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Design of pulse width modulation controllers for stabilization and
tracking in derived DC-to-DC power converters

HEBERTT SIRA-R!\MI’REZT, MAURICIO GARCIA-ESTEBAN1§
and RAFAEL A. PEREZ-MORENO§

Feedback controllers, based on pulse-width-modulation (PWM), are derived for the
average input current stabilization and tracking problems in derived DC-to-DC
power supplies of the buck and boost types. The stabilization problems are solved on
the basis of steady-state considerations about the current ‘ripple’ and exactly
discretized nonlinear models describing the sampled PWM regulated input current
trajectories. In the boost-derived converter, the stabilization problem leads to an
implicit static nonlinear feedback controller, or duty ratio synthesizer, which requires
online solutions of a transcendental equation at each sampling instant. The signal
tracking problems are solved on the basis of discrete-time, non-kalmanian state
representation models describing the average PWM regulated input current. These
generalized state models naturally allow for explicit dynamical, rather than static,
feedback regulators. Computer simulations, including unmodelled load variations
and external stochastic perturbation inputs, are presented which test the robustness
of the proposed PWM controller performances,

1. Introduction

Simplified versions of DC-to-DC power converters may be obtained by removing
the storing capacitors on the output circuits. Corresponding to the buck, the boost,
and the buck—boost converters (see Severns and Bloom 1983), the obtained converters
are known, respectively, as ‘choppers’, step-up and step up-down converters.
Generically, they may also be addressed as ‘derived’ converters (see Rashid 1993, for
details).

The feedback regulation of DC-to-DC power supplies is customarily accomplished,
through pulse-width-modulation (PWM) feedback strategies (see Kassakian et al.
1991, Rashid 1993). Typically, control objectives include input current stabilization,
around a given constant value, or time-varying reference input signal tracking. In
this context, infinite frequency average models (see Middlebrook and Cuk 1976) or
equivalent control models are frequently invoked, at the controller design stage,
in order to obtain a smooth feedback specification of the computed duty ratio
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function (see also Sira-Ramirez 1989, 1991, Sira-Ramirez and Lischinsky-Arenas
1991, and Sira-Ramirez et al. 1993). The performance features of the actual PWM
controlled circuit responses, with respect to those predicted by the average PWM
model, depend on the magnitude of the sampling frequency associated with the pulse
width modulator. For low sampling frequencies, the closed-loop precision deteriorates
allowing substantial errors in the stabilization and tracking tasks.

The use of average models, however, may not be entirely justified for derived DC-
to-DC power supplies. First, the appealing simplicity of the dynamic models does not
seem to require further simplification through a questionable smooth approximation
and, secondly, the possibilities for exact discretization, which is certainly a much more
involved process in the traditional version of the converters, make it reasonable to
attempt a direct PWM controller design based on an exact discrete-time model of the
derived converter (see Kassakian et al. 1991). The exact discretization circumvents all
problems related to the approximation involved in the finite magnitude of the
sampling frequency used for the pulse width modulator.

It is the purpose of this paper to explore, in detail, the feasibility of PWM
stabilizing controller designs for stabilization and tracking in derived DC-to-DC
power converters. The approach is based on exact discretization of the sampled input
current. Discrete-time regulation policies based on approximate discretization and
approximate linearization were explored by Ehsani et al. (1983). The outline of an
approximate discretization approach for the stabilization of more complex DC-to-DC
power supplies can also be found in Kassakian et al. (1991). Related developments,
from a viewpoint different to that of feedback control, are found in Rashid (1993).

In this article we present the fundamentals of an exact discretization approach for
the input current stabilization and tracking problems in the derived versions of the
buck and the boost DC-to-DC power supplies. The results, however, can also be
extended to include the buck—boost derived converter. The linearity in the input,
associated with the traditional infinite frequency average models of the converters, is
effectively destroyed by the exact discretization procedure. Nevertheless, the obtained
models still remain linear in the state. The proposed approach offers no special
difficulties for the stabilization problem in converters of the buck-derived type. For
such a class of derived converters, it is also possible to obtain an explicit expression
relating steady-state average input current values to steady-state sampled input
current values. This key fact allows us to solve explicitly the average current
stabilization problem in terms of an equivalent sampled current stabilization problem.
However, in the stabilization problem for the boost-derived converter, the resulting
nonlinear discrete-time duty ratio synthesizers (controllers) are of the implicit type, i.e.
at each sampling instant, the feedback duty ratio function is given by the numerical
solution of a transcendental equation. Similar transcendental equations allow for the
offline computation of the desired steady-state average input current in terms of the
steady-state sampled input current. The signal tracking problems are addressed by
introducing discrete-time average models for the PWM regulated input current
trajectories. The discrete-time models naturally result in generalized, i.e. non-
kalmanian, state representations of the systems (see Fliess 1992). In both cases, the
proposed average models naturally lead to nonlinear explicit dynamical feedback duty
ratio synthesizers.

Section 2 presents an exact discretization approach for PWM feedback regulator
designs solving stabilization problems defined on derived DC-to-DC power supplies of
the buck and boost types. In this section we also present simulations of the proposed
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feedback control schemes for the derived converters. Section 3 presents the nonlinear
discrete-time average models, and the corresponding solutions to the signal tracking
problems, for the two types of derived converters. The conclusions and suggestions for
further research in this area are presented in the final section.

2. Feedback stabilization of derived DC-to-DC power converters via an exact
discretization scheme

2.1. The buck-derived converter

Consider the buck-derived converter circuit shown in Fig. 1 (Rashid 1993). The
switch regulated model describing the behaviour of the input current, denoted by x, is
given by

x——£x+£u
T LTL
y=Rx 2.1

where y is the output load voltage and the parameters R, L and E stand, respectively,
by the load resistance, the inductance of the input circuit, and the constant input
source voltage. The variable u denotes the switch position function taking values on
the discrete set {0, 1}.

A regulation strategy, based on a PWM specification of the switch position
function, may be, generally speaking, specified by (see Sira-Ramirez et al. 1993)

0 fort,+u(t)T<t<t,+T
Lo =4+ T k=0,1,2,...

() = { 1 fort, <t<t,+u(t)T 22

where z(+) is known as the actual duty ratio function, taking values in the interval
[0, 1] of the real line. T is the sampling period and ¢, is the sampling instant. A typical
example of a PWM commanded switch position function trajectory is depicted in
Fig. 2.

Since the duty ratio x is specified online in a feedback manner, i.e. computed as a
function explicitly depending on the sampled value of the input current x(z,) at each
instant ¢,, one may obtain values of x which lie outside the closed interval [0, 1]. We
must, therefore, make a distinction between the computed duty ratio function,
denoted by p,(+) and the actual duty ratio function, denoted by u(-). The relation
between these variables is simply given by

1 for u () > 1
u(t) = § u(n) for0<p (<1 23)
0 for u.(£) <0

The actual duty ratio function is thus the forceful limitation of the computed duty
ratio function to the closed interval [0, 1].

The buck-derived converter owes its popular name ‘chopper’ to the fact that the
input current is limited to taking values on the interval [0, E/R], as can easily be
verified from the circuit equations. The corresponding (positive) output load voltages
delivered by the converter cannot, therefore, exceed the value E of the external source
voltage.
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Figure 1. The buck-derived converter.
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Figure 2. PWM commanded switch position function.

2.2. An exact discretization of the PWM regulated buck-derived converter

The linear nature of the two possible topologies of the converter circuit facilitate the
derivation of an exact discrete-time model for the evolution of the sampled values of
the input current in the buck-derived converter (2.1), when subject to a switching
policy of the form (2.2). Indeed, given the value of x at time #,, denoted by x(z,), the
value of the input current at the end of the ‘pulse’, of width u(z,) T, is obtained as

x(t,+u(ty) T) = exp{—0, u(t,) T} x(1,) +%[1 —exp{—0,u(t)TY] 24

where we have let the parameter 4, denote the quotient R/L and 6, denote E/L.
The sampled value of the input current at the end of the sampling interval is
obtained, after some further computations, as

x(t,+T) = exp{—6, T}X(tk)+ exp{ 0, Tiexp {0, u(t,) T3 —-1] (2.5

If we denote ¥, = e™%7 and P, = 6,/6,, the discrete-time model for the evolution
of the input current, depicted at the sampling instants, is given by the following model

X(tesr) = ¥y x(t) +F, W [P% — 1] (2.6)

where the value of the duty ratio function at time ¢,, u(¢,), must now be effectively
regarded as the ‘control input’ variable, to be specified at the beginning of each
sampling period. The discrete-time model for the sampled input current is, therefore,
nonlinear in the new control input, u(t,).

The only eigenvalue associated with the linear sampled state dynamics, given by
¥, is evidently positive and strictly smaller than unity. The steady-state value of the
sampled input current, denoted by x, corresponding to constant duty ratio function
of value u_, is then readily obtained from (2.6) as

_ VY

@ 1___

-2 (‘I"“w -1) 27

The overbar in (2.7) refers to the ‘lower’ portion of the actual zigzagged trajectory
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Figure 3. Transient and steady-state PWM controlled state trajectory.

partially described by (2.6) (see Fig. 3). Evidently, a feedback regulation policy, which
specifies the duty ratio function u(z,) solely on the basis of the sampled state x(z,), is
by no means satisfactory. The reason for such a statement stems from the fact that the
‘ripple’, unavoidably associated with the switch-regulated evolution of x(t,), is not
taken into account by the model (2.6) alone. One must also take into account the
values of x(¢) at the end of each width-modulated control input pulse occurring within
the sampling period of length T In other words, one must take into account the values
of x(¢) at the instants ¢ = £, + u(t,)T; k= 0,1,2,... (see Fig. 3).

We now relate the values of x at times ¢, , + u(?,.,;) Tand ¢, + u(t,) T'so as to obtain
the values of the ‘upper’ corners of the zigzagged input current trajectory. One
obtains, after some algebraic manipulations

Xty +u(te, ) T) = \Plll(tk“) \P}—u(!k) x(t,+u(t) T)+¥o(1— ‘P’f(t"“)) (2.8)

The eigenvalue associated with the above linear state dynamics is clearly given by the
product WPue)Wl#to This quantity is strictly positive and smaller than unity for
values of u bounded by the unit interval [0, 1]. The steady-state value of the ‘upper’
corners of the state trajectory, described by (2.8), corresponding to a constant value y,,
of the duty ratio function, is given by (see Fig. 3)

+ ¥,

Yo STy,

(1-¥4~) (2.9)

The relation between the steady-state values x?, and x can be obtained from (2.7) and
(2.9) as
X, = xL Wi (2.10)

Since ¥, is a positive number, which is strictly less than 1, one can conclude that
x5, < x% for u e0,1].

The steady state ‘ripple’, denoted by r,, may then be described as the following
difference

e}

=x+‘—x_ =T\P‘2}l(l_q,,{m)(l_‘\yi‘#x) (211)
— I

We define a steady-state average value for the input current trajectory as

X, (00) = X3 +37,, = 3 (X +X%) (2.12)
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Using the expressions (2.7) and (2.9) in (2.12) one obtains

5u(0) = 5 (| - 1+ ) @13

We proceed to express the steady-state value of the sampled input current
trajectory x;,, in terms of the average steady-state input current x,,(c0). This relation
allows us to define a suitable stabilizing feedback duty ratio (control) policy on the
basis of the sampled states of the discrete-time model (2.6). The feedback policy
properly takes into account the ripple associated with the controller trajectory, and
asymptotically achieves a pre-specified desired steady-state value for the average input
current. To achieve this goal one simply eliminates the steady-state value of the duty
ratio, u_, from the expressions (2.7) and (2.13). One then obtains,

o5 T o ]

2.3. A stabilizing PWM control policy for the buck-derived converter

The stabilization problem for the buck-derived converter consists of specifying a
PWM feedback regulation policy of the form (2.2) such that the steady-state average
value of the controlled input current trajectory x(¢) reaches a desired constant value
xav(w) = -

A stabilizing feedback regulation policy p(z,) can then be explicitly obtained on the
basis of the sampled states of the discrete-time model (2.6) by forcing x(¢,) to stabilize
asymptotically around the value x_, corresponding to X, which we denote by x_(X)
and rewrite as

A A RE S A I

We impose on the sampled controlled system the following linear asymptotically
stable closed-loop behaviour

X(tyrn) = 0(x(t) — x5 (X)) + x5, (X); ol <1 (2.16)

Substituting the right-hand side of expression (2.6) on (2.16) and solving for the
duty ratio function u(t,) one obtains the following nonlinear computed duty ratio
feedback control policy

_ 1 (x—"¥)) x(#,) + (1 — o) x5, (X) _
,uc(t,c)——ﬁln[l+ v } k=0,1,2,... (217

The actual duty ratio function u(#,) may be readily obtained from expression (2.3).
Figure 4 depicts the PWM feedback regulation scheme based on the exact discrete-
time dynamics model of the sampled input current.

Expression (2.17) allows for the determination of the region of non-saturation of
the actual duty ratio function. Indeed, the double inequality: 0 < g, < 1, yields the
following corresponding region for the sampled state

0 < (a—¥) x(t,) + (1 =) X ,(X) < ¥, (1 -F) (2.18)
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Figure4. A PWM feedback regulation scheme for the buck-derived converter based on exact
discretization.

2.4. Simulation results

In order to test the robustness of the previously proposed PWM feedback
regulation policy we carried out simulations on the following noise perturbed model
of the buck-derived converter

x=—§x+<E+Ij’(’2)u 2.19)

where v(f) is a (computer generated) stochastic perturbation signal representing an
unmodelled additive noisy voltage source affecting the behaviour of the circuit. The
values for the parameters defining the converter were taken to be

R=28x107%Q; L=10x102mH; E=126V

The sampling period was chosen to be T'= 0125 ms (1/T = 8 kHz) and the desired
steady-state value of the average dynamics was set to be X = 1237 A. The eigenvalue
for the closed loop linear dynamics, &, was set to be 0-3. The corresponding value of
the steady-state input current was found to be x;(1237) = 1080-7 A. The required .
steady-state average value of the input current as well as the steady-state values x}, and
x_, are well within the allowable range which guarantees non-saturation of the actual
duty ratio function.

Figure 5 depicts a typical simulated PWM feedback controlled trajectory for the
input current arising from the perturbed model (2.19). This figure also shows the
actual duty ratio function u(f) and the corresponding switch position function u(). At
the end of the figure we show the perturbation signal v(¢). As shown, in spite of the
influence of the unmodelled perturbation signal, v(¢) the derived nonlinear discrete-
time duty ratio controller performs remarkably well.

The robustness of the proposed feedback control scheme was also tested with
respect to a class of modelling errors, represented by significant, but temporary, circuit
parameter variations. We performed several simulations, which included a sudden,
unmodelled, load resistance variation. Figure 6 depicts the responses of the closed-
loop regulated inductor current to variations of 0 %, 20 %, 40 % and 80 %, above the
nominal load resistance value R, while the plant was still being affected by the external
stochastic perturbation noise v(¢). Such variations were left to occur in the time
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Figure 5. Simulation results of PWM regulation of perturbed buck-derived converter.
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Figure 6. Simulation results of PWM regulation of perturbed buck-derived converter subject
to several load variations.
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interval between 0-001 s and 0-002 s. It can be seen that, up to a 20 % load variation,
the performance of the controller is quite robust. The controller is seen to drive the
input current response to its original preassigned value, right after the load
perturbation is over.

2.5. The boost-derived converter

In this section we briefly summarize the derivation of an implicit nonlinear
feedback regulator for the indirect output voltage stabilization of the boost derived
converter, shown in Fig. 7 (see Rashid 1993). The feedback loop synthesizing the
required duty ratio function is based on a desired steady-state average input current
value X.

The boost-derived switch regulated model

c
L
=—0,(1—u)yx+6, (2.20)

X= —%x(l—=u)+

PWM feedback regulation strategy for the switched position

wo-{) SRS
ta=4+T; k=0,1,2,...
An exact discretization of the PWM regulated boost-derived dynamics
x(t,+u(t) T) = 60, 1(t) T+ x(2,) (2.22)

X4+ T) = exp{— 0, TU~ )} ) T+ )]+ 5711 —exp 6, TC1 = (1)
= WD (1) + B [u(t,) Wy — Wil + @23)

with ¥, = exp{—6,T}, ¥, =0,/0, and ¥; = 6, T.
Steady-state value of the sampled input current

IR ST A ARS 2

w R E (2.24)

Discrete-time dynamics of the ‘upper corners’ of the PWM regulated input current
trajectory

X(typy + Uty T) = WD x(1+ (1) T) + ¥y ity ) + (1= F17H9) - (2.25)
Steady-state value of the ‘ intersampling’ peaks of the input current

b ¥t (1 W)

T (2.26)

X,

+
@

Steady-state ‘ripple’
I = X; —Xp = ?3 He (227)
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Figure 7. The boost-derived converter.

Steady-state average value of the input current trajectory

X, (0) = X 4o, (2.28)
W, g1, (1+PIH) 4 28y (1 — P
%, (00) = L akal 21(1_311 <ll_wz)( ) 2.29)

Existence of steady-state duty ratio function for the desired value of steady-state
average input current
2X-Y,u,—2Y,

1-p, — 2 . 2
B = S W . — 29, (2:30)

The existence of a unique solution of (2.30), for u,, follows from the fact that, as
functions of y, the graph of the function on the left-hand side of (2.30) continuously
increases in [0, 1], while the graph of the function on the right-hand side continuously
decreases on such an interval. The graphs can be shown always to intersect each other,
at most once, within the interval [0, 1}.

Desired linear asymptotically stable closed loop dynamics

X(tesr) = 2(x(1) — x5, (X)) + X, (X); ol <1 (2.3
Implicit nonlinear feedback duty ratio synthesizer

ax(t,) =¥y + (1 - a)x;, (X)
x(tk) -¥,+ .uc(tk) ¥,

l}ﬂll—/‘c“k)) =

(2.32)

A necessary and sufficient condition for the existence of a unique solution for the duty
ratio

x2 (X) < x(t,) + l\i‘a (2.33)

Remark: Implicit feedback controllers of the form (2.32) demand an online
numerical solution of the corresponding transcendental equation for the computed
duty ratio function u(t,), once the sampled state, x(¢,), is available. The calculation
time required at each sampling instant may be quite significant, thus introducing an
important limitation in the implementation of the feedback control law. In the
simulations carried out below a provision for such a computational time may be easily
incorporated by further restricting the duty ratio function to be higher than a certain
fixed positive lower bound, say of value . In other words, instead of the hard limiting
condition € [0, 1] on the computed duty ratio function x, one enforces the limitation,
uelug, 1], with 4, > 0. At the beginning of the sampling period, and during the
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Figure 8. A PWM feedback regulation scheme for the boost-derived converter based on exact
discretization.

fraction of the sampling interval, given by u T, control calculations must be
performed. O

2.6. Simulation results

In order to test the robustness of the previous derived PWM feedback regulation
policy, based on exact discretization, we used the following noise perturbed model of
the boost-derived converter

. —%(1 —u)x+(£iL”(L)) (2.34)

where v(¢) represented an unmodelled computer generated stochastic perturbation
signal representing a noisy voltage source affecting the behaviour of the circuit. The
values for the parameters defining the converter were taken to be the same as in the
buck-derived case

R=28x102Q; L=10x10?mH; E=126v

The sampling period was chosen to be 7 = 0-125 ms (1/T = 8 kHz) and the desired
steady-state value of the average dynamics was set to be X = 6000 A. The eigenvalue
for the closed loop linear dynamics, o, was set to be 0-3. The corresponding value of
the steady-state input current was found to be x3(6000) = 5804 A. The required
steady-state average value of the input current as well as the steady-state values x7, and
x;, are well within the allowable range, which guarantees non-saturation of the actual
duty ratio function.

Figure 9 depicts a typical simulated PWM feedback controlled trajectory for the
input current arising from the perturbed model (2.34). This figure also shows the
actual duty ratio function u(f) and the corresponding switch position function u(z). As
can be seen from the duty ratio trajectory, in this case, the control calculation time
could have been accommodated within the time interval g, T = 0-0250 ms, with
4, = 0-2. At the end of the figure we show the perturbation signal v(#). As shown, in
spite of the unmodelled perturbation signal the derived nonlinear discrete-time duty
ratio controller performs quite satisfactorily. Load variations similar to those carried
out in the previous example were also performed, with similar results. The simulations
are not shown in the interest of brevity.



312 H. Sira-Ramirez et al.

input inductor current duty ratio
7000 = S0 . 7]
6000/ NMMANANN E
0.8
5000
g 0.6
4
000 04
3000 0.2 T T e
2000 - 0— Tt T T T
0 1 2 3 0 1 2 3
time[sec] <1 3 time[sec) o"
input (switch) sequence perturbation noise
— S — 50— . A
| {ff
1 ’
05 | § 0
i
1 !
0 |
S . so——— T
0 1 2 3 0 1 2

time[sec] time[sec]

x10° x10°
Figure 9. Simulation results of PWM stabilization of perturbed boost-derived converter.

3. Feedback signal tracking for derived DC-to-DC power converters via a discrete-
time average model

In this section we present a discrete-time model for the average input currents of
the derived DC-to-DC power converters presented in the previous section. The
average models are obtained by a state elimination procedure on the expressions
describing the mean value of the input current at the sampling times and at the end of
the pulse associated with the switch position function. The state elimination leads to
a non-kalmanian representation of the average input current dynamics. The models
allow for a rather direct specification of the duty ratio synthesizers as dynamical
feedback regulators.

We define the average value of the input current trajectory, at time z,, as

2(t) = x(t,) +4x(t, + p(te) T)— x(8)] = 3lx(t) + x(t + (1) T)] 3.1

Remark: Note that the association of the average value ix(z,) + x(¢, + u(z,) T)} with
the time instant ¢,, as z(z,), is clearly quite arbitrary. In fact one could choose an
intermediate instant in the interval, [¢,, ¢, +u(t,) T], to represent the corresponding
value of time. However, this convention only complicates the presentation and does
not substantially differ from the one we have chosen. O

Similarly, the average of value of the input current at time ¢, + T is given by
2(tyr) = Hx () + X(fry +1(11) T)) (3.2

Average PWM dynamics can be obtained from (3.1) and (3.2) by means of a state
elimination procedure. Indeed, note that for each one of the treated converters, the
expression (3.1) for z(z,) can be rewritten in terms of the sampled state x(z,) and the
duty ratio u(t,) at time ¢,. In a similar fashion, expression (3.2) for z(z,,) may also be,
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Figure 10. A discrete-time based PWM feedback regulation scheme for the signal tracking
problem in derived DC-to-DC power converters.

ultimately, written in terms of x(z,) and the duty ratio function x at times ¢, and ¢, ,,,
i.e. u(z,) and p(t,,,). From the resulting equations for z(¢,) and z(z,,,) one may proceed
to eliminate the state x(t,) thus obtaining z(z, ) as a function of z(z,) and the duty ratio
function wu(t,), u(t,,,)- Because of the linearity in the state associated with all of the
invoked expressions, the resulting average PWM dynamics are also linear in the state
z(t,). One obtains dynamics of the form

2(tes1) = Dy(u(t), (1) 2(,) + @y p(2y), pl(tcsr)) (3.3)

which, evidently constitutes a non-kalmanian state representation, or more properly,
a generalized state-space representation for the average input current dynamics (Fliess
1992).

By imposing desired linear discrete-time tracking error dynamics on the proposed
average input current dynamics (3.3) a dynamical duty ratio synthesizer is readily
obtained.

The dynamical feedback regulation scheme to be used for the PWM solution of the
tracking problems, associated with the derived DC-to-DC power converters, as shown
in Fig. 10.

In the following sections we present the average discrete-time input current model
along with the duty ratio synthesizer for the solution of the corresponding tracking
problem for the two derived converters studied in this article.

3.1. The buck-derived converter

The dynamics of the average value of the input current z(¢,) is obtained by
following the state elimination procedure outlined at the beginning of this section. The
average model results in

4o
T )

WK (1= W) (14 Pilter) 4 (1 =P (1 4 PH0)
+%\P2{_1 . 11+\1”;)<tk> S G4)

An interesting fact, which makes the average model (3.4) non-traditional, is that
the resulting recursion formula, obtained for the evolution of the average current
values, requires the values of the duty ratio function, i.e. of the control input variable,
at two consecutive sampling instants.

2(te) = ¥, (
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Suppose lim,_ u(t,) exists, and assume it is given by the constant value u,, then,
evidently, lim,  u(¢,) = lim, pu(t,,,) =y, and the corresponding steady-state
value, z_, of the average input current, as computed from (3.4), is given by

1Y, ” -
=3[y J - B ) (3.5)
which exactly corresponds to the steady-state value x, (00) computed in (2.13) and
found from slightly different considerations.

3.2. An average input current tracking problem for the buck-derived converter

Let z,(f) represent a desired time-varying reference input signal. It is desired to
have the average input current z(z,) asymptotically track the sampled values, z,(#,) of
the reference input signal.

Let e(z,) denote the average tracking error at time z,, given by e(t,) = z(¢,) —z4(t,).
The following tracking error dynamics may then be imposed on the closed loop system

e(lpyy) = ae(t); o <1 (3.6)
In terms of the average input current, such dynamics result in the following expression
2(tes1) = 0(2(t) — 24(8)) + 24(81) (3.7)

Since z,(1,,,) is assumed to be known beforehand, the preceding equation does not
have the connotation of an acausal system.

Substituting the right-hand side of expression (3.4) into (3.7), and solving for
u(t,,,) one obtains the following time-varying dynamical nonlinear feedback con-
troller, or duty ratio synthesizer, for the average input current tracking problem

e e
Hlen) = 1n @, P W, [917409 (1 — W) — (1 + P4)] + 2%, 2(1,)

1 Pkt (] — Pty 4 (1 4 Pco)
X [1 —'E‘Yz( ! ) 1+1\P,l,(gk) o !

- (1_+\§Ilﬂ<t,,i_ a) z2(t) —azy(t) + Zd(tk+1)]} (3.8)

Remark: The initialization of the above controller requires the specification of z(z,)
which, in fact, involves knowledge of both x(¢,) and u(t,). The initial input current x(t,)
may be measured, or simply set by previously discharging the energy initially stored in
the inductor. The initial duty ratio, p(¢,), must then be arbitrarily chosen. This implies
that the quantities x(#,) and x(z,+ u, T') are assumed to be initially known. Note also
that a PWM control policy based on the average model (3.3) necessarily requires
online measurements of the average input current, i.e. values of x(¢) have to be
measured both at the end of each pulse, within the sampling interval, and at the
beginning of each sampling period. O

The computed duty ratio function must never exceed the natural limiting values of
the actual duty ratio function, represented by the closed interval [0, 1]. Possibilities for
saturation of the actual duty ratio function depend on the time derivative of the
desired input reference signal, on the imposed closed-loop eigenvalue and on the



PWM controllers for stabilization and tracking 315

circuit parameters themselves. By more conventional averaging techniques (see Sira-
Ramirez et al. 1993) one can obtain an estimate of the tracking limitations of the
circuit.

3.3. Simulation results

The previously derived PWM feedback tracking policy, based on exact dis-
cretization and the introduced average model was used on the same noise perturbed
model (2.19) of §2.4.

It is desired to track a ‘trapezoidal’ reference input signal, as shown in Fig. 11, with

Z... = 1237 A. This reference signal is expressed as
1237t for0<t<1ms
z4() = { 1237 for 1 <t<2ms

1237-1237(t—2) for2 <t <3 ms

Figure 12 depicts the simulated PWM feedback controlled trajectory for the input
current arising from the controlled perturbed model (2.19). This figure also shows the
actual duty ratio function u(¢) and the corresponding switch position function «(¢). In
this figure we also show the perturbation signal v(f). As shown, in spite of the
unmodelled perturbation signal, the derived nonlinear discrete-time duty ratio
controller tracks remarkably well the desired reference signal, as long as the computed
duty ratio function does not take values outside the interval [0, 1]. Note that close to
the end of the tracking horizon the actual duty ratio function # is seen to ‘saturate’ to
the value of zero. The problem is circumvented by suitably lowering the maximum
value of the desired reference signal z,(¢) as well as its slope on the ‘descending’
portion of the trapezoid.

3.4. The boost-derived converter

Generalized state representation of average input current dynamics
2(tesy) = \Pi_wk) z(t,) — PO, + P, + % W (P17 u(t,) + p(te.) (3.9
Steady-state value of average input current

5 o Fap (LHEP) + 2%, (1 - 97)]
& 2(1— W)

(3.10)

which coincides with (2.29).
Desired closed loop linear dynamics
2(tyy) = A(2(t) — 24(1)) + 24 (6441) .11

Dynamical duty ratio synthesizer

2 1
) = o [ =R 2000 0 () =) =¥, 200+ 20|
3
(3.12)

Remark: The initialization of the above controller is carried out in a manner similar
to that corresponding to the buck-derived converter (see the Remark of §3.2).
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Figure 11. Desired trapezoidal input current signal.
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Figure 12. Simulation results for trapezoidal signal tracking problem for the perturbed buck-
derived converter.

3.5. Simulation results

The previously derived PWM feedback tracking policy, based on exact dis-
cretization and the introduced average model, was used on the noise perturbed model
(2.34) of the boost-derived converter presented in §2.8.

It was required to track a ‘trapezoidal’ reference input signal, similar to that shown
in Fig. 11, with z,, = 6000 A. In accordance with the ‘step-up’ character of the
derived-boost converter, the reference signal z,(¢) to be tracked was specified by the
following expression

4500+ 1500¢ for 0 < ¢ < 1ms
z,(t) = { 6000 for 1 <t<2ms
6000—1500(1—2) for 2 < ¢ < 3 ms

Figure 13 depicts the simulated PWM feedback controlled trajectory for the input
current arising from the controlled perturbed model (2.34) of the boost-derived
converter. This figure also shows the actual duty ratio function u(f) and the
corresponding switch position function wu(f). In this figure we also show the
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Simulation results for trapezoidal signal tracking problem for the perturbed boost-

derived converter.

perturbation signal v(f). As shown, in spite of the unmodelled perturbation signal,
the derived nonlinear discrete-time duty ratio controller tracks remarkably well the
desired reference signal, as long as the computed duty ratio function does not take
values outside the interval [0, 1]. Note that close to the end of the tracking horizon the
actual duty ratio function u is seen to ‘saturate’ to the value of zero. The problem may
be circumvented by suitably lowering the maximum value of the desired reference
signal z,(¢) as well as the slope on the ‘descending’ portion of the trapezoid.

4. Conclusions

In this article an exact discretization scheme has been proposed for the input
current stabilization and tracking tasks in perfectly known derived DC-to-DC power
supplies of the buck and boost types. The complexities arising in the stabilization
problem associated with such devices are related, fundamentally, to the highly
nonlinear form of the derived duty ratio compensators. For the boost converter, the
controller cannot be found explicitly and a transcendental equation must be solved
online, at each sampling instant, on the basis of the (sampled) state of the converter
circuit. The signal tracking problem is solved by means of a non-kalmanian state
representation of the average input current. Explicit dynamical controllers could then
be found from exact discrete-time linearization schemes imposed on the average
controlled models. The results are appropriate in high power systems where the
sampling frequency may be limited.

Some of the difficulties encountered in the one-dimensional converter cases treated
here become, not surprisingly, much harder when dealing with the two-dimensional
models of traditional DC-to-DC power converters. In such cases, the symbolic
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manipulation tasks associated with the solution of the stabilization problems become
particularly intricate, even with the help of very efficient computer packages such as
Maple, or Mathematica.

Simulation studies have revealed a certain degree of sensitivity of the proposed
exact control schemes to sudden, unmodelled, load parameter variations. As a topic
for further research, the case of stabilization and tracking problems for derived
converters with uncertain parameters is, therefore, of particular practical interest and
one for which efficient nonlinear discrete-time adaptive and robust control techniques
must be developed.
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