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guaranteed. For example, LVQI cannot find a stable solution when
we train a vector quantizer of size two in order to solve the problem
of discriminating between two one-dimensional white Gaussian dis-
tributions having the same mean and different variances (sec [2, p.
42] for the proof of this fact).

We point out also that, excepting some special recognition prob-
lems, it is not possible to reduce the goal of LVQ1 to the minimization
of error probability, which is the ultimate goal of any smart classi-
fication strategy. Baras and La Vigna assess in [1] that the error
probability associated with a slightly modified version of LVQI
approaches the Bayes error probability as the number of codebook
vectors becomes large. This claim is not really in contrast with ours.
Actually it is quite expected, since the finer the quantization of the
observation space is, the closer the classification performance is to
the Bayes error probability.

Thus far, we have assumed the knowledge of the conditional
distributions of the two classes or, equivalently, that an arbitrarily
long random sequence is available. In practice, it often happens that
the knowledge of the statistics is given by a training set consisting of
a finite number of elements. Let T = {t1, t2, --+, t5}. § < oo,
denote the training set and let us assume an indexing such that
the label of ¢; is A for i = 1,2,---, 84, and is B for i =
Sa+1,84+42,---, 5. We can make use of estimates based on
the training set in place of the known distributions.

The probabilities of the two classes can be estimated by P(A) =
Sa/S, P(B) =1-— P(A). The two conditional distributions can be
estimated by Parzen’s method

S
1 <&
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where li(.r) is some conveniently designed Parzen’s window (see e.g.,
[4), sec. 6.1). According to this setting, the kth sample of the random
sequence is ¥ = t* 4+ n*, Vector t* is randomly picked with uniform
probability from the training set,? while vector n* is independently
picked from a dense population whose pdf is h(.r). Obviously z*
inherits its label from ¢*. In the practice, a delta function is often
designed for h(r), so n* = 0 for any k. We note that, when S is
comparable to the length of the random sequence used during the
optimization, there are no substantial differences between known and
unknown distributions.

III. CONCLUSION

The problem of recognizing the class (A or B) an observation
vector () belongs to, can be solved by partitioning the r-space into
regions such that, for any region and for any r belonging to the
same region, either P(A)p(x|4) > P(B)p(x|B) or P(B)p(x|B) >
P(A)p(x|A) holds true. Kohonen's idea of employing a labeled
vector quantizer fits well this fact, in the sense that the structure
of the vector quantizer is well suited to encode a partition as refined
as one likes. Of course, one would like to obtain high performance
with a small number of codebook vectors. In other words, the goal
of vector quantization must be to efficiently encode the x-space. The
work reported in this brief has made one thing clear: the efficiency of

2A slightly different procedure adopted by some authors is to pick tk
cyclically from the training set.

LVQI could be significantly improved by paying more attention to
the optimality criterion the learning is based on. It is our feeling that
the latter point is crucial to the successful use of Vector Quantizers
in recognition tasks, and that much is to be done in this area. Results
about the design of an adaptive VQ which minimizes error probability
are available in (2], [3].
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A Lagrangian Approach to Average Modeling
of Pulsewidth-Modulation Controlled
DC-to-DC Power Converters

Heberit Sira-Ramirez and Marisol Delgado de Nieto

Abstract— A Lagrangian approach is used for obtaining the average
model of a switch regulated dc-to-dc Power Converter of the “Boost”
type undergoing a Pulsewidth-Modulation (PWM) feedback strategy. A
set of average Euler-Lagrange (FL) parameters, modulated by the duty
ratio function, is proposed which recovers, under duty ratio saturation
conditions, the individual EL formulations of the intervening circuit
topologies. The obtained average PWM model coincides with, both the
state average model and the infinite switching frequency average model,
previously proposed in the literature and derived from entirely different
viewpoints.
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I. INTRODUCTION

DC-to-DC Power Converters are frequently regulated by means
of Pulsewidth-Modulation (PWM) feedback control policies whose
complexity varies from traditional Proportional Derivative (P-D)
schemes (see [1]) to sophisticated nonlinear adaptive fecdback control
options (sec among many other authors, the work of Sira-Ramirez and
colleagues [2]). In the feedback regulator synthesis problem for dc-
to-dc converters governed by PWM feedback laws, average models
play a most essential role (see [3]).

In this brief a Lagrangian dynamics approach is used for deriving
a physically motivated model of the average behavior of PWM
regulated dc-to-dc power converters. The approach consists in estab-
lishing the Euler-Lagrange (EL) parameters of the circuits associated
with each one of the topologics corresponding to the two possible
positions of the regulating switch. This consideration immediately
leads one to realize that some EL parameters remain invariant under
the switching action while some others are definitely modified by
the addition of known quantities. An average PWM model of the
noninvariant EL parameters can then be proposed by their suitable
modulation through the duty ratio function. This modulation is done
in a consistent fashion so that, under extreme duty ratio saturation
conditions, the original EL parameters, corresponding to the two
intervening circuit topologies, are exactly recovered. The average EL
parameter considerations lead, through use of the classical Lagrangian
dynamics equations, to systems of continuous differential equations,
describing the average PWM converter behavior. These equations are
interpretable in terms of ideal equivalent circuit realizations obtained
by replacing the switching device by a suitable ideal transformer. This
particular result is in accordance with well-known circuit equivalents
of PWM switches already derived in [5] and [6]. The obtained average
PWM models entirely coincide with the state average models of dc-
to-dc Power Converters introduced in [3] and also with the infinite
switching frequency model found in [4].

Section II contains some generalities about the average modeling
of discontinuously controlled Euler-Lagrange systems. In Section IIT
the general results are applied to the average modeling of dc-to-dc
Power Converters of the “Boost” type, equipped with ideal switching
devices. Section IV is devoted to present some conclusions and
suggestions for further research.

II. AVERAGE MODELING OF SWITCHED EULER-LAGRANGE SYSTEMS

The Euler-Lagrange formulation of dynamical systems constitutes
a thoroughly studied and developed chapter of Classical Mechanics.
For the particular case of electrical and electromechanical systems,
the reader is referred to the book by Meisel [7].

A. Euler—Lagrange Systems
An Euler-Lagrange system is classically characterized by the

following set of nonlinear differential equations, known as Lagrange
equations

d (oL L oD

-5 ) -5 =5+ F 1

dt (8q> dq 2] et M
where ¢ is the vector of generalized positions, assumed to have
n components, represented by qi, -+, gn, and ¢ is the vector of
generalized velocities. The scalar function £ is the Lagrangian of the
system, defined as the difference between the kinetic energy of the
system, denoted by 7 (¢, ¢), and the potential energy of the system,
denoted by V(q), ie.,

£(4. 9)=T(¢ q) - V(g)- (2

The function D(q) is the Rayleigh dissipation function of the system.
The vector Fy = (Fq,, -++, Fg, ) represents the ordered compo-

nents of the set of generalized forcing functions associated with each
generalized coordinate.

We refer to the set of functions (7, V, D, F) as the Euler-
Lagrange parameters of the system and simply express a system
% by the ordered cuadruple £ = (7, V, D, F).

B. Switch Regulated Euler-Lagrange Systems

We are particularly interested in dynamical systems containing a
single swirch, regarded as the only control function of the system.
The switch position, denoted by the scalar function u, is assumed
to take values on a discrete set of the form {0, 1}. Our basic
assumption is that for each one of the switch position values, the
resulting system is still an Euler-Lagrange system (EL system for
short) characterized by its corresponding EL parameters. In other
words, we assume that when the switch position function takes the
value, say, z = 1, the system, denoted by %1, is characterized by the
known set of EL parameters, £, = (71, V1, D1, F1). Similarly,
when the switch position function takes the value u = 0, we
assume the resulting system, denoted by X is characterized by
Eo = (76, VU, DU, ]:o)

The previously described class of systems will be referred to as
switched EL systems and they will be denoted by £ = {Z;, Lo} =
w8 + (1 = u)Eo. )

We assume that a Pulsewidth-Modulation feedback strategy is
being imposed for the realization, in time, of the switch position
function u(t) acting as the only control variable of the switched EL
system. A typical PWM regulation policy is specified as follows:

u(t) ={1 for ty <t <t + pu(te)T

0 for tx +;l(fk)T <t <Lty +T

tipi=t+1T; k=01, - 3)
where t; represents a sampling instant; the parameter T is the fixed
sampling period, also called the duty cycle; the sampled values of
the state vector x(t) of the converter are denoted by x(tx). The
function, p(-), is the duty ratio function acting as a truly feedback
policy. The value of the duty ratio function, u(ty), determines, at
every sampling instant, ¢x, the width of the upcoming “pulse” (switch
at the position u = 1) as p(#x)T. The actual duty ratio function, u(-),
is evidently a function limited to the closed interval [0, 1] of the real
line.

C. An Average PWM Model of Switch-Regulated EL Systems

In order to provide some formalism to our concept of Aver-
age PWM system we introduce the following criteria for con-
sidering a given scalar function, such as the EL parameters, as
a reasonable average PWM function of two given scalar func-
tions.

Let A1(g. ¢) and Ao(g, ¢) be a pair of scalar functions. Let
t, be a given arbitrary instant of time and let T be a fixed
positive constant. Assume that a function p(t) is known such
that p(tx) € [0,1] Vk. Suppose furthcrmore, as suggested by
the PWM control policy (3), that during every time interval of
the form, [tx, tx + p(tx)T], the function A1[g(t), 4(t)] is valid,
while the second function, AG[g(t), ¢(t)], is valid only during
the remaining time intervals of the form, [tx + p(t)T, tx + TJ.
Let also Nw(g ) = max {Ni(g. 9): No(g. )} Nmla, 0) =
min {NV1(g, §). Mo(q. )}

Definition 2.1: We consider a function AV, (g, ¢) to be an aver-
age PWM function of N1(q, ¢) and No(g, ¢) whenever N, (q, ¢)
is a continuous function, parameterized by p, which satisfies the
following properties:



{EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 43, NO. 5, MAY 1996 429

+
x
/‘:

L4
=)
+

2
= 1

Fig. 1. “Boost” converter circuit.

1) N.(g. ¢) fulfills the following intermediacy condition:
4
Neolge @) SNulg- ) S Nulg- ¢) Ve €(0,1)

2) As a function of the generalized coordinates, and their corre-
sponding velocities (g. ¢) the function A, (g, ¢) satisfies the
following consistency condition:

Nulge @)p=1 =AN1(g. ¢)
and
Nulg. @lu=0 =Ao(q. @) (C))

Definition 2.2: Given a switched EL system characterized by
= {21. Eu} with ¥; = (7—1 Vi, Dy, ]:1) and ¥y =
(To, Vo. Do, Fo), we consider £,, to be an average PWM system of
Zu = {%1. Lo} whenever the EL system characterized by the EL
parameters ¥, = (7., Vi, Dy, Fy) is such that the EL parameters
(7., Vi, Dy), and the scalar components of the vector F, are
constituted by average PWM functions, in the sense of the Definition
2.1, of the corresponding EL parameters of Lo and %;.

Definition 2.3: An EL parameter P(q, ¢) of a switched EL system
{Z1, Lo} is said to be invariant with respect to the switch position
function u whenever, P(q, ¢) = Polq. ¢) = P1(g. ¢) V{q. 9).

III. A LAGRANGIAN APPROACH TO AVERAGE
MODELING OF THE “B00ST” CONVERTER

Consider the switch-regulated “Boost” converter circuit of Fig. 1.
The differential equations describing the circuit are given by

. 1 E
le—(l—")‘L‘»l"z‘f'—L‘;

B=(l-u)gn-gan ©®)
where 1 and r; represent, respectively, the input inductor curment
and the output capacitor voltage variables. The positive quantity E
represents the constant value of the external voltage source. The
variable u denotes the switch position function, acting as a control
input. Such a control input takes values in the discrete set {0, 1}.

It is assumed that a PWM based regulating policy for the switch
position function u is specified as in (3). In order to use standard
notation we refer to the input current x, in terms of the derivative
of the circulating charge g, as ¢1.. Also, the capacitor voltage >
will be written as g¢/C where g¢ is the electrical charge stored in
the output capacitor.

Consider u = 1, In this case two separate, or decoupled, cir-
cuits are clearly obtained and the corresponding Lagrange dynamics
formulation can be carried out as follows.

Define 71(4.) and V,(gc) as the kinetic and potential energies
of the circuit, respectively. We denote by D(dc) the Rayleigh
dissipation function of the circuit. These quantities are readily found
to be

Ti(de) =4 L(4r)%;

1
Vilge) = 5 e

Di(Ge) = § R(—gc)*
Fi, =E
Fi. =0 6)

where ¥ ., and ]-'qlc are the generalized forcing functions associated
with the coordinates ¢; and qc, respectively.

Evidently, the Lagrange equations (1) used on these EL parameters
immediately rederive (5), with u = 1, as it can be easily verified.

Consider now the case u = 0. Define Tg(¢.) and Vy(gc) as the
kinetic and potential energies of the circuit, respectively. We denote
by Do{gr, §c) the Rayleigh dissipation function of the circuit. These
quantities are readily found to be

To(ge) = 1L(¢0)"%
1
Volge) = 20 e
Do(4r, dc) = A R(§r — §c):
f,?L =E;
‘7:4(1)::‘ =0. ()

Evidently, the Lagrange equations associated with these definitions
immediately rederive (5), with v = 0.

The switching actions are seen to merely change the Rayleigh
dissipation function between the values Do(gc) and i {4z, 4c).
Therefore, the dissipation structure of the system is the only one
affected by the switch position while the kinetic and potential energies
remain invariant. One may then regard the switching action as a
“damping injection,” performed through the inductor current,

Note that, according to the PWM switching policy (3), on every
sampling interval of period T, the Rayleigh dissipation function
7T1(gc) is valid only a fraction of the time given by p(t;)T while
the Rayleigh dissipation function 7o(4r., dc) is valid a fraction of
the time equal to [1 — u(tx)}7".

We propose the following set of average PWM EL parameters.

Tu(de) = §L(30)%

1
Valge) = 5, g
Du(dr, ¢c) = LRI(1 ~ pir - ¢l
Fi =E;
Fi. =0, (8

Note that in the cases where p takes the extreme values ¢ = 1
and p = 0, one recovers, respectively, the dissipation functions
D1(4c) in (6) and Do(gr, dc) in (7) from the proposed dissipation
function, D,.(4z. 4c), of (8). It is also easy to see that D, (4L, ¢c)
is “intermediate” between D) (¢c) and Do(4dr, 4c).

The Lagrangian function, associated with the above defined EL
parameters, is given by

Ly =Tu(qr) — Vulge)

1.,. 1
=5 Lg)’ - T s (9)

Using the Lagrange equations (1), one obtains the following set of
differential equations defining the average system corresponding to
the proposed average EL parameters (8)

Ljr =—(1- p)R[(1 — p)drL — ¢c] + E;
% =R~ Wiz - dc)

These equations can be rewritten, after substitution of the second

equation into the first, as

10
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Fig. 2. Equivalent circuit of the average PWM model of the “Boost”
converter circuit.

. 1 ,
goc=—p gc + (1 - p)de. an
Using 21 = ¢, and z3 = gc/C one obtains
. 1 I3
&1 =—(1—H)-L—22+f§
2 =(1- )lz S (12)
2 = " c 1 RE 2

where we denote by z, and z, the average input current and the
average output capacitor voltage, respectively, of the PWM regulated
“Boost” converter. We establish this distinction with the nonaveraged
variables x, and z; so that the average model and its associated
variables is not mistakingly confused with the actuai PWM regulated
circuit variables.

The average PWM dynamics (12) is readily seen to have a circuit
theoretic interpretation such as the one shown in Fig. 2.

Consider the isolated quadripole constituted by the ideal regu-
lated sources in Fig. 2. Note that the (average) input power to the
quadripole is given by the product of the average input current z;
times the average (reflected) input voltage (1 — p)zo, ie, Py =
21 (1= p)22. On the other hand, the (average) output power, delivered
by the quadripole, is given by the product of the average output
current, (1 — u)z1 times the average output voltage z2, i.e., Pout =
(1 = p)z122. In other words, the quadripole is a lossless, ideal
(average) power transferring device satisfying Pin = Poutr. The
switching element has thus been replaced by an ideal transformer
with turns ratio parameter given by (1 — ). This result can also be
found in [5] and [6].

1IV. CONCLUSION

In this brief we have shown that well-known state average models
of de-to-dc Power Converters, such as that of the “Boost” converter,
actually correspond to Euler-Lagrange system models. The average
PWM model of the converter was derived using suitable averagings

of the Euler Lagrange parameters associated with the intervening
circuit topologies. The proposed approach can also be extended to a
variety of other ideally switched power supplies and even to circuit
models including more realistic switching devices characterized by
combinations of ideal switches with conduction resistances and
parasitic voltage sources (see [8]).

The nature of the modeling approach is consistent with recent
trends in Automatic Control theory whereby a passivity based ap-
proach is emerging as an advantageous physically motivated con-
troller design technique which exploits the energy structure of Eu-
ler-Lagtange systems (sec [9] and the references therein). This brief
thus constitutes a necessary initial step toward the development of a
systematic nonlinear feedback controller design methodology, based
on the passivity approach, for a variety of average models of dc-to-dc
Power Converters.
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