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A redundant dynamical sliding mode control scheme for an asymptotic
space vehicle stabilization

H. SIRA-RAMIREZ¥ and H. B. SIGUERDIDJANE}

A redundant dynamical sliding mode control scheme is proposed for the asymptotic
stabilization of a rigid spacecraft. The input-dependent nonlinear sliding manifolds
are derived from a smooth feedback control law, based on the use of nonlinear
characteristic values and characteristic vectors. A scheme tolerating sudden per-
turbation failure is presented. Simulations studies are provided.

1. Introduction

The use of dynamical sliding mode control policies for nonlinear systems, based on
input-dependent manifolds, has resulted in a rather significant departure from
traditional discontinuous feedback design schemes utilizing only state-dependent
surfaces (Sira-Ramirez 1991, 1992). Continuous rather than bang-bang control input
signals and substantially smoothed chattering-free trajectories have been shown to be
some of the several advantageous properties exhibited by the use of such input-
dependent manifolds as sliding surfaces.

Static sliding mode control schemes, using state-dependent sliding surfaces, have
been proposed in the past for the stabilization of a rigid spacecraft. The work of Vadali
proposed traditional linear manifolds for rest-to-rest reorientation manoeuvres.
Dwyer and Sira-Ramirez (1988) used nonlinear manifolds which resulted in linearized
kinematics regulation. The advantage of the sliding mode approach, for spacecraft
stabilization, lies in the enhanced robustness features and the overall simplicity of the
control scheme. The disadvantages are related to the bang—bang nature of the applied
torques.

In this article, we propose to utilize a set of input-dependent sliding surfaces for the
bang-bang free asymptotic stabilization of angular velocities in rigid spacecrafts. The
multivariable input-dependent nonlinear sliding manifolds are directly suggested by a
smooth feedback control law design, entirely based on the use of nonlinear eigenvalues
and eigenvectors and the associated nonlinear characteristic equation (Siguerdidjane
1991, 1994). Such a collection of sliding surface coordinates has the interpretation of
feedback control implementation error. Any deviation of the implemented input, from
the required value generated by the smooth state feedback control law, yields a
detectable error which triggers a dynamically generated feedback correction signal.
Such redundant control signal forcefully imposes the designed feedback control law in
a sliding mode manner. The implicit advantages of sliding mode control are then
substantially enhanced in our proposed scheme, as it is also capable of tolerating
sudden failures both in the main designed feedback loop and in the dynamical
discontinuous portion of the controller.
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The general feedback control scheme, based on utilizing a designed smooth
feedback control law as an input-dependent sliding surface, is presented in §2 together
with a derivation and analysis of some of the advantageous features of such an
approach; §3 is devoted to an application of the proposed technique to rigid spacecraft
stabilization; simulation studies are included; §4 contains the conclusions and
suggestions for further research.

2. A redundant dynamical sliding mode control scheme

2.1. A dynamical sliding mode controller based on a prescribed smooth feedback
control law

Consider a nonlinear n-dimensional multivariable smooth system of the form
x = f(x,u) = 2.1

where u denotes the m-dimensional vector of control input components taking values
in R.

Suppose that a smooth feedback controller has been designed, which locally stabi-
lizes the trajectories of the control system (2.1) to a desired constant equilibrium point
X(U), dependent upon a constant value of the input signal U, that is f(X(U), U) = 0.
The stabilizing feedback control law is assumed to be explicitly given by

u = —k(x) 22
In other words, the closed-loop system
x = f(x, —k(x)) (2.3)

is assumed locally to exhibit desirable asymptotic stability features towards the

equilibrium point. In equilibrium, the value of the feedback signal —k(X(U)) is

compatible with the equilibrium value for the vector u, that is U = —k(X(U)) #+ 0.
Suppose now that an auxiliary multivariable input-dependent function of the form

s(x,u) = u+k(x) 2.4)

is synthesized, and its components are proposed as sliding surface candidates on which
the following discontinuous dynamics are imposed:

$(x,u) = — WSgn|[s(x,u)] 2.5

with W = diag (W) being a strictly positive definite diagonal matrix with sufficiently
large constant entries. The vector Sgn[s(x, u)] stands for the vector of scalar signum
functions applied to each component s(x,u). Note that the trajectories of the
components s(x,u) of (2.5) independently reach the condition s,(x,u) = 0, in finite
time T, given by T, = |s(x(0), #(0)|/ W, (i =1,2,3).

Upon reaching the condition s(x,u) =0, a sliding motion (Utkin 1978) is
collectively created on the intersection of such a set of input-dependent manifolds. The
sliding mode condition is then sustained in an indefinite manner. The ideal sliding
motions (Sira-Ramirez 1993) associated with the sliding regime, thus created, imply
that the control input vector u precisely complies with the designed feedback control
law. In other words, ideally speaking, under the sliding mode condition one has
u=—k(x).
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Figure 1. Dynamical sliding mode controller enforcing a designed smooth feedback control
law.

Replacing (2.4) into (2.5) leads to the following dynamical discontinuous sliding

mode controller for the nonlinear system:

= —algf:)—f(x, u)— W Sgn [u+ k(x)) (2.6)
Equation (2.6) represents a time-varying nonlinear first-order differential equation for
the control input vector # with a discontinuous right-hand side. The additional
complication incurred in building such a dynamical discontinuous feedback controller
is superseded by the many advantages that it bestows on the closed loop features of the
controlled system.

A block diagram of the feedback controller (2.6) is shown in Fig. 1. A
straightforward integration of the above expression (2.6) allows for the re-
interpretation of the controller in terms of a redundant “hybrid’ controller comprising
the original feedback law (2.3) implemented in parallel to an integrated (i.e. smoothed)
discontinuous feedback vector signal, triggered. by the signs of the feedback errors
u+ k(x). Indeed, integration of (2.6) yields

u= —f (?L‘(axic )] Sflx(0), u(a)) + WSgn [u(o) + k(x(a'))]) da + u(0)

= —k(x())— f W Sgn [u(o) + k(x(0))] do + [u(0) + k(x(0))]

= —k(x()) — Wf Sen [u(0) + k(x(c))] do + s(x(0), u(0))

A block diagram depicting this reinterpretation of the controller (2.6) is shown in
Fig. 2. From the previous expression, one also immediately obtains, upon rearrange-
ment,

s(x(2), u(t)) = s(x(0), u(0)) — Wf Sgn [u(o) + k(x(0))] do 27

from where it easily follows that, regardless of the initial values of s(x(0), #(0)) of the
sliding surface vector s(x, u), the condition s(x(T), u(T’)) = 0is indeed reached in finite
time 7.



904 H. Sira-Ramirez and H. B. Siguerdidjane

e e
L kS Lok
R

Figure 2. Reinterpretation of dynamical sliding mode controller enforcing a designed smooth
feedback control law.
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Figure 3. A feedback signal failure in the smooth portion of the redundant controller.

By virtue of the above developments, we finally rewrite the multivariable dynamical
feedback controller (2.6) as

u=v—k(x) } 2.8)

¥ = — W Sgn [u+ k(x)]

2.2. Some properties of the proposed dynamical discontinuous controller

The dynamical controller (2.6) exhibits several advantageous properties which are
summarized below.

2.2.1. The discontinuities associated to the underlying sliding motion, taking place
along the input-dependent manifold, s(x,#) = 0 are relegated to the first-order time
derivative of the control input signals components of u. Hence, the resulting controller
is, indeed, continuous. Bang—bang input signals, otherwise characteristic of sliding
mode control schemes (Utkin 1978), are thus effectively suppressed by the dynamic
nature of the proposed controller (Sira-Ramirez 1991, 1992).

2.2.2. Suppose that at a certain time ¢ = 7; the smooth portion of the feedback loop,
feeding the signal components —k(x) to the control input u, fails for an indefinite
period of time (Fig. 3). Assume, furthermore, that at the failure time 7; the
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discontinuous portion of the controller was currently exhibiting a sliding mode
behaviour (i.e. ideally s(x(7,), (7)) = 0). Suppose also that the system’s state was
already stabilized at its equilibrium value x = X(U) and, hence, u(1)) = —k(X(U)) =
U. The feedback control law being enforced at any time ¢ > T;, after the feedback
failure, satisfies

u=— WJt Sgn [u(c) + k(x(0))]do 2.9

that is
i = — WSgn[u(f)+ k(x(2))] (2.10)

It follows that the value of the components of u(¢) are instantaneously set to zero at
T, + . It easily follows from (2.9) and (2.10) that u evolves, for £ > T, in such a fashion
that the norm of the feedback error signals, s(x,u) = u+k(x), is being constantly
diminished. The discontinuous part of the controller locally sustains the motions of
the system in a sliding regime around the manifold, #+ k(x) = 0, thus recovering, on
the average, the original feedback control law u = —k(x). Indeed, consider the value
of the product s(x(¢), u(#))" s(x(5), u(9)) for t > T;:

SR (D), (1) S0, u(1) = s(Ce(0), (D))" (a+g§f<x,u>)

s(x(2), u(n))" ( — W Sgn [s(x(2), u()] + ggf (x, u))

= s e 1 a0, 0 (Ex) ) @11

Thus, for a sufficiently large value of the constant diagonal elements of W, the sign of
the above expression can always be made negative on an open neighbourhood defined
around s(x, ) = 0, and, hence, a sliding regime is seen to locally exist on s(x,u) = 0
(Utkin 1978).

Remark: It should be pointed out that the region of attraction of the sliding
manifold s(x, u) = 0, for control laws satisfying (2.10) must be precisely determined in
each case. It may very well happen that after a feedback loop failure, such as that
described above, the surviving discontinuous portion of the controller is incapable of
achieving a sliding motion on the zero error manifold, s(x, #) = 0. Such a possibility is
highly dependent upon the possibility of complying with the negativity of the final
expression in (2.11).

2.2.3. Sliding mode controllers are known to be highly insensitive to external
perturbation signals and to modelling errors. Thus the above scheme always imposes,
in a robust fashion, ‘the right feedback control law’. Changes in state due to external
perturbation inputs to the system result in corresponding changes in the feedback
control law —k(x), at both the smooth and the discontinuous portions of the pro-
posed controller. If the designed smooth control law is known to enjoy robustness
properties with respect to a certain class of perturbation input signals, the proposed
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controller simply inherits those properties and results in a forceful imposition, on the
average, of the required smooth control law. The abundance of results in the area
of sliding mode control schemes robustness makes this important feature of dis-
continuous feedback control schemes transparently obvious.

3. Dynamical sliding mode control stabilization of a rigid spacecraft
3.1. A rigid spacecraft model

Consider a rigid body in an inertial reference frame. Let w,, », and o, denote the
components of the angular velocity vector and denote by 1, I, and I, the moments of
inertia about the principal axes, here assumed to coincide with the body axes. Set
x;, =, (i=1,2,3). The dynamics of the motion under the influence of external
torques u,, u, and u, are described by the following set of Euler equations:

I,—1
X, = —%—ix2 X, +u,
1
. I.—1I
X, = 3Tl-x3x1+u2 (3.1
2
X, = ~1_ Bx, X, 4 Uy
3

A stable constant equilibrium point for system (3.1) is given by

u=U=0, xU)=0 (i=123) (3.2)

3.2. A smooth controller design for the angular velocity stabilization

In this section we summarize the derivation of an explicit stabilizing nonlinear
feedback controller, synthesized by means of the nonlinear characteristic equation
method (Siguerdidjane 1991, 1992). For further details, the reader is referred to these
references.

Suppose the following desired dynamics, which are directly obtained from an
eigenvalue-eigenvector analysis of the closed-loop system equation, is to be imposed
on the spacecraft system (3.1):

X, = imv, w,e¥ cn (%Aeﬂt)

B
X, = —muv,w, e sn (go%eﬂt) (3.3)
X, = v, w, e’ dn (w"; ef)

where cn(), sn() and dn( ) are the Jacobi elliptic functions of pole n. The constant 8
is a negative constant. m is the so-called modulus of the Jacobi functions. The
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parameter w, is an arbitrary constant, and i is the imaginary number. The v;’s are the
components of the nonlinear eigenvector v of the closed-loop system which is easily
seen to satisfy

I,—1
Av, = 211 v, Uy
I,—1
ivg=i[ ‘u,0, (3.4)
2
I1,—1
Avg = 11 2,0,
3

J is the nonlinear eigenvalue assoiated with v.

Making the proposed solution (3.3) compatible with the system equation (3.1) and
the required steady-state conditions, one finds, after tedious manipulations involving
the formulae for the derivatives of the Jacobi elliptic functions, that the control input
components must satisfy the following strikingly simple state feedback control laws:

u,(x) = Bx,
uy(x) = px, (3.5)
uy(x) = fx,

Siguerdidjane (1991) has shown that the feedback control law (3.5) yields asymp-
totically stable closed-loop trajectories. The only limitation associated with such a
control law rests in the fact that the argument of the Jacobi elliptic functions may not
be allowed to take the value K representing the so-called ‘real quarter-period’.

3.3. Redundant dynamical sliding mode controller design

According to the results of § 2, we choose as sliding surface coordinate components
the following input-dependent expressions:

5,(x) = u,(x)— fx,
55(x) = uy(x) — fix, (3.6)
55(%) = uy(x) — fx,

By imposing the discontinuous dynamics (2.5) on each one of the components of
the vector s(x,u) = (s,(x, u), 5,(x, u), s,(x,u)) above, one obtains the following set of
dynamical sliding mode controllers:

. 1,1
U, —pu, = .3—2[ 3x2x3— W, Sgn (u, —fx,)
1

I—1

thy— iy = B xy %, — W, Sgn (uy— fixy) ¢ 37
2

. 11'—12

ty— Puy = f— -~ x; x, — W, Sgn (uy — Bxy)

Iy
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Figure 4. The state response: the angular velocities in radians per second.

Upon stabilization of the angular velocities, the zero dynamics, associated with the
controlled system, are simply given by the following set of asymptotically stable
motions:

= Puy, U, = Puy, g = Pu, (3.8)

which states that the proposed feedback control scheme leads to a minimum phase
behaviour of the controlled angular velocities.
In terms of the reinterpretation (2.8) the above controller is simply written as

U =v,+px, o, =—W Sgn (4, —fx,)
U, = v, +x,, v, =—W, Sgn (u, —fx;) (3.9)
uy = vg+fx;, o, =—W,Sgn (uz—Bx3)

3.4. Simulations

Simulations were performed for the system (3.1) with the dynamical controller
(3.9). The numerical values adopted for the system parameters were chosen as the
parameters of the satellite SPOT 4: I, = 2500 kg m*, I, = 6500 kgm® and /, =
8000 kg m?.

The parameter § in the smooth controller (3.5) was set to be §=—0.5, while the
dynamical sliding mode controller parameter matrix W was chosen as

W= (3.10)

[ e
S N O
wm o o

Figure 4 shows the state response of the dynamically sliding mode controlled
system asymptotically converging to their corresponding equilibrium points. Figure 5
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depicts the continuous trajectory of the control input components while Fig. 6 shows
the evolution of the input-dependent sliding surface coordinate components s(x, u),
converging to zero in finite time.

In order to check the robustness of the proposed dynamical sliding mode control
scheme with respect to sudden failures in the originally designed smooth feedback
loop, we simulated the performance of the system with the following dynamical
discontinuous feedback controller:

u, = v, +kfx,, o, =-—W Sgn(u,—px,)
0, = — W, Sgn (u, — fBx,)

) = — W, Sgn (u, ~fx;)

U, = v, + KPx,,

U, = vy +Kkfix,,

G.11)
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Figure 7. The state responses subject to a sudden failure at time 7, = 05 s.
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Figure 8. The trajectory of the failed control input.

where the variable x, simulating the feedback loop failure, was allowed to be

{1, fort<7;}
K=

12
0, fort>T, (12

with ,=0.5s.

Figure 7 shows the state responses of the dynamically sliding mode controlled
system subject to the sudden failure of the form (3.11). The sliding mode controller is
seen to restabilize the state trajectories to their corresponding equilibrium points.
Figure 8 depicts the corresponding trajectory of the failed control input, showing, at
failure time 7;, the instantaneous resetting to the value zero of the control input signal
and its subsequent recovery to a sliding mode regulation of the system. Note that the
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Figure 9. The behaviour of the input-dependent sliding surface coordinate components
emphasizing the failure time 7, = 0-5s.

surviving portion of the controller still generates a continuous feedback signal.
Figure 9 shows the behaviour of the input-dependent sliding surface coordinate
function s(x, ) before and after the feedback signal failure.

4. Conclusions

A robust redundant feedback control scheme, based on dynamical sliding mode
control, has been proposed for the robust stabilization of angular velocities in a rigid
spacecraft. The proposed scheme utilizes the expressions of a designed multivariable
smooth feedback control policy as sliding surfaces and proceeds to impose forcefully
those desirable relations by means of appropriately induced sliding regimes. The
resulting dynamical controller is then reinterpreted in terms of two subsystems: one is
the smooth portion of the controller, represented by the originally designed stabilizing
static feedback control law, and the other is a parallel regulator based on dynamically
generated (i.e. smoothed) discontinuous control actions of the sliding mode (i.e. relay)
type. The scheme was shown to be advantageous in several respects, among which we
found local robustness with respect to sudden failures in the static portion of the
proposed feedback controller. The scheme is trivially robust with respect to failures in
the discontinuous complementary controller. The basic features of the proposed
control scheme were illustrated by means of simulations.
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