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Passivity-based control of nonlinear chemical processes

HEBERTT SIRA-RAMIREZ+t .
and MARIA ISABEL ANGULO-NUNEZ+

Through a process of ‘feedback passivization’, a large class of nonlinear mono-
variable systems, such as those describing nonlinear chemical processes, may
benefit from systematic controller design techniques available for the regulation
of passive systems. Several illustrative design examples from the chemical process
control area are presented including digital computer simulations.

1. Introduction

Passive systems are characterized by the fact that the net increase in the stored
energy, in any given time interval, is always lower or, at most, equal to the energy
delivered to the system during the same period. As a consequence, for systems with
positive definite storage functions, a zero-input stability as well as a minimum phase
property can be immediately inferred for passive systems. Passive systems have been
shown to be stabilizable by a simple static output feedback control law provided a
certain detectability property is satisfied. Generally speaking, passivity properties are
often deemed as attractive. This is especially so, in connection with a possibly
simplified feedback controller design strategy.

We show that by rendering the system passive, nonlinear systems such as those
describing chemical, biological and level control processes, may benefit from a
systematic feedback controller design procedure already available for nonlinear
passive systems. As a first step, it is shown that nonlinear systems with non-zero
constant equilibrium states, can be transformed into passive systems by means of a
suitable state-dependent input coordinate transformation (i.e. affine state feedback).
The crucial requirement for such a possibility is that the system must have a storage
function which is locally strictly relative degree one in a region containing the
equilibrium state. Although this result is independent of the minimum, or non-
minimum, phase character of the system and, also, independent of the output
relative degree, passivization of non-minimum phase systems will result in a
unfeasible growth of the state coordinate transformation, when the system motions
are sustained at the required equilibrium point. Hence, in connection with stabilizing
controller designs, the technique developed here is only applicable to minimum
phase systems.

Studies about passivity arose from the treatment of a closely related, and more
general, property termed dissipativity. The main developments in this area, and in
some other related topics, were first presented by Willems (1971), in the context of
abstract system operators. The extension of those results to the case of nonlinear
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systems, which are affine in the control input, was given in the work by Hill and
$oylan (1976). A geometric treatment of passive systems and feedback equivalence
to passivity was given in the work of Byrnes et al. (1991). Fundamental develop-
ments can also be found in an article by Kokotovic and Sussman, (1989) and also in
the work of Lin (1996). Non-trivial applications of passivity-based control, to the
areas of robotics, synchronous motors and power electronics, have been given by
Ortega and his co-workers over the years (Ortega et al. 1995, Ortega and Spong,
1989 and Sira-Ramirez et al. 1997). In the area of robotics, the work by Berghuis and
Nijmeijer (1993), incorporated nonlinear observers to the passivity-based regulation
approach. Extensions to include adaptive feedback control schemes can be found in
an article by Kelly et al. (1989) and in that of Landau and Horowitz (1989).
Interesting theoretical issues connecting passivity and thermodynamics appear in
Alonso and Ydstie (1996). The reader may explore a complete and excellent
exposition about passivity, and related topics, in the recent book by A. van der
Schaft (1996). A very clear and enjoyable presentation is that contained in the book
of Khalil (1996).

In this article, the geometric features of passivization are studied in connection
with the system’s defining drift and input vector fields in their relation to a family of
smooth manifolds, representing constant values of the storage function. A decom-
position of the system’s drift vector field is proposed which identifies the dissipative,
the non-dissipative, and the invariant components of such a vector field. We show
that the proposed ‘passivifying’ input coordinate transformation renders lossless (i.e.
invariant), with respect to the storage function level sets, the non-dissipative
component of such a drift vector field. The proposed input coordinate transforma-
tion renders, in a loose sense, a general ‘canonical’ form of nonlinear passive
systems. This canonical form is intimately related to the traditional passivity-
based feedback regulation design procedure, performed through stored energy
modifications and feedback -damping injections (Ortega et al. 1995).

Section 2 presents the background definitions of dissipativity, losslessness and
passivity. We also present in this section, the geometric aspects of the proposed
feedback passivization scheme for single-input single-output (SISO) systems. Section
3 proposes a general state space ‘canonical form’ for passive nonlinear systems.
Section 3 also revisits the ‘energy modification plus damping injection’ controller
design methodology in light of the derived passivity canonical form. Section 4 is
devoted to presenting some illustrative design examples for SISO nonlinear
continuous processes. The first example is concerned with a series of two gravity-
tanks/pipe system. The second example, drawn from the biological process control
area, is concerned with the regulation of a bioreactor system. The third example
considers a regulation problem defined on an exothermic continuously stirred tank
reactor (CSTR) system. The fourth example deals with the stabilization of an
isothermic CSTR system. Section 5 contains the conclusions and suggestions for
further research in this field.

2. Passiviization of SISO systems
2.1. Passivity: background definitions
Consider the system
x=f(x)+g(x)u; y=h(x) (2.1)

where x € X C R" is the state vector, u € U C R is the control input and the scalar
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function y € Y C R is the output function of the system. The vector fields f(x) and
g(x) are assumed to be smooth vector fields on X. For simplicity we assume the
existance of an isolated non-zero state of interest, x = x. € X, where
f(xe) +g(x.)a =0, for some non-zero constant #. The region X C R” is the
operating region of the system which strictly contains x.. All our results are,
henceforth, local for as long as X cannot be assumed to be all of R". We refer to
system (2.1) as the triple (f, g, h).

Associated with system (2.1) an energy storage function, ¥ : X — R* is assumed
to exist, which may be zero outside of X’ (at the origin, for instance). The supply rate
function is defined as a function s : U4 x Y — R.

We introduce some well-known background definitions about dissipative, lossless
and passive systems (see Byrnes et al. 1991 and van der Schaft 1996, for further
details).

Definition 2.1 (van der Schaft 1996): System (2.1) is said to be dissipative with
respect to the supply rate s(u, y) if there exists a storage function ¥ : X — R™*, such
that for all xo € X and for all ¢; > t, and all input functions u, the following relation
holds

13}

Vix(n)) = Vix(w) < | stulo) (o) ds (22)
to

with x(2y) = xo and x(¢,) is the state resulting, at time ¢,, from the solution of system
(2.1) taking as initial condition x, and as control input function u(z). Inequality (2.2)
is equivalent to (Byrnes et al. 1991)

V < s(u(t), »(1)) (23)
The system is Jossless if the inequalities (2.2), or (2.3), are in fact, equalities. 0

Definition 2.2 (van der Schaft 1996): System (2.1) is passive if it is dissapative with
respect to the supply rate s(u,y) = uy. The system is strictly input passive if there
exists § > 0 such that the system is dissipative with respect to s(u,y) = uy — éu®. The
system is strictly output passive if there exist a v > 0 such that the system is
dissipative with respect to s(u,y) = uy — vy a

The following definition and result constitute a generalization of the classical
Kalman-—Yakubovich-Popov property and associated lemma for positive real linear
systems (Byrnes et al. 1991).

Definition 2.3: A system {f,g, h) has the Kalman-Yakubovich—~Popov (KYP) prop-
erty if there exists a continuously differentiable non-negative function V': X+— R,
with ¥(0) = 0, such that

Ly Vix)<0

L,V(x) = h(x)
for all x € X. O

The following result follows directly from the definition of passivity and the fact
that ¥(x) is a relative degree one function of the system.

Proposition 2.4 (Byrnes et al. 1991): A system which has the KYP property is passive
with storage function V. Conversely a passive system having a continuously
differentiable storage function has the KYP property.
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We shall consider means of rendering a system of the form (2.1) passive, or at
least ‘lossless’, by means of state feedback. We therefore introduce a definition of a
‘passifiable’ system in the following terms.

Definition 2.5: System (2.2) is said to be passifiable with respect to the storage
function V if there exists a regular affine feedback law of the form

u=a(x) + B(x)v;a(x) € R;B3(x) € R (2.4)

where (x) is a non-zero scaler function in X, and such that the closed loop system
(2.1>-(2.4) becomes passive with new scalar control input v.

Analogous definitions apply for the strict input and strict output passivization of
the systems of the form (2.1).

Definition 2.6: Consider a smooth drift vector field ¢(x). Let Ly} stand for the
Lie derivative of V in the direction of ¢. In local coordinates L4V (x) =

(07 /0x)¢(x).
We say that the drift vector field f(x) of (2.1) has a natural decomposition with
respect to the storage function ¥, whenever f(x) can be expressed as the sum of three

components
f(x) = fa(x) + faa(x) + fi(x)

such that
LegV(x) S0;Vx e X

L, V(x) {

LiV(x)=0;¥xe X

is either sign-undefined in X
or else it is non-negative in X’

We address fy(x) as the dissipative component of f(x). Similarly f,4(x) will be
termed the non-dissipative component of f(x) and finally fi(x) is the invariant
component of f(x). We also address the triple of vector fields ( fy(x),fna(x),/1(x))
as the natural components of f(x) with respect to V. a

2.2. Feedback passivization

Consider the system (2.1) with V being, locally in X, a strict relative degree one
function, i.e. L,V (x) # O0Vx € X. Then, for any given control input  and any initial
state xg, the time derivative of the storage function ¥, along the solutions of (2.1), is
given by

4 ov
= Gt )+ (G0 )= LV + (L (5

Suppose that the vector field f(x) has natural components, fy(x),fna(x),f1(x),
with respect to the storage function V. The time derivative of the energy storage
function, along the solutions of the system, is then given by

V=LV(x)+ L, V(x)+ LV (x)]u (2.5)

Note that the previous expression may be rewritten as

V=L,V(x)+ [LgV ()] [%’% + u} (2.6)
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Define the following state dependent input coordinate transformation

h(x) L, V(x) K (x)
Ly " T LV 27)

u=

where 4 is an arbitrary strictly positive scalar.
It is seen, upon substitution of expression (2.7) into equation (2.6), that the time
derivative of the energy storage function satisfies the following string of relations

V=L,V +h(x)o — yh*(x) < yo— 7y < yo

In other words, if the system is such that L,V is locally non-zero, then the input
coordinate of the system may be transformed in such a way that the partially closed
loop system will exhibit a strictly output passive behaviour between the external
control input v and the original scalar output y = h(x).

We have, therefore, proven the following result. -

Proposition 2.7:  System (2.1) is locally strictly output passivifiable with respect to the
storage function V, by means of affine feedback of the form (2.4) if and only if

LV(x)#0 Vxe&X
The affine feedback law, or state dependent input coordinate transformation, which

achieves strict output passivization, is given by expression (2.7).

A different and simple way to prove the above result is to consider the closed-
loop system (2.1)-(2.7) as

2
= 100 409 o) — 600 L5 =00 T 00 7
= 7+ 3o
with

7 =)+ (3) + o) = F ) = 5005000

k)
g(x) = LgV(x)g(X)
This system satisfies the KYP property. Indeed

Lf-V(x) =Ly, V(x)+ Ly, V(x)— %zd;% LgV(x)

2

h(x
- W_L;V(ijgV(x)

=L V(x)— Yh(x)* <0
)

h(x
L;V(x) = L) L,V (x) = h(x)
If the natural components f3(x),fi(x), do not exist, or, alternatively, if it proves
difficult to identify such components of f(x) in a given operating region X of the
state space, then we may regard the vector field f (x) itself as the non-dissipative
component, f,4(x), for the synthesis of the above affine feedback control law. It
follows, then, that the given system may still be rendered passive (by taking v # 0, in
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(2.7)), or, at least, ‘lossless’ with respect to the storage function ¥ (x) (by taking
v=0, in (2.7)).

The class of systems that can be (strictly output) passivified by static feedback
corresponds to those systems where the control input exhibits enough ‘authority’
over the available energy storage function. Such an authority is to be understood in
the sense that the first-order time derivative of the storage function V is directly
influenced by the control input ¥ and this explicit influence never vanishes in the
operating region of interest.

Proposition 2.8:  System (2.1) is strictly input passivifiable with respect to the storage
Sfunction V, by means of a nonlinear state feedback if and only if

LV(x)#0 VxeX
The nonlinear state feedback law that achieves strict input passivization is given by

=_£fndV(x)_ _h LW
LV(x) \LyV 'LV

where 6 is a strictly positive constant.

Remark 2.9: All of the above results are independent of the output relative degree
(see Isidori 1995) and, moreover, they are, in principal, independent of the minimum,
or non-minimum, phase character of the given system. These facts are in no
contradiction with the results reported in Byrnes et al. (1991) where it was found
that a necessary and sufficient condition for having a system passivifiable is that it is
output relative degree one and weakly minimum phase. Our results do not apply to
the class of systems considered in Byrnes ez al. (1991), which have an equilibrium at
the origin and are such that the storage function is also zero at this equilibrium
point. By considering systems which have non-zero constant equilibria for constant
controls and storage functions strictly relative degree one, the above restrictions are
lifted. a

2.3. A geometric interpretation of passivization by feedback

Suppose a system of the form (2.1), with a natural decomposition of the vector
field f(x), is passivifiable, i.e. L,V # OVx € X. Suppose that an input coordinate
transformation of the form u = (h/LyV)v — Ly V(x)/LgV(x) — yh? /LgV has been
applied to the system.

In transformed input coordinates, the system (2.1) is given, upon some simple
algebraic manipulations and use of the definition of the Lie derivative, by

. AV (x)/dx h h2(x)
x = fa(x) + filx) + |1 — g(x) _LgV(x) - |faa(x) + ngg(x)v - 7zg79(x) (2.8)

The geometric interpretation of the several components in the transformed
equation (2.8) is given in Fig. 1.

We clearly identify four types of terms in the five summands of the right-hand
side of (2.8). The first summand is, according to its definition, a naturally dissipative
term. The second and third summands are the workless terms or invariant terms, the
fourth summand is the power aquisition term responsible for the ‘supply rate’ in
terms of the new control input and, finally, the fifth summand is an artificially
induced dissipation term making use of nonlinear (quadratic) output feedback.
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Figure 1. A geometric interpretation of passivization.

Note that the matrix
oV (x)/0x

L V(%)

M(x) = |T—g(x)

is a projection operator onto the tangent space to the level surface ¥'(x) = constant,
along the distribution span {g}. This projection operator ‘hides’ all destabilizing
components of f,q4(x) by making the vector M (x)f,4(x) a tangent to the level sur-
fices of constant stored energy, i.e. to the family of sets (or foliation)
{vs.t. ¥(x) = constant}. Thus, any unstable behaviour contained in f4(x) does
not increment, nor diminish, the value of the energy function V(x) along the
controlled trajectories of the transformed system. However, it should be made
clear that passivization of non-minimum phase systems would be achieved at the
expense of possibly unbounded (i.e. unfeasible) feedback control actions. The
requirement of a minimum phase system for passivization is, hence, natural and
convenient.

It is easy to verify that M(x) satisfies the following properties, which are
characteristic of projection operators onto tangent spaces, along the span of a
given vector g

M(x)g(x) =0 Vxe X
%M(x) =0 VxeX

M*(x)=M(x) VYxeX

3. Passivity-based feedback controller design

We begin by revisiting a systematic procedure for the synthesis of passivity-based
feedback controllers. This procedure, based on storage function modification and
damping injection through feedback, has been extensively used in the area of
mechanical, electromechanical and electric systems. The reader may find further
details in Sira-Ramirez et al. 1997) and in the references therein.

3.1. Towards a canonical form for passive systems
Suppose that system (2.1) is passivifiable and assume f3(x), fra(x), fi(x) are the
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natural components of f(x) with respect to the storage function V(x). Suppose
furthermore, that ¥'(x) is given in its simplest form

1
V{x) = ExTx
Assuming that L,V = ng(x) # 0 in the operating region X of the state space, then
the passivified system (2.8) can be further specialized to be written as
) h”(x)

T 2
F= )70 + (10 o1t + 50 gn - % gty o

As integrating parts of the time derivative of ¥ one has the following terms.

h(x)® ]
N - -~ -1 <0
X ltfd(x) 7g(x) XTQ(X) =

T xT

I- —— - =0

X {ﬁ(x) + l: g(x) ng(x) Jf;)d(x)}
it then follows, by straightforward factorization of the state vector components in
the nonlinear entries of the different fields comprising expression (3.1), such that a

system may always be rewritten in the following form
X ==R(x)x — J(x)x + M(x)v; y=h(x) (3.2)

with R(x) being a positive semidefinite matrix in X, and J (x) being an anti-
symmetric matrix. This implies the following identifications

2
1) = 157 1 a(x) = <RG0
T
A0+ (1= 0975 s [ul) =~
h
;T;(x)’g(x) = M(x)

3.2. Feedback controller design via energy modification and damping injection

A passivity-based controller can now be proposed for systems of the form (3.1),
or (3.2), by considering the following modified storage function

Valx,xg) = 5 (= %) (x — x4)

where x4 is an auxiliary state vector to be defined later.
Along the solutions of the system (3.2), the function Va(x,x4) exhibits the
following time derivative

Va(x,xq) = (x = x) T[-R(x)x — T (x)x + M(x)o — x4

Completing squares in the right-hand side and adding a damping injection term of
the form —R;(x)x, so that Ry, (x) = R(x) + Rg;(x) is a negative definite matrix for
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all x € X, one obtains
Va(x,x4) = (x = x¢) T[=(R(x) + Rai(x)) (x — Xq) = T (x)(x — xq) = %g — R(x)xq
= J(x)xg + Reai(x)(x — xq) + M(x)0]

Note that if we let the auxiliary vector x4(¢), satisfy the following system of
differential equations
Xg = —R(x)xg — T (x)x4 + Rgi(x)(x — xg) + M(x)v (33)

then the time derivative of Vy(x, x4) satisfies

Va(x,%6) = =(x = %) TRun(¥)(x = x) < =5 (% = x) (x = x0)
= _gV(xaxd) <0

where, in terms of the minimum and maximum eigenvalues (Apin, Amax) Of Ry(x), @
and b are given by

a = inf Apin (Rn(x)) > 0; & = sup Aoy (Rp(x)) > 0
x€X xeX

It follows that the vector x(z) exponentially asymptotically converges towards the
auxiliary vector trajectory x,(1).

Notice that (3.3) is a time varying linear system for the auxiliary state x4. This
system of equations gives us enough freedom for the synthesis of a feedback
controller. Typically, one sets for a particular component of the vector x4 a desired
constant equilibrium value. This is made in correspondence with the component
value in the equilibrium state x, of the original state vector. The objective of such a
particularization is to obtain a feedback expression for the external control input v
in terms of the available state vector x, as well as the rest of the auxiliary variables in
the vector x4. The differential equations defining the remaining auxiliary variables in
x4, are to be regarded as state components of a dynamical feedback compensator
(see Sira-Ramirez et al. 1997).

4. TMlustrative examples
4.1. A series of two gravity-flow tanks—pipeline system

Consider the following series arrangement of two identical gravity-flow tanks
equipped with outlet pipes (see Fig. 2). The single tank version of this model can be
found in Karjala and Himmelblau (1996). As in Smith and Corripio (1985), our
model includes an elementary static model for an ‘equal percentage valve’

A g Kf
_Apg . Bf 2
X = L pA%xl
1 —(1-
x2_Z(FCmaxa =9 — x))
t
Apg K > > (4.1)
X3 = ELﬁx“ —'pjgm
1
x4_A—(x,—x3)
t
V= ¥Xa
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FC max ﬁ
1

Iz AL Xy

Ay ! =
!

P

Figure 2. A series of two gravity flow tanks/ pipe system.

where x| and x; are the volumetric flow rates of liquid leaving the tanks via the pipes
and x, and x, are the heights of the liquid in the tank, respectively. Fopax iS the
maximum value of the volumetric rate of fluid entering the first tank, g is the
gravitational acceleration constant, L is the length of the pipes while X; is the friction
factor and p the density of the liquid, 4, is the cross-sectional area of the pipes, and
A, is the cross-sectional area of each of the tanks. The parameter « is the rangeability
parameter of the valve and the control input, «, is the valve position, taking in the
closed interval [0, 1].

For a constant value # € [0,1] of the control input u, the system had an
equilibrium point given by

i.e. the system has a constant non-zero equilibrium point for a constant control
input. In order to avoid unnecessary complications we regard the control input term
via the following auxiliary variable w

W= FCmaxa_(l—u)

In reference to the vector fields description of the system as in (2.1), we have

FAog K -
“pY B2
L X2 pAgxl
0
1
—le i
X)) = t 7 X) = A
f(x) fﬂxr—Kf-x% g(x) ot
L1 pAf, 0
A—t(xz—xa) ]

The system output has relative degree equal to three.
The operating region for system (4.1) is given by points strictly located in the
position orthant of R*. In other words, X as the set.

X={x= (xl,xz,x3,x4)T €RY st.x;>0i= 1,2,3,4}
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Consider the following energy storage function

1
Vzi( %+x%+x§+xi)

The condition, L,V # 0, results, in this case, in

_x
LV =3 #0

which is satisfied over the operating region X.
The system is, then, clearly passivifiable with storage function V(x). The time
derivative of ¥ along the regulated evolution of the system is given by

K¢

y Apg 3 1
= Txle - p_/EEXI +ZX2(W - xl)

A,g K 1
pY _ f 3 _
+ = XaX3 ﬂ—pApz x3+ a4 x4(x) — X3)

Ang 1 A,g 1
< ——E -X1X2 + szw + _lr’,—X3X4 + Zt X1X4 (42)

where the last inequality is obtained under the assumption that the system evolution
takes place on the operating region X and, hence, x, through x, are strictly positive

for all times. It follows that, in X, the natural decomposition of the drift vector field
f(x) is given by

-_ K ﬂ - 1
A%, Apgx2
1 L
—le 0
t
A= | A | ) = | g
K 2 T
3
pA] 1
—X
._=Lx3 LAl : i
L A!

Define a state-dependent input coordinate transformation of the form

Aﬁ‘,xﬂ_“ _)ﬂxi-i—ﬁtﬂv— A xﬁ (4.3)

Apg A

— T - t

L L x X5 Xy X5

Transformation (4.3) results in a strictly output passive system operator relating
the new input v and the output variable x;. Substituting the control law (4.3) into the
system equations (4.2) one obtains, after evaluation and integration of the time
derivative of V, the following passivity inequality

t

wmm—wstjan@w

0

The input transformed system is rewritten as
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* g Ki o
1 L 2 PA;Z) 1
2
A A 1
PO Pl S L Sl B l—ix,)ﬁ
X2 X3 L L X2 At At X2
Ang K
P RO I
pAp
X ! x L x
4= 4T
Yy =X4
The transformed system may be placed in the form (3.2)
x=-J(x)x — R(x)x + Mv
where xT = [x1 x2 x3 x4], and
- A g —
il 4
0 7 0 0 .
I Apgxy 1 x X4
—J(X) - L L X2 At Xy : M - | x
Apg x4 0
0 —= 0 0
L X2 0
1 X1
0 1
L AtxZ Y . ..
- Kf -
— 5 0
pAIZ)XI 0 0
1
0 —Zﬂ— 4o 0
—R()C) = t X2 x2 K
0 ——ffX3 0
pAp
1 X3
I 0 0 0 A

where JT(x) + J(x) = 0, and R(x) = RT(x) >0

4.1.1. Controller design. Consider a modified energy function Vy, in terms of an
auxiliary state vector xq = [x14 X2d X3q4 X4d]T, representing the desired state vector.
Let V4 be given by
Va(x,xg) = $(x = xg)T(x — xq)
2 2
=[x = x10)% + (%2 = x20)2 + (%3 — X30) 2 + (x4 — X4q)]

From the results of §3.2, the following set of auxiliary controlled differential
equations yield Fy(x,x,) negative definite
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g = A;;Ig_xw - qugxlxld + R (x1 — x1q)

Xu = —:U - ’7§—§xzd - :{%qxld - ézﬁ);—;xsd - A%%xm - A%%xzd + Ry(x; — X24)
= izg'%xz - ;ﬁ%xsxsd + R3(x3 = X34)
= 21—;—1 2~ 'j:’;—xm + Ry(x4 = X49)

where R, through R, are the diagonal components of the positive definite matrix
Ra(x) which, for simplicity, will be taken to be a constant matrix, Rg(x) =
Ry =diag [Ry Ry R3 Ryl

Suppose it is desired to regulate the height of the liquid, x4, in the second tank to
a predetermined constant equilibrium value X,. This value correponds, according to
the equilibrium condition for the system, to X, =X, Letting, thus, x4 =
%, = constant, one obtains the following dynamical controller expression for the
transformed input »

x; [Apg 1 x| Apg x4 1 x AW X
_m[Ag, x| Apdxs 235 s Ryl —
x| L €1+Atng4+ L X2§3+ AtX2+7x% 2 2 %)
. Ayg K
=200, K B

b
. Aygxs . K
53=-az—-—-;- 2“;}#363534'1{3("3'53)

P

FERETILE. P NN
4_AtX2 2 Atx4 ¢ a )

where the variables &, &3, &4, acting as the dynamical controller states, have replaced
the auxiliary state variables x4, X3q and X4q, respectively.
The output of the dynamic feedback controller takes the form

Ayg 1 x A,gx
=4 __ipf(xl -&) —Zx—;(xat —&4) —%x‘;(h - &)
1 X _ - x% =
+At;2—x2 Ry(x2 — %2) ’Yx% (x2 xz)]

Notice that the actual control input is the valve position u. This is given by

u=1+ —Llo LA
- lOg o g chax
We take, after Karjala and Himmelblau (1996), the following system parameters
for the simulation of the controlled gravity-tank/pipe system,
g=981ms™% L=914mt; K;=441Ns’m™> p=998kgm™
Ay =0653m% A =105m% a=5 Fope=2m’"

The required equilibrium point for x4 was set to be X4 = X; = 5-0 m, while that of x,
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Figure 3. Simulation results of the passivity-based regulated gravity-tanks/pipe system.

was set to be X, = %3 = 1-8389 m* s~!. This corresponds to a steady state value of the
control input # = 0-9478. The design parameters were chosen to be

R =01 R, =02 R=01 R=02 ~=05

Figure 3 shows the closed loop response of the gravity-tank/pipe system with nice
stabilization features and an overshoot, for x,, of 21% with a settling time of about
200 s. This is to be compared with the settling time, of about 400 s, and the overshoot
of 49-7% for the open loop response.

4.2. A bioreactor system

Consider the following bioreactor tank system, thoroughly discussed by Agrawal
et al. (1982)

X = —ux) + x1(1 — x3) exp (%)

1
J'cz_—_—ux2+x1(1—x2) +5 exp (E)

14+6-x v
y=x (4.4)

where x| and x, are the number of cells and the nutrient concentration at the time ¢
respectively. The system parameters § and v are assumed to be known constants.
These scalar quantities represent the growth rate and the nutrient inhibition
parameters, respectively. The input variable u represents the flow rate through the
tank. The cell and nutrient concentration variables x; and x, are assumed to evolve
on the open intervals (0, 1), while the control input flow rate is assumed to be
restricted to the closed interval [0,2]. The equilibrium point for the nutrient
concentration Xx,, corresponding to a given constant value & of the input flow rate
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variable u is given by the (positive) solution of
_ _ X,
1 —Xx,) =uexp ( = —~)
(1-x,) 5

Once the steady state value X, is computed from the previous implicit equation,
the corresponding equilibrium value for the cell concentration x; is given by

—r 1 - -
xl - *ux2;__ﬂ7x% exp (ﬂ)

The system, thus, has a constant non-zero equilibrium point for a constant

control input.
In terms of the vector fields description (2.1) for the above affine system we have

(1-xy)exp (2 _
1= (ljlxz)ex):(xz)<11>;ﬂx2 U [—ij

Clearly, the system has relative degree one and, hence, it has one-dimensional

zero dynamics.

The physically meaningful operating region for system (4.4) is given by points
strictly contained in the unit square [0, 1] x [0, 1] of the first quadrant in R? where the
system evolution is defined. In other words we regard X as the set

X={x= (x1,%)T € R?, s.t. x; € (0,1) and x; € (0,1)}
Consider the following energy storage function
1
V=3 (x] + x3)
The crucial condition, L,V # 0, resuits, in this case, in
LV =—(x{+x})#0

which is, in fact, satisfied over the operating region X.
The system is, thus, passivifiable with respect to the storage function ¥(x). The
time derivative of V along the controlled motions of the system is given by

V= —u(x} + x3) + x}(1 = x;) exp (); > + xx(1 — x;) exp <x2> L

1+,3 X3
1
—u(x? + x3) — x2x, exp (%) — X1 X3 exp (xz) 1 +;ﬁx2

+ X exp( >+xx (9,4 ( 2) !
! Yy 2 P l+ﬂ—x2
1+

X2 X7
< - 4.5
< (x1+x2)+x,cxp(7>+x1xzexp( )l+ﬂ xz (4.5)

where the last inequality is obtained under the assumption that the variables x; and
x; are strictly positive for all times, which is, evidently, the above established
physically meaningful restriction. In other words, a decomposition of the vector
f(x) is possible, including a locally dissipative component f(x) in the region X’ of the
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state space. The decomposition of f in X into dissipative and non-dissipative
components is clearly given by

—X1X, X X1 X
fab)=| 144 |exp (—72—) fu)=| _1+p |exp (?2)
121+,B—X2 11+ﬁ—X2

Define a state-dependent input coordinate transformation of the form

2
x5 X X7 1+
= = =)+ = = 4.6
v u<x1+xl> x,exp<7>+x2exp(7>l+ﬂ_x2 (4.6)

Transformation (4.6) yields a passive system between the external input v and the
output variable x;. Indeed, substituting the control law (4.6) in (4.5) and integrating
both sides of the resulting relation leads one to obtain the following passivity
inequality

!

V(x(0) - V(x(0)) < L x1(0)o(0) do

The partially closed loop system is rewritten as

5 Xy X\ %2 —x1(1+6)/(1+ 8- x3) x1
Xy = —X1Xy €X = ] 4+ x5€x = Xy + sV
T p(v) ’ p(v) X2+ 2 2% 7 4 ]
. X2 1+4 2 x;)xz—x1(1+ﬁ)/(l+ﬁ—x2)
Xy = —X1X7 €X — ]| -— X1 €X SO |G A
’ o p(7>1+5—x2 : p(’y x} +x3

szilr‘

x2 + x3
y=x

The transformed system may be placed in the form (3.2)
x=-J(x)x - R(x)x + Mv

where xT = [x; x,], and
1

0 s <ﬁ> xz—Xl(l;ﬂi/)(ci+ﬂ—xz)‘
_ - 1T X2
A 31\ x=x1(1+6)/(1+6-1)
-xjexp| = }= ix%-&x% - 0
X3
—X, eXp <—> 0
—R(x) = 7 g .M—_—rxl 2.[x1]
0 X[ eXp (xz) el Aitaln
-x, Ry TP
v)1+B8-x

where JT(x) + J(x) =0, and R(x) = RT(x) > 0, as may easily be verified.

4.2.1. Controller design. Consider the modified energy function Vg, defined with
the aid of an auxiliary state vector xg = [x1q4 X24], representing the desired state
vector, to be determined later.
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Let V4 be given by

Va(x,xq) == (x — xd)T(x —Xq4)

[(x1 — x10) + (%2 — x20)°]

DI ==t DO}

From the results of the previous section, the following set of auxiliary controlled
differential equations yields V4(x, x4) negative definite

. X xy — x¢(1 X
x1d=—x2exp< 2)x1d+x1exp( 2) 2= xi(1+8/(1 + ,,,?lxm
v Y x? +x3
2
X1
_ R .
+x%+x%”+ 1(x1 — x14)
1 -
¥4 = —X| €Xp (x2)1+;-ﬂx Xaq — X1 EXP (’f:)ﬁ xi (1 "‘ﬁl/)(c +8- xz)
3
X1X2

+—=— 2+ 20+R2(x2 —de)
where R; and R, are the components of a diagonal positive definite matrix R ;(x)
which, for simplicity, will be taken to be a constant matrix, Rg(x) = Ry =
diag [R; Ry).
Letting x;4 = X; = constant, one obtains the following dynamic controller
expression, where x,4 has been substituted by the controller state variable £

2 2
p= X% [x2 exp (% )xl oy exp (’fyz) =)/ (+8=x) g sy

x} x3+x3
:_ x\ 1+8 x2\ X2~ x1(1+8)/(1 +8—x)) _
5 x‘exp( >1+ﬂ %t x‘exp(v) x4 x3 x’

X1X2
+__777 v+R Xy —
x%_*_x% 2( 2 §)

Digital computer simulations were performed to test the behaviour of the closed
loop system. We took, as in Agrawal ef al. (1982), the followmg system parameters
for the simulation of the regulated system

v=048; [=002

Corresponding to a constant value of the control input u given by # = 1-3245, the
equilibrium value for x, is found to be %, =0-3200, and the corresponding
equilibrium for x; results in X, = 0-2196.

The design parameters were chosen to be

R =Ry =17

Figure 4 shows the closed loop behaviour of the system states, controller state and
the synthesized control input. The system trajectories evolve exhibiting nice
stabilization features (no overshoot) towards the steady state equilibrium and a
settling interval of less that 5 time units.
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Figure 4. Simulation results of the passivity-based regulated bioreactor system.

4.3. An exothermic continuously stirred tank reactor system

We now consider a jacketed continuously stirred tank reactor system. The
following model, taken from Smith and Corripio (1985), assumes that the reactor
and the jacket are perfectly mixed, that all involved volumes as well as the relevant
physical properties remain constant and that the heat losses may be neglected

F E
v = —(Ca: — -k — o (X1
X =7 (Cai = 1) Oe"p{ R(x2+273-16}x’
F AHy E AL
= (T, —-—_ Tk Y [P v,e,
Y=y (Timx) =20 °exP{ R(x; +273:16) }x’ Z
UA FCmaxa_u
— — X — Xy — T
VCPCCpC( S Ve (2= Te)
y=x

where x; is the concentration of the reactant in the reactor (kgmole m~3), x, is the
temperature in the reactor (C). x3 is the jacket temperature (C), u is the controller
output signal on the scale [0, 1] and it represents an equal percentage valve position
function. F is the feed rate (m’), V is the reactor volume (m®), Ca; is the
concentration of the reactant in the feed (kgmolem ™), k is the reaction rate
coefficient (m3 kgmole_l s'l), T; is the temperature of the feed (C), AHg is the
heat of the reaction, assumed to be constant (Jkgmole™), p is the density of
the reactor contents (kgmole m™), C, is the heat capacity of the reactants
(J kgmole~'s™!), U is the overall heat transfer coefficient (J s~ m~2deg™!C), 4 is
the heat transfer area (m?), V¢ is the jacket volume (m?), pc is the density of the
coolant (kgm™), Cpc is the specific heat of the coolant (J kg‘ldeg_IC), Fc is the
coolant rate (m?s™!), T is the coolant inlet temperature (C), k, is the Arrhenius
frequency parameter (m3 s7! kgmole"), E is the activation energy of the reaction
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Figure 5. Continuously stirred tank reactor system.

(J kgmole™"), R is the ideal gas law constant, 8314-39J kgmole ™' K ™!, Femay is the
maximum flow through the control valve (m3 s7"), a is the valve rangeability
parameter (see Fig. 5).

We let the auxiliary control w be defined as w = Fcyaa ™. The operating region
of the system is, again, constituted by the strict first orthant in R?, where the
concentration and the temperatures are all positive

X={xeR®st x;>0fori=1,2,3}
Consider, as in the previous examples, the storage function V(x) = 1 /2xTx. The

field g(x) is given by
0

0
yo BTG

Hence, since Lyv = —(x3/Vc)(x3 — T¢,), the system can be passivified with respect to
V(x) in all of X except on the plane represented by x; = T,. Physically speaking,
this forbidden plane is never visited by the state trajectory, since the jacket
temperature will always be superior to the coolant inlet temperature T,.

Let k(x) be defined as

E
k(x) = ko exp { " R(x, + 273-16) }

The dissipative and non-dissipative components of f(x) are given by

- F - - F -
?xl — k(x)x% VCAi
E U4 FT, AHg , Ud
== . _ | =i Ry .
falx) = (V+V,,Cp)xz L Sl = |5 e, KRN o
UA UA .
S o ,
L VepcCoe L VepeCpe ™2 |

In this case there are no invariant components of f(x) with respect to V' (x).
The passivifying state dependent input coordinate transformation is given by
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v, [F F
W=—"—:7>+¢

4AHg 2
; —=Cy =Tix; —— -k
- To) |7 ax1+ 3 Tix, oC, (x)x1x,

1 1
+UA(- -+——ﬁ)xx —-vx +’7sz
VpCy  VepcCuc )27 : :

with « being a strictly positive constant. The closed loop system is obtained as

. - (% + k(x)x1> 0 0
B 0 F, U4 0 i
2| = V" VoG, .
X3 2 X3
UA X1
; S )
! VercCoe %3/ |
FCy,
0 O Ty [[xa] [0
+ 0 0 Ju(x) [ [ x| + )?1 v

FCA, X P

ik, S 0 3 x

Vs J23(x) 3

y=x
where

VpCp Vxs pCp X3
The time derivative of ¥'(x), along the system trajectories, satisfies
. F F U4
V(x)= —-ix% — k(x)x] - (?-I-I_/pCl;)x%
UA

2 2 2
- —x3+x0 —yx] <yv—y° <y
VepcCoc :

: 2
= (T4 i amnkit)

and the system had been made strictly output passive and, hence, passive.
A dynamic passivity-based feedback controller for the system may be obtained

by following the procedure outlined in §3.2. Such a controller is given by the
following set of differential and algebraic equations

. - £+k(x)x 0 FCy, B
A PN AR N
pPLp

FCy UA FT, AHgk UA :
VepcCoc ' X5

—I7pC; Vxy pCp x; VepeCoc

— Ry(x3 — 9?3)]

Simulations of the closed loop system constituted by the plant and the above
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Figure 6. Simulation results of the passivity-based regulated CSTR system.

derived dynamical feedback compensator were performed for a CSTR with the
following parameters (see Smith and Corripio 1985)

V=708m% p=192kgmolem™>; C,1-8115 x 10° J kgmole deg™'C;
A=540m?% pc=1000kgm™>; ko=00744m>s~" kgmole™!;
Cpe=4184T kg ' deg™!C; E =1-182x 10" Jkgmole™; Frmax = 0:020m> s7;
F=75x10"m*s™"; a=50; AHg=-9-86x 107 Jkgmole';
U=3550s"m~2deg™'C; Ca =288kgmolesm™>; T¢ =270C; T;=660C
The desired equilibrium, corresponding to a constant value of u is obtained as
% = 1056 kgmolem™; %, =105C; % =88C; &=070
The damping coefficients R;, Ry, R; and ~ were set to be
R, =001; R, =001; Ry=0001; ~=001

Figure 6 depicts the simulations of the CSTR system regulated by the dynamical
feedback controller synthesized by passivity considerations.

4.4. An isothermic CSTR system

Consider the following model of a CSTR in which an isothermal, liquid-phase
multicomponent chemical reaction takes place (the model presented here is taken
from Kravaris and Palanki 1988). The chemical reaction system is

P—-Q—R

with an unmodelled first-order side reaction from P. The reactants P and Q are
highly acidic, while R is neutral. The control objective is to keep the total
concentration of P and Q at a constant value by adjusting the molar feed rate of
P. Figure 7 gives a schematic representation of the system, where V is the volume of
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Figure 7. Isothermic continuously stirred tank reactor system.

the tank, F is the volumetric feed rate and Npg is the molar feed rate of the species P,
effectively acting as a control input to the system.

The differential equations describing the system in terms of dimensionless
variables are

X‘l = —-(1 +Dal)x1 +u
%) = Dy %) — X3 — Dy

y=x;+x2

where x; = Cp/Cpy is the ratio of the concentration Cp of the species P, and the
desired concentration, Cy, of the species P and Q. The state variable x; = Cq /Cpy 18
the ratio of the concentration Cq of the species Q and the desired concentration Cpy.
The dimensionless control input is given by u = Npg/FCpy. The constants
D, =k, V/F and D, = k,VCpy/F are assumed to be perfectly known with k;
and k, being, respectively the first and second-order rate constants.

For a constant feed rate u = #, the corresponding equilibrium value of the state
vector is given by

- U . _ < \1/2
I = -0 . D..D
X1 (1+Dal)’ X2 05+(0 25+ al ale)

i.e. the system has a non-zero constant equilibrium for a given constant input.
The operating region of the system is given by the following set

X={xeR st x;>0;i=12}

The vector fields f(x) and g(x) are readily found to be

fo)= [ P =]

alX1 — X2 — Dypx3

Consider first a simple change of coordinates which places the total concentra-

tion yasa state variable
X 0 1 X2
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The transformed system reads now as

y= =y +u—Dpxj

Xy = Dy = (1 + Dyy)xz — Dypx3
The transformed vector fields are given by

; ~y = Dyx3

F32) = o a0 == ]

Dayy — (14 Day)xz — Dypx3
We consider the storage function given by
V(y,x) =3(0* + x3)
The quantity Lz V'(y, x) is, in this case, simply given by
LiV(y,x;) = LV(y,x) =y =x1+x, #0in X

Hence, the system is passifiable by means of an affine state feedback control law.
The natural components of the transformed drift vector field f(y, x,) are given by

V- DaZX%

v = | Tpoo i A= [0 ) A =[]

The time derivative of the storage function V(y, x,) satisfies
V ==y = Dpx3y — (14 Dyy)x3 — Dypx3 + uy + Dyyyx; < y(u+ Dyyxy)
This immediately suggests the following change of input coordinates
v=u+D,1x;

The partially closed loop system, in passivity canonical form, results now in

Dox?
31 [0 -Dul[y —(1 +_a2x2.) 0 7 H
= + y + v
Xy Dal 0 Xy X 0
0 —(1 + Dal + D32X2)
Following the controller design procedure outlined in §3.2, we obtain the
following set of auxiliary controlled differential equations which guarantee, after

some appropriate damping injections, the negativity of the derivative of the modified -
storage function

Vay,ya %2, %24) = 3 [(y = ya)2 + (%2 — x24) ]

RS R B

—(1 4 Day + Dazx>
Lol [0 a)ln ] »

Letting y4 = ¥y = ¥; + X, and solving for the control v from the first equation, we
obtain the following dynamical state feedback controller, where the variable £—the
state of the controller—replaces the auxiliary variable x,q.
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Figure 8. Simulation results of the passivity-based regulated isothermic CSTR system.

D,,x3
b= (1 +—a}2;3)J7+Da1€—Ry(y—J7)
€= —(1 + Dy + Dyyx2)€ + Dyy 7 + Ry(x2 — &)

In terms of the original control input u, the controller is found to be

2
. (1 +2a;"2y)y—ual<xz ~&-R(y~7)

€= —(14 Dy + Dpx3) + Dy 17+ Ro(x2 — §)

Simulations were carried out to test the performance of the proposed dynamic
feedback controller. As in Kravaris and Palanki (1988) we took the following values

for the parameters
D, =1; Dipp=1

The equilibrium points, corresponding to a steady-state value of u given by & = 4,

are readily found to be
=2 ¥»=1 y=3

The design constants representing the damping injections to the transformed system

were set to be ‘
Ry = 2; R2 = 2;

Figure 8 depicts the regulated responses of the closed loop system exhibiting nice
stability features without overshoots as well as a substantially improved settling
time. In order to test the performance with respect to input saturations we purposely
limited the control input to take values in the closed interval [0, 6]. In spite of the
effects caused by the initial control input saturation, the feedback controller manages
to stabilize the system as expected.



Passivity-based control of nonlinear chemical processes 995

5. Conclusions

In this article, we have proposed a passivity-based approach for the regulation of
a large class of nonlinear systems, especially nonlinear chemical systems. A
seometric interpretation was given to the possiblities of ‘passifying’, by means of
affine feedback, an arbitrary nonlinear system describing a continuous process. For
monovariable systems, passivization is achievable by means of control input space
coordinates transformations, provided the energy storage function of the system is
sirictly relative degree one in the region of interest. This requirement does not seem
10 be very stringent, for a large class of monovariable nonlinear systems describing
common industrial continuous processes.

Passivity-based controllers have been traditionally applied to the class of
lagrangian systems. In particular, the approach has been applied to mechanical
systems (such as robots), electro-mechanical systems (such as induction motors) and
to purely electrical systems (such as DC-to-DC power converters, etc). It should be
emphasized that for a large class of nonlinear systems, especially those representing
biological and chemical process control systems, the concept of ‘stored energy’, is not
as simple as in the area of lagrangian systems. This fact has prevented the
advantageous application of passivity-based regulation schemes to such classes of
systems. However, we have demonstrated that one half of the square of the norm of
the state vector always qualifies as a suitable, and simple, positive definite energy
storage function from which sensible, and efficient, controller designs can be
systematically obtained. The results proposed here apply to any linear, or nonlinear
system, independently of its output relative degree and of its minimum or non-
minimum phase character. Of course, in the case of non-minimum phase systems,
any stabilizing controller will result in unfeasible control actions, whether unstable
or unbounded, as the desired equilibrium state is sustained. In general terms, the
possibilities of ‘passivization’ of nonlinear systems by means of regular affine
feedback have been shown to be equally valid for monovariable and multivariable
cases (see Sira-Ramirez and Delgado 1997).

In this article, our aim was to bring to the attention of the reader, the simplicity
and efficiency of the passivity based regulation scheme for a large class of nonlinear
systems. Passivity-based regulation, as presented here, can be easily compared
against linearization techniques in terms of the controller complexity and other
practically oriented criteria such as robustness. Even if the system must be first
passivified by an input coordinate transformation, the resulting passivity-based
dynamical feedback controller is far simpler than the exact linearization controller.

Extensions of the above results to systems with delays, characteristic of so many
industrial continuous processes, appear as an interesting challenge from the view-
point of passivity. Another challenging area is that of combining the advantages of
the passivity-based approach with discontinuous feedback strategies, such as sliding
mode control.
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