990) for the
definition). Regulation of the non-flat system either may not be achieved at all or is
sometimes possible in an ad hoc average sense (Fliess et al. 1993a). In the context of
discontinuous multivariable feedback control, it thus makes sense to restrict attention
only to differentially flat systems, at least until a more general classification of
nonlinear systems is available.

3. Sliding mode control of nonlinear multivariable systems
3.1. A brief survey

Sliding mode control of multivariable nonlinear systems has been addressed from
different perspectives ever since the work of Utkin (1978) (see also the new book by
Utkin (1992)). The main emphasis in these books was towards obtaining statically
decoupled sliding regimes through the method of the hierarchy of controls. Applications
of this technique to the regulation and tracking of nonlinear robotic systems were first
made by Young (1978). Later, a more direct approach was presented by Slotine and
Sastry (1983) and by Slotine (1984). A clear exposition of the basic issues in
multivariable sliding mode control may also be found in a tutorial article by DeCarlo
et al. (1988). Further developments were given in the book by Slotine and Li (1991).
The differential geometric method was explored by Sira-Ramirez (1988) and by
Bartolini and Zolezzi (1986). A complete picture of the geometric approach, at least
from the perspective of static sliding mode control, is contained in a recent article by
Kwatny and Kim (1990). A completely new approach was initiated, in the context of
linear systems, by Fliess and Messager (1991). A module theoretical approach dealing
simultaneously with time-varying and time-invariant linear multivariable systems has
been recently proposed by Fliess and Sira-Ramirez (1993a, 1993b). The reader is
invited to explore the recent research trends in sliding mode control in general, and for
the multivariable case in particular, in two special issues of the journals International
Journal of Control (1993) and IEEE Transactions on Industrial Electronics (1993). The
books edited by Zinober (1990, 1994) also contain recent contributions and
perspectives for the field.

3.2. Sliding mode control of differentially flat systems

From the preceding sections, it is apparent that the class of differentially flat
systems constitutes a natural class of systems for which discontinuous endogenous
feedback control strategies can be properly defined. Static or dynamical discontinuous
endogenous feedback control policies can always be appropriately defined for such
class of systems.

A sliding mode design procedure, for the considered class of linearizable systems,
can then be proposed as follows.
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(1) Establish the differential flatness of the multivariable nonlinear system by
identifying a linearizing set of outputs (note that, so far, no general algorithm
exists for such a task)

(2) Obtain all system variables, including the sliding surface coordinates, in terms
of differential functions of the linearizing outputs.

(3) Compute the structure at infinity and the essential structure of the system with
respect to the linearizing outputs.

(4) If necessary, extend the system to have the essential structure coincide with the
structure at infinity of the decoupled system.

(5) Proceed to specify desirable decoupled unforced discontinuous differential
equations for the given sliding surface coordinates. This set of differential
equations must be prescribed in such a way that, from the corresponding set of
coupled nonlinear discontinuous dynamics imposed on the linearizing outputs,
the solved highest-order derivatives of such outputs coincide with those
obtained in the expressions for the control inputs. The adopted unforced
sliding surface discontinuous dynamics guarantee either finite time reachability
to zero of particular sliding surface coordinates (namely those enjoying first-
order sliding mode dynamics) or else yield asymptotically stable trajectories
(for those coordinates requiring higher-order sliding mode dynamics).

The main result pertaining sliding mode control of nonlinear systems, restricted to
the class of differentially flat systems, may be summarized as follows.

‘Decoupled linearization by means of a statically discontinuous feedback control
policy can always be appropriately defined for differentially flat multivariable systems
which are statically decouplable to linear controllable systems (i.e. those whose
essential structure coincides with the structure at infinity). Endogenous dynamical
discontinuous feedback policies can also always be defined for differentially flat
multivariable systems which are not statically decouplable. A suitable dynamical
extension of the original system always exist which makes the extended system exhibit,
for the linearizing outputs, an essential structure which is coincident with the
corresponding decoupled structure at infinity’.

3.3. Some design examples

Example 3.1: Consider the system describing the spacecraft dynamics, treated in
Example 2.6,

Xy =
Xy = Uy
X3 = X1 X, (3.1)
S1=X
Sy = X3

It is designed to regulate the angular velocity x, around a given constant angular
velocity x, = X, + 0, while x, is to be regulated to zero. We thus take as sliding
surfaces s, = x,— X, and s, = x,.

The system is differentially flat, with linearizing coordinates given precisely by
y, = x, and y, = x, (which are trivially related to the sliding surfaces and, in fact,
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exhibit the same structure at infinity and the same essential structure). Indeed,
these coordinates do not satisfy any differential equation and, moreover, all variables
in the system are expressible as differential functions of such output coordinates

X1 ="
Yo
x, =22
z N
X3 =Y, 3.2)
u =y,
Vo 1=V ¥
u2=_271y? 2 M1

As already verified, this system is decouplable by means of static feedback since the
essential structure for the given sliding surfaces coincides with the structure at infinity.
Since the system is also flat, it is linearizable by static endogenous discontinuous
feedback.

According to the design procedure previously outlined, one imposes the following
slide mode dynamics on the sliding surfaces coordinates:

$, = — Wysigns, }

. . o 3.3
§, = —As, — W, sign (§, + As,)

which yields the following desirable discontinuous dynamics for the linearizing
coordinates y,, y,:

y, =— W sign(y,— X)) } (3.4)

Vo= — Ay, — W,sign ().’2+'1y2)
By virtue of the system flatness the required control inputs are readily obtained as
U =- VVISign(yl_Xl)
1 . L Yy . (3.5)
Uy = )7["@’?52_ W, sign(y,+ Ay,)] +)—/2‘ W, sign(y, —X,)
1

1

In terms of the original state coordinates the following discontinuous feedback control
law accomplishes the desired control objectives

u, = — W;sign(x, — X))
3.6

1 . X X .
U, = J—c—[-=,lx1x2— I/I/231gn(xl)c2~l~}uc3)]+—‘x2—2 W, sign (x, — X;)
1 1

Clearly stabilization to x, = X, = 0 is unfeasible owing to the underlying singularity.
a

Example 3.2: We consider the kinematic model of a powered monocycle moving on
a horizontal plane:

X =v,cos0

y =v,sind (3.7

6=y,
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where x and y are the position coordinates of the wheel and @ is the wheel angular
direction measured with respect to the x axis. The control input v, represents the
forward velocity of the wheel and v, is the steering rate. (The model also represents the
simplified kinematics of a car model (Nijmeijer and van der Schaft 1990.) In order to
slightly simplify the treatment we perform the following state and input coordinates
transformation which brings the system into chained form (Murray and Sastry 1993):

X, =X, X,=y, X,=tan0

v (3.8)
u, =v,cost; u,= 5:27)
that is
X, =u,
Xy = Uy (39)
Xy = Xyt

The system is easily seen to be differentially flat, with linearizing outputs y, and y,
given, by the position coordinates x, and x, respectively. Indeed, these coordinates are
independent since they do not satisfy any differential equation, their number equals
the number of control inputs and finally all variables in the system are expressible as
differential functions of the linearizing coordinates

X1 =N
Vs
Xy = —
W1
) ¢ (3.10)
U =xn
. = D2V1 VN
? ¥

The jacobian matrix relating the differentials of the states and outputs to the
differentials of the control inputs is given, in this case, by

~- -

dx, 1 00 0 0 0 0 00O
dx, 01 00 0 0 0 0 0][dx,]
dx, 0o 010 0 0 0 OO dx,
dy, 1 000 0 0 0 00 dx,
dy, o010 0 0 0 00O du,
dy, |[=]0 0 01 0 O O O O du, 3.11)
dy, 0O uy, 0 x, 0 0 O O O du,
dy, 0000 0 1 0 00 du,
dy, 0w, 0 u, v, x, 0 0 O di,
dy® 00 00 0 0 1 0 Of]di ]|
| Ay | 0 4 0 u, 20, 2u, u, x, 0

It can immediately be seen that the row relative degree of the linearizing output y, is
1 and that of y, is also 1, everywhere except for x, = 0. The system is not decouplable
by static feedback. The essential orders are also readily seen to be 2 and 2. By
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extending u, just once, the system becomes decouplable with relative degrees coincident
with the essential orders. Consider then

X =

U =0,

) (3.12)
Xo = U,

Xy = Xy Uy

where now u, is just another state variable component. The system is still differentially
flat, with the same linearizing coordinates y, = x, and y, = x,. Indeed, the variables of
the extended system are now expressed as

X1 ="
y
X, =;f
Uy =y > (3.13)
vy = Jy
_ "zyl'“yz)ﬁ
N

The new jacobian matrix relating the differentials is now given by

?l 1 0 00 0 0 0 0

d? 01 00 0 0 0 0, |
o 00 100 0 0 0"
@3 0001 0 0 0 0ff"
@1 1000 0 0 0 0f[>
dy? =fo 1 00 0 0o 0 0| > (3.14)
@1 0x, 1 0 0 0 0 0ff"
@2 0000 1 0 0 0ff "
M; 0@ v 0 x, 1 0 0 =
@@ 00 00 0 o0 1 o]L%
dy® 0 4, o, 0 2u, 20, x, w

It is clear that the relative degrees of the outputs are now 2 and 2, which coincide
with the corresponding essential orders. The extended system is then decouplable by
means of static discontinuous feedback, that is the original system is decouplable by
dynamical discontinuous feedback.

Consider the problem of following a circle of radius R with constant angular
velocity ¥ = , in a counterclockwise sense, here y = atan(y,/y,). The sliding
surfaces s, and s, are then represented by the error of the square of the radial position
and by the angular velocity error i — Q. In terms of the linearizing coordinates,

s =yi+y;— R

Ja— Yo G-15)
—are ¢
M

2.—_
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We impose the following discontinuous dynamics on the sliding surfaces:
§ = —=/ls'1—' W, sign (s, + As,) } (3.16)
§, = — W,signs,

In terms of the linearizing coordinates, such robust discontinuous linearizing dynamics
result in

yi= s[= =P — Ay, +y.y,) —1 W signay]
1= y1+y§ Wi—¥: Y1tV —a 1
p, — Y 2y, 0, +2y, ¥ .
_ y2((y1yz ylyZZ( ylz_yL yg@_% . a2>
yitys
(3.17)
. Vs s A v 9)— L W s
=— —Vi—YVa— + —3 W signo
Y y§+y§[ Vi—=Vs— A1 Y1+ Y. Y,) —3 Wysig )
(J’1)"2_)}1y2)(2y1y1+2)’2}}2) . )
= SR TRE 1 sign
o ¥+ SN
where
0, =$;+A5; = 2y1)}1+2J’2y2+}*(y§+}’g_R2)
3.18
6, =5, = NIV (3.18)

yity:

The required endogenous discontinuous feedback control inputs can be im-
mediately computed from the relations arising from the flatness property of the system
in (3.13):

vy =ty = L yg[ Vi=Yi =AMy 1+ 2. Y2)— 1 Wsignay]
[(ym ylyyzzfiylﬁyzyz) W, sign az]
(3.19)
=2 - A0y~ Wsigna
ylyl;rlyzyz ((ylyz ylyyzz(fi:ylﬁyzyz) W, sign 02)

The obtained control laws can now be placed in terms of the original state and input
coordinates.

3.4. Simulation results

Computer simulations, using MATLAB were carried out for the original system
(3.7), regulated by the derived multivariable decoupling sliding mode controller (3.17)
and (3.18). The value of the circle radius was taken to be R = 2 m, while the desired
angular velocity was taken to be y = Q = 20 rad s™*. The numerical values associated
with the designed controllers were set to be

W,=1, A=1, W,=2
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T T 1 . S
2t y(z) N 8 (t)
ot 3
b 4
ot -
2t 4
3 4
2t 4
- ] . _4 1 . R
0 0 5 time[s] 10
I — 3~ - —-
s2(t) ¥(?)
Or 2t
AF E 1+ -
2t 1 ol 4
3 4 1 1
_4; S _2.__,_._; 5 = o on
0 5 time [s] 10 0 5 time [S] 10

Sliding mode-controlled-trajectories for the powered unicycle example.

The Figure shows the controlled trajectory of the unicycle in the (x, y) - plane, as the
function p(x). This figure also shows the time evolution of the sliding surface
coordinates s5,(z) and s,(¢) and the controlled angular velocity y(f) of the unicycle
around the circle. The sliding surface coordinates trajectories s,(r) and s,(¢)
converge respectively in finite time and in asymptotic fashion to their desired value
of zero. As expected, the nature of such convergence depends on the static or dynamic
nature of the underlying sliding regime.

4. Conclusions

In this article we have presented, for a class of linearizable multivariable systems
known as differentially flat systems, a design method which achieves robust feedback
linearization by means of endogenous discontinuous feedback control of the sliding
mode type. The notion of essential orders has been shown to be quite relevant in the
feasibility of dynamical or static discontinuous decoupled linearization for the class of
differentially flat systems. The exposition uses the language of linear differential
algebra in a rather conventional manner. Several examples demonstrate the feasibility
of a systematic treatment of such class of problems.

Within the same framework utilized here, an interesting study of the decoupling
problem for the case of perturbed systems has been initiated by Castro-Linares and
Moog (1994). The implication of such a study on dynamical sliding mode control
policies seems challenging and a excellent topic for further work.

Recently, the linear differential algebraic approach has been successfully extended
by Grizzle (1993) to include nonlinear discrete-time multivariable systems. The
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appropriate definition of discrete time sliding modes, and some of their relevant
properties, may be sought within this general context as a problem that requires
deserved attention.
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