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Passivity-Based Controllers for the Stabilization of
DC-to-DC Power Converters*

H. SIRA-RAMIREZ,t R. A. PEREZ-MORENO,} R. ORTEGA} and M. GARCIA-ESTEBAN

Dynamical feedback controllers providing the synthesis of the duty ratio

function in pulse-width-modulation (PWM) feedback controlled DC-to-

DC power converters are derived using passivity-based considerations. The

approach is shown to be naturally suited for the average-based regulation

of several power supplies due to the Lagrangian nature of their average
PWM models.
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Abstract—Passivity-based feedback controllers are derived
for the indirect stabilization of the average output voltage in
pulse-width-modulation (PWM) controlled DC-to-DC power
converters of the ‘boost’, ‘buck—boost’, and ‘buck’ types. The
controller design is carried out on the basis of well-known
average PWM models of such circuits. The average models
are first shown to be Euler-Lagrange systems corresponding
to a suitable set of average Euler-Lagrange parameters. The
proposed regulators are based on an ‘energy shaping plus
damping injection’ scheme, achievable through nonlinear
dynamical feedback. The performance of the proposed
passivity-based duty ratio synthesis policies is tested for the
‘boost’ converter case. The regulating feedback law, derived
on the basis of a ‘boost’ model composed of ideal switches
and ideal circuit components, is assessed, via computer
simulations, on a realistic stochastically perturbed switched
converter model, including parasitic resistances and parasitic
voltage sources. © 1997 Elsevier Science Ltd.

1. INTRODUCTION
The feedback regulation of DC-to-DC power
supplies is, broadly speaking, accomplished
through either pulse-width-modulation (PWM)
feedback strategies, or by inducing appropriate
stabilizing sliding regimes. PWM control of these
devices is treated in several books, among them
those by Severns and Bloom (1982), Kassakian et
al. (1991), and Rashid (1992). The topic has also
been extensively treated by, among many other
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authors, Sira-Ramirez and Lischinsky-Arenas
(1991). Sliding mode control of switched power
supplies was first treated by Venkataramanan et
al. (1985), and more recently by Sabanovic et al.
(1993) in the context of motion control systems.

Both feedback controller design approaches
entirely overlook the energy-related physical
properties of either the original converter circuit
or of its closed-loop structure. The controller
design philosophy primarily insists on a mathe-
matically motivated average closed-loop lineari-
zation, which is geared to solve the stabilization,
or tracking, task.

In the context of PWM feedback policies, state
average models of DC-to-DC power converters
have been developed by Middlebrook and Cuk
(1976) from an approximate discretization
viewpoint. An interesting refinement and gene-
ralization of this class of average PWM models
has been proposed by Krein et al. (1990) using
the analytical theory of averaging of differential
equations. The same average models, known as
infinite switching frequency average models, have
been derived by Sira-Ramirez (1989), using as a
justification Filippov’s (geometric) averaging
viewpoint (see Filippov, 1988).

All the average PWM models so far developed
have been justified from a purely mathematical
viewpoint, without due regard to their possible
physical significance. It was one of our objectives
in this study to demonstrate that average PWM
models of power converters can be derived from
the energy properties of the switched electrical
circuit. The main advantage of underscoring the
often overlooked physical properties of DC-to-
DC power converters is that, in this way, we can
advantageously exploit these properties at the
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feedback controller design stage. In particular,
we would like to explore the relevance and
implications of a ‘passivity-based’ approach in
the feedback duty ratio synthesis problem (for
background on the passivity-based methodology
for controller design see Takegaki and Arimoto
(1981), and for the subsequent developments see
Ortega and Spong (1989), Berghuis and Nij-
meijer (1993) and Brogliato er al. (1995).

A passivity-based controller design technique
would be directly, and most naturally, applicable
to the average-based PWM regulation of
DC-to-DC power converters, provided one can
demonstrate that such idealized, mathematically
motivated, models actually correspond to syst-
ems derivable from classical Euler-Lagrange
(EL) dynamics considerations.

In this paper, an EL dynamics modeling
approach, which establishes the relevant physical
characteristics of well-known average models of
DC-to-DC power converters, is first presented.
In particular, we prove that the traditional
average PWM models of switched converters of
the ‘boost’, ‘buck-boost’, and ‘buck’ types are
indeed EL systems. The approach consists in
establishing a suitable set of average EL
parameters modulated by the duty ratio function.
This average set of parameters is derived on the
basis of, both a ‘consistency’ and an ‘inter-
mediacy’ requirement with respect to the EL
parameters of the two intervening electrical
circuit topologies. Interestingly, the derived
average PWM models entirely coincide with the
well-known state average models of DC-to-DC
power converters, introduced by Middlebrook
and Cuk (1976), and they also coincide with the
infinite switching frequency models, derived in
Sira-Ramirez (1989) and unified by Amran et al.
(1991).

Due to the nonminimum phase nature of the
average output voltage variable, a direct
application of the passivity-based design method,
aimed primarily at output-voltage regulation,
leads to an unstable dynamical feedback
controller. This is due to an underlying partial
inversion of the average system model, carried
out at the controller design stage. For this
reason, an indirect approach, consisting of
output-voltage regulation through inductor cur-
rent stabilization is undertaken. Indirect con-
troller design for nonminimum phase systems
has been justified, for nonlinear systems, in the
work of Benvenuti et al. (1992) and, in the
context of DC-to-DC power converters, in the
work of Sira-Ramirez and Lischinsky-Arenas
(1991). The indirect control technique also
naturally arises, from module-theoretic results,
in sliding mode control of linear multivariable

'

nonminimum phase systems, as inferred from the
work of Fliess and Sira-Ramirez (1993).

The performance of the derived, indirect,
dynamical state feedback controllers was suc-
cessfully tested, via computer simulations, for
the ‘boost’ converter example. The model used
for the switched boost converter included an
unmodeled stochastic perturbation input, di-
rectly affecting the external voltage source, as
well as unmodelled parasitic resistances attaches
to each one of the circuit elements. The model
for the switching arrangement, usually consisting
of a transistor and a diode, was taken, as
proposed by Czarkowsi and Kazimierczuk
(1993), to be an ideal switch, combined with
lumped forward (i.e. ON) resistances and a
parasitic voltage source, associated with the
conducting state of the diode.

This paper is organized as follows. Section 2
presents an EL dynamics-based derivation of the
average PWM models of the ‘boost’, ‘buck-
boost’, and ‘buck’ converters. An ideal equiv-
alent circuit realization is also provided for the
three kinds of converter. Section 3 develops the
passivity-based feedback controllers and dem-
onstrates, for the ‘boost’ and ‘buck-boost’
converter cases, the nonminimum phase charac-
ter of direct output voltage regulation options.
The ‘buck’ converter case does not exhibit a
nonminimum phase character and, therefore,
direct and indirect output voltage regulation
schemes are seen to be equally feasible. The
simulation results are presented in Section 4.
Section S contains the conclusions, and sugges-
tions for further research in this area.

2. AVERAGE MODELS OF DC-to-DC POWER
CONVERTERS AS EL SYSTEMS

The results of this section, regarding the EL
nature of average PWM DC-to-DC power
converters, extend the work found in Sira-
Ramirez and Delgado de Nieto (1995), where
only the ‘boost’ converter case is treated.

2.1. Generalities about EL electric circuits

The EL dynamics of an electric circuit,
containing no magnetic couplings between its
different branches, is classically characterized by
the following set of nonlinear differential
equations (see Meisel 1966):

0D
=-—"4

d /¥ AF
N F 1
( > oq ag 7 @)

dr \ 3¢

where ¢ is the vector of flowing currents and g
represents their time integrals, or electric
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charges. The vector of electric charges consti-
tutes the generalized coordinates describing the
circuit. This vector is assumed to have n
components, represented by ¢i,...,q, The
scalar function & is the Lagrangian of the
system, defined as the difference between the
magnetic co-energy of the circuit, denoted by
J(4,q), and the electric field energy of the
circuit, denoted by ¥(q), i.e.

£(4,9)= 94, 9) ~ V(9) @

The function 9(4) is the Rayleigh dissipation
cofunction of the system. The vector & =
(%,,...,%,) represents the ordered com-
ponents of the set of generalized forcing
functions, or voltage sources, associated with the
generalized coordinates.

EL circuits are thus generally represented by
the set of equations

+—-=-—+% 3)

d <8J
&q aq aq

dr

Following Ortega et al. (1995), we refer to the
set of functions (7, ¥, 9, ¥) as the EL
parameters of the circuit, and simply express a
circuit = by means of the ordered quadruple:

2=(9,7,9,%). 4

2.2. The ‘boost’ converter

2.2.1. The switch-regulated model for the
‘boost’ converter. Consider the switch-regulated
‘boost’ converter circuit in Fig. 1. The
differential equations describing the circuit are

1
5n=-( —u)zx2+

L’
1

X2

RC

&)
X =(1 —u)%xl -

where x, and x, represent the input inductor
current and the output capacitor voltage
variables, respectively. The positive quantity E
represents the constant-voltage value of the
external voltage source. The variable u denotes
the switch position function, acting as a control

u=0

o

Ind AT
T o]

Fig. 1. Boost converter circuit.

’

input. Such a control input takes place in the
discrete set {0, 1}.

A PWM policy regulating the switch position
function 1 may be specified as follows:

u(t) = { fortyst <t +p@)T
0 fortk+#(lk)T<l<tk+T

tn=4+T;k=0,1,.

where 1, represents a samplmg instant; the
parameter T is the fixed sampling period, also
called the duty cycle; the sampled values of the
state vector x(¢) of the converter are denoted by
x(t,). The function u(:) is the duty ratio
function, truly acting as an external control input
to the average PWM model of the converter (see
Sira-Ramirez, 1989). The value of the duty ratio
function w(f) determines, at every sampling
instant t,, the width of the upcoming ON pulse
as u(t,)T (during this period the switch is fixed
at the position represented by u =1). The actual
duty ratio function u(+) is evidently a function
limited to take values on the closed interval [0, 1]
of the real line.

2.22. A Lagrangian formulation of the
average PWM model. We consider separately the
Lagrangian dynamics formulation of the two
circuits associated with each of the two possible
positions of the regulating switch. Of course, the
aim of carrying out this formulation is not to
rederive the differential equations governing the
circuit at each switch position. These may be
trivially found from (5) itself. Our purpose is to
gain some insight on the physical effects of the
switching action in terms of the EL parameters
of the two circuit topologies. In order to use
standard notation, we rewrite the input current
x, in terms of the derivative of the circulating
electric charge q;, as §,.. Also the capacitor
voltage x, will be written as g/C where g is the
electrical charge stored in the output capacitor.

Consider then u = 1. The resulting circuit is as
shown in Fig. 2. In this case, two separate, or
decoupled, circuits are clearly obtained, and the
corresponding Lagrangian dynamics formulation
can be carried out as follows.

Define J,(4.) and ¥i(gc) as the magnetic
co-energy and electric field energy of the circuit,
respectively. We denote by 9,(4c) the Rayleigh

®)

qc/C

P

Fig. 2. Boost converter circuit (u =1).
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dissipation cofunction of the circuit. These
quantities are readily found to be

. . 1
Ti(qu) = lLlI%.; Vi(gc) = i‘éqzc,

7

‘@1(qC)= %RqZCv g;‘h:E’ 97(16=0’ ( )

where %, and %, are the generalized forcing

functions associated with the coordinates ¢, and
gc, respectively.

Evidently, the EL equations associated with
these definitions immediately rederive (5), with
u=1, as can be verified by direct use of the
general equation (2), or (3), on the set of EL
parameters given in (7).

Consider now the case u=0. The resulting
circuit is as shown in Fig. 3. The corresponding
Lagrangian dynamics formulation is carried out
similarly to the case u = 1. That is, define Jo(q.)
and %(q.) as the magnetic co-energy and the
electric field energy of the circuit, respectively.
We denote by %(4.,qgc) the Rayleigh dissipa-
tion cofunction of the circuit. These quantities
are readily found to be

2
I = 5Lg%; Y =—gql
o(gu) = 1L4t;  Yo(qc) 2Cqu

Dn(qs 4c) = lR(qc - ‘iL)z,
g‘h = E’ ‘O}ch = 0’

®

where, as before, ¥, and %,, are the generalized
forcing functions associated with the coordinates
q. and qc, respectively.

Evidently, application of the general EL
equations (3)-(8) immediately rederives (5),
with u = 0, as can be easily verified.

The EL parameters of the two circuits,
generated by the different switch-position values,
result in identical magnetic co-energies, electric
field energies, and forcing functions. The
switching action merely changes the Rayleigh
dissipation cofunction between the values Py(q.)
and 9(G.,4c). Therefore, the dissipation
structure of the system is the only one directly
affected by the switch position function u.

Note that, according to the PWM switching
policy (6), on every sampling interval of period
T, the Rayleigh dissipation cofunction (q.) is

9c/C

= %ﬂ—; —lfx
T <

Fig. 3. Boost converter circuit (¢ =0).

’

valid over only a fraction of the sampling period
given by u(t), while the Rayleigh dissipation
cofunction @,(gy,q,) is valid a fraction of the
sampling period equal to (1 — u(t)).

There, are of course, a variety of ways in
which one could reasonably propose an average
value of the Rayleigh dissipation cofunction for a
circuit of the form (5), undergoing a switching
policy of the form (6). One possible way is to
propose the following set of EL parameters:

. . 1
Tu(g0) = L4t V@0 =5 g

9,40 do) = Rlic-A-wafs O

F4 =E, F,.=0.

Note that in the cases where u takes the
extreme saturation values pw=1 or 0, one
recovers, respectively, the dissipation cofunc-
tions 9,(4c) in (7) and 2o(4L, gc) in (2.8) from
the proposed average dissipation cofunction,
D,(gL,4.C), of equation (9). Indeed, such a
‘consistency’ condition is verified by noting that

@p.(q.Lv qC)|n=0 = %(qLa 4C)a
@}L(q.L9 q.C)I;L=1 = @I(qC)

Also, it is easy to see that the proposed
average Rayleigh dissipation cofunction satisfies
an important ‘intermediacy’ condition of the
form

min {%(qL9 q.C)’ @1(QC)} < @u(qL’ qC)
<max {%(qr, §c) 21(4c)}

for any u lying in the open interval (0, 1).

We note that the Lagrangian function
associated with the above-defined average EL
parameters is actually invariant with respect to
the switch position function. Nevertheless, to
keep the notation consistent, we denote it by

1
%= Tu(40) = Vulao) = Lal — 5008 (10)

One then proceeds, using the EL equations
(3), to obtain the differential equations defining
the average PWM model which corresponds to
the proposed average EL parameters (9). Such
equations are

g(ii_’;>_i%= T, g
r \dg 3 3q .

qL g gL a1
d(a%)_o%,_ i

—=k+ g,
dr\oge/  dqu dge ™€
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Evaluation of (11) results in the following
system of differential equations:

Lgr=(Q1-p)Rlgc— (1 - p)g ]+ E,
dc (12)

e ~R[gc— (1 — )],

which can be rewritten, after substitution of the
second equation of (12) into the first, as

Gu=-Q M)LC L’
(13)
. 1 .
4c=— Eéqc"' (1—p)go
Using z; = ¢, and z, = q/C one obtains
1 E
L=-(-wruty,
(14)
...(1 — )_1.. = s
2 M CZ1 RCZZ’

where we denote by z; and z, the average input
current and the average output capacitor voltage,
respectively, of the PWM regulated ‘boost’
converter. We establish this distinction with the
nonaveraged variables x; and x, so that the state
variables associated with the average PWM
model are not mistakenly confused with the
actual PWM regulated circuit variables.

Note that the proposed average dynamics (14)
coincides with the state average model de-
veloped by Middlebrook and Cuk (1976), and
with the infinite switching frequency model, or
Filippov average model, found in Sira-Ramirez
(1989) and Amran et al. (1991). To obtain the
average model (14), one simply replaces the
switch position function u in (5) by the duty ratio
function u, and the actual state variables x;, x,
by their averaged values z;, z,.

We have thus proven the
proposition.

following

Proposition 2.1. The state average model of the
‘boost” converter (see Middlebrook and Cuk,
1976), given by (14) is an EL system
corresponding to the set of average EL
parameters given by (9). These parameters are,
in turn, obtained by suitable modulation,
through the duty ratio function u of the EL
parameters, given by (7) and (8), which are
associated to each one of the intervening circuit
topologies arising from a particular value of the
switch position function.

For ease of reference we will be using the

.

following, more compact, matrix representation
of (14):

Dei+(1-p)fez+ Rez=,  (15)

where

i U I B

s = [8 1?R]; %= [5] '

2.2.3. An ideal circuit realization for the
average PWM model. It is easy to realize that the
average model (14) has a circuit-theoretic
interpretation by letting the quantity (1 — u)z; in
the first equation represent a controlled voltage
source, while also letting the quantity (1 — )z,
in the second equation represent a controlled
input current source. Figure 4 depicts the ideal
equivalent circuit describing the average PWM
model. In such a circuit, a quadripole connects
the ‘input’ and ‘output’ circuits, which effectively
replaces, in an average sense, the actual
switching device.

Consider the isolated quadripole constituted
by the ideal controlled sources, as shown in Fig.
5. Note that the (average) input power to the
quadripole, expressed as the product of the
average input current z; times the (reflected)
average input voltage (1 — p)z, is given by

Input voltage
—hy

(1= p)za. an

Input current

—~—
Pin = 4

On the other hand, the (average) output power
delivered by the quadripole, expressed as the
product of the average output current (1 —u)z,
times the output voltage z, is given by

Output current
ey

Po=(1- )z, z . (18

QOutput voltage

In other words, the quadripole is a lossless, ideal

E:- (1 'F)Zz a- #)21

Fig. 4. Equivalent circuit of the average PWM model of the
‘boost’ converter circuit.
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Z
—_—— & R 2%

+
+

(1-p)z, a-u)z

Fig. S. Ideal transformer representing the average PWM
switch position function.

(average) power transfering device satisfying
Pin =P out- (19)

The average input voltage to the quadripole
(1-pu)z, is amplified to the value z, at the
output, while the input current to the quadripole
z; is attenuated to the value (1—u)z; at the
output. The switching element has thus been
effectively replaced by an ideal transformer with
turn ratio parameter given by (1 — u).

2.2.4. Input—output and internal stability
properties. Given the results of Ortega et al
(1995) concerning EL systems, it is expected that
the averaged circuit dynamics (15) satisfies the
following energy balance equation:

1 .
H()-H©O)+— , f gi(r)dr= f Eq(1)dt,
——. RC?} S

Stored energy N — e d [————

Dissipated energy

where H()=3z"%z=9,+ ¥, is the total
energy of the average circuit model. This follows
trivially by taking the time derivative of H(f)
along the trajectories of (15) and noting the skew
symmetry of #;. The energy balance equation
above also reveals that the forces (1 — )z
appearing in (15) are workless, and proves the
passivity of the operator £ —4,.

We proceed to establish the relationship
between the equilibria of the average output
voltage and the average input current. To this
end assume a constant duty ratio function u = U.
It easily follows from the average PWM model
equations (14) that the corresponding stable
equilibrium values for the average input current,
denoted by I;, and the average output voltage,
denoted by V,, are given by

Supplied energy

E E

Id_(l—U)2R’ Vd—l_U. (20)
Henceforth, given a desired equilibrium value V4
for the output voltage, which corresponds to a
constant value of the duty ratio function
p=U=1-E/V,;, the unique corresponding
equilibrium value for the average input current is
given by

v, 1
I S V3 (21)

This means that if we desire to regulate z,
towards an equilibrium value V; which is known
to correspond to a steady state value U of the
duty ratio function u, then such a regulation can
be indirectly accomplished by stabilizing the
average input current z, towards the correspond-
ing equilibrium value I, computed from (21).

Now, consider the case where the average
output capacitor voltage z, is regarded as the
output of the average PWM model (14). A
straightforward elimination of z, from the set of
differential equations (14) leads to the following
nonlinear input-output differential represen-
tation:

o (e s - uy o £ ]
+=mr =)t A =)+ = -
o (RC RN Ryl AR - ruli

—(-was @)

The ‘zero dynamics’ at an equilibrium point
7, = V4 associated with this input-output rep-
resentation is obtained by letting Z,=0 and
Z,=0 (see Fliess, 1990). The resulting
differential equation describing the ‘remaining
dynamics’ of the duty ratio function u is simply
obtained as

. _R(-p)
=———"=[FE—-(1-u)Vy. 23
A== [E-(1-p)Vy (23)
The equilibrium points of (23) are given by
E
=1; =1-—. 24
e=1 pu V. (24)

The equilibrium value u=U=1-(E/V,) has
physical significance, provided V4> E. This fact
confirms the ‘amplifying’ features of the ‘boost’
converter. However, the phase-plane diagram of
equation (23), shown in Fig. 6, readily reveals
that this equilibrium point is unstable. We
conclude that the average PWM model of the
‘boost’ converter, with output represented by the
average capacitor voltage gz, is actually a
nonminimum phase system.

Consider now the output of the circuit to be
represented by the average input current z,. One

Fig. 6. Zero dynamics of ‘boost’ converter corresponding to
average output voltage.
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obtains the following differential input-output
representation for the average system:

5 1 H ) [ , 1 ]
ot o+ (- w)—
< (RC 1= ot | m e
E/1 m )
—|==+—}. (25
L(RC 1-p (25)
The ‘zero dynamics’ at an equilibrium point
7y =1y, associated with the input-output rep-
resentation (25), is obtained as
1 ==

fi=p e [(L= wPRl - E) (26)

The equilibrium points of (23) are given by

E E
=l; =1 =50 =1+ —-,
# # \/C;g # \JC;Q

@7)

The equilibrium value, u = U =1 — VE/RI,, has
physical significance provided that RI,, the
average steady state voltage across the load
resistor, satisfies RI;> E. This fact confirms,
once more, the ‘amplifying’ character of the
‘boost’ converter. The phase-plane diagram of
equation (26), shown in Fig. 7, reveals that this
equilibrium point is now locally stable. We
conclude that the average PWM model of the
‘boost’ converter, with output represented by the
average input inductor current y =gz, is a
minimum phase system.

2.3. The ‘buck-boost’ converter circuit

Consider then the switch-regulated ‘buck-
boost” converter circuit shown in Fig. 8. The
differential equations describing the circuit are
given by

. 1 E
X, =(1~u)zx2+uz,

) (28)
.X-2= -(1 _u) Exl —R_EVX2,

where x; and x, represent the input inductor
current and the output capacitor voltage
variables, respectively. The positive quantity E is

Fig. 7. Zero dynamics of ‘boost’ converter corresponding to
average output voltage.

’

Fig. 8. The ‘buck-boost’ converter circuit.

the constant value of the external voltage source.
The variable u is the switch position function,
acting as a control input, taking values in the
discrete set {0,1}. It is assumed that a PWM
regulation policy of the form (6) is available for
the determination of the switch position
function, as a function of time.

We summarize in the following proposition
the developments demonstrating that the aver-
age PWM model of a ‘buck-boost’ converter is a
EL system for a suitable set of average EL
parameters.

Proposition 2.2. The state average model of the
‘buck-boost’ converter (see Middlebrook and
Cuk, 1976) given by

] 1 E
Z=(-p)yatury
(29)

-7

. 1
Zzz_(l‘#)EZJ_RC

is a EL system corresponding to the following set
of average EL parameters:

1
J.(Gu) = 1Lq%; AR Z‘C'qzc,

9,(Gu, do) = WRlde+ (1 - wa s O

Fa=nrE #.=0,

obtained by suitable modulation, through the
duty ratio function u, of the EL parameters
associated with each one of the circuits arising
from a particular value of the switch position
function u € {0, 1}.

u=1:
. 1y 22 1,
Ji(gu) =:L41; Yi(go) = Z_C‘,Ck,
@1)
D(4) =3R4 Fy =E; Fo=0.
u=0
1
TG =3L4%; Vo(ge) = Z—C‘qzc
Do(dr> Gc) = 3R(GL + 4o)%
g;ng(); 972(’=0‘

(32)

Figure 9 depicts the equivalent circuit of the
average PWM regulated dynamics for the
‘buck-boost’ converter circuit.
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A _a
Z _J .
+ - e
pE (1-pz -z T R
— + C

Fig. 9. Equivalent circuit of the average PWM model of the
‘buck—boost’ converter circuit.

We will be using the following matrix
representation of (29):

DBgp? + (1 — ) Jfopz + Ropz = nss, (33)
where

[y cl An=li o)

Ftee = [g 171&]; %oe = [g]

2.3.1. Some additional facts. Similarly to the
‘boost’ converter case, one can easily establish
the nonminimum phase character of the average
model of the PWM regulated ‘buck-boost’
converter system when the output of the system
is taken as the average capacitor voltage z,.
When the output of the system is taken to be the
average input inductor current z,, the resulting
input-output system is seen to be locally
minimum phase (see Sira-Ramirez and
Lischinsky-Arenas, 1991).

Given a constant duty ratio function p = U, it
easily follows from the average PWM equations
(29) that the corresponding stable equilibrium
values for the average input current, denoted by
Lg, and the average output voltage, denoted by

V4, are given by
U E U

L [(1— U)Z] R "= (1— U)E' (33)
This means that, depending on the particular
value of the steady state duty ratio function U,
the ‘buck-boost’ converter can accomplish, in
steady state, either source voltage ‘amplification’
or ‘attenuation’, modulo a polarity inversion, at
the load.

It follows from (35) that, given a desired
equilibrium value V, for the output voltage,
which corresponds to a constant value U of the
duty ratio function u, then the unique
corresponding equilibrium value for the average
input current I, is given by

h= ‘R(lv—d if)s(k%"%) Ve (9)

Hence, if we want to regulate z, towards an
equilibrium value V;, which corresponds to a

steady state value U =V,/(V;— E) of the duty
ratio function p, then, such a regulation can be
indirectly accomplished by stabilizing the average
input current z, towards the corresponding
equilibrium value , computed from (36).

2.4. The ‘buck’ converter circuit

The ‘buck’ converter model is described by the
following set of differential equations, with
variables defined as before:

- __l + E
ST

(37
- —l __JA_
=M TR

The following proposition summarizes the EL
formulation of the average ‘buck’ converter
model.

Proposition 2.3. The state average model of the
‘buck’ converter (see Middlebrook and Cuk,
1976), given by

o1 L E
L= LZZ #L»
(38)
, 1 1
L=t T Rrc®

is an EL system corresponding to the following
set of average EL parameters:

. . 1

T =3L4L Vo) = 55496

. . . (39
2,(4u, 4c) = 3Rldc - gl )

Fh = kE; F=0,

obtained by suitable modulation, through the

duty ratio function u of the EL parameters

associated to each one of the circuits arising

from a particular value of the switch position

function u € {0, 1}.

u=1:

1
T(gL) = 3Ld3; Vi(go) = E‘C’qzc,

B(G0) = IR(dc - 4% (40)
F\ =E; F,.=0.
u=0:
. . 1
Io(Gr) = 3L4t; Volgc) = E,qzc,
(41)

(4, q4c) = IR(gc - 41.)2;
‘ggr_ = 0; g'?lc =0‘
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A matrix form for the average model of the
‘buck’ converter is given by

Doi + (ot Re)z = p%, (42)

[y ch A=) ol

o = [8 1?R]; &= [g]

where

43)

If the output of the converter is taken as the
average capacitor voltage, the input-output
representation exhibits no zero dynamics and it
is given by

E

1
Lt bt =4

RC LC LC (44)

The constant equilibrium points for a constant
duty ratio x4 = U are found to be

n=U;, z,=Vy=UE. (45)

If, on the other hand, the average inductor
current is taken as the output of the system, the
input-output representation results in

R
Lyt 4+

1 E /. 1
RC __'Zl~_<l"'+ u), (46)

LC L RC
which exhibits the following equilibrium point,
for a constant duty ratio of value U:

E
p=U 2=l=Ug. (47)

In this case, the zero dynamics turns out to be
asymptotically stable towards the unique equi-
librium point:

i gl %) “)

3. PASSIVITY BASED PWM CONTROLLERS FOR
DC-to-DC POWER CONVERTERS

3.1. Controller design: the ‘boost’ converter

3.1.1. Direct output voltage regulation.
Suppose it is desired to regulate directly the
output capacitor voltage to a constant value
Za = V4. Corresponding to this objective for the
output voltage z,, the required input current
may be represented by a function z,4(f), to be
determined later.

Consider then the error variables #,(t)=
21() — 214(t) and Z(t) = z5(t) — V4. We denote
the average state error vector by Z. Following
the passivity-based methodology, we want to

shape the closed-loop energy function to a
desired energy function:
Hy=132"%2 (49)
This choice is, as usual, motivated by the form of
the total energy function of the average system
model, which, as shown before, is given by
H=1"%:.
The average error vector dynamics is given by
Dp(Z + (1~ p)FeZ + RaZ
=% — (Ppiat+ (1 - p)Fszat RApze)- (50)
To ensure asymptotic stability, we also perform a
damping injection on (50) by defining the
following desired Rayleigh error dissipation term

By = %ET%BdZ = lifT(gtB + %13)5, (51)
where
R, 0
0 0

Adding the necessary expressions to both sides
of (50) we obtain

Do+ (1 - ) Fol + ReaZ =Y, (53)

gzm=[ ]; R, >0. (52)

where
W=~ (Dpiat+ (1 - ) Fazat Reza— Rin?).
(54)

The energy shaping plus damping injection
will be achieved if we can set W = 0. In this case,
the stabilization error dynamics would satisfy

To explain the rationale of the approach,
consider the behavior of the desired total energy
H,, the time derivative of which along the
solution of (55) results, for some strictly positive
constant a, in

Hy=—7"Rpe? < — %Hd <0 Vz#0, (56)

where a may be taken to be @ =min{R,, 1/R}
and g = max{L, C}.

We conclude that, if the error dynamics
coincides with (55), the stabilization error
behavior is asymptotically stable to zero, i.e.
% — 0 independently of .

Thus, in order to satisfy (55), one must
demand from (54) that

Dt t (1 - p)fezat Reza— RisZ =&. (57)
These conditions are explicitly written as
Lijg+(1-p)zaa— (21— 2R = E,
(58)

1
Cig—(1—puat R 0.
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The problem thus consists of, given a desired
constant output voltage value z,4=V,, finding a
bounded function z,4(¢) and a suitable duty ratio
function u such that (58) is satisfied. We proceed
to eliminate the variable z(r) from (58) as
follows. From the second equation in (58), one
obtains

za(t) = (59

R(1- M(t))

Substituting this expression into the first
equation in (58), one obtains, after some
algebraic manipulations, an expression for the
dynamical feedback duty ratio synthesizer of the
form

R(1—u)

K="y,

x[E—(l—,L)VﬁRl(z,—F ))]( 0)

This controller stabilizes z, and z, towards their
desired values z,4 and z,4, respectively. However,
controller (60) is, unfortunately, not feasible due
to its lack of stability. Indeed the ‘remaining’, or
zero, dynamics associated with the above
controller results in

u=R& WUE—(-uVi (6))

which coincides with the zero dynamics already
found in (23) and shown to be unstable around
its only physically meaningful equilibrium point.

3.1.2 Indirect output voltage regulation. The
previous section has shown that a direct output
voltage control scheme is unfeasible. In this
section we provide a feasible regulation alterna-
tive based on an indirect output capacitor voltage
control, achievable through the regulation of the
input current. Note that some other possible
alternatives include proposing a different error
energy function for the system. In this instance,
we have just chosen to explore the implications
of using the most natural energy function for the
system.

Suppose it is desired to regulate z) towards a

Fig. 10. ‘Buck’ converter circuit.

L 1z
- c o
" +
nE ~
o ‘C R

Fig. 11. Equivalent circuit of the average PWM model of the
‘buck’ converter circuit.

constant value z,4 = I;. In order to find a suitable
feedback controller for this task, one proceeds
now to eliminate the variable 2,4 from the set of
equations (58). Using the first equation in (58),
2,4(¢) is given by

E+ (21— L)R,

(1= p(r)

Substituting (62) in the second equation of (58),
one obtains, after some algebraic manipulations,

. (1-p) Y
o C[E+(z,—1d)R]{(1 wls
E+(Z| ld)Rl RC
R

2a(t) = (62)

BLle-a-waa}.
&

The ‘remaining’ dynamics associated with con-
troller (63) is obtained by letting z; and 2z,
coincide with their corresponding desired values.
Such dynamics is given by

po= RCE — {1 - wyRI, - E]. (64)
The zero dynamics (64) coincides with the zero
dynamics derived in (26), which was shown to be
locally stable around the only physically
meaningful equilibrium point. The indirect
controller (63) is, therefore, feasible.

We will now complete the proof that the
equilibrium point (2, 22, 1) = (Iy, Vo, U) of the
overall system, (14) and (63), is locally
asymptotically stable. To this end, we introduce
the following auxiliary variable:

_L(E+(@—I)R\Y _Vi
§_2( 1-n ) 2 65)

which is well defined for u in a neighborhood of

the equilibrium point u=U=1. It is easy to

show that ¢ satisfies the following linear
differential equation:

ViR,

= +—= = . 66

b= -2 tla—l) (66)

Recalling that 7, = z, — I;— 0, and is exponen-

tially fast, we conclude that £—0 as well. This

implies that z,4— V; locally, and in turn implies

that u > U.
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We have thus
proposition.

proven the following

Proposition 3.1. Given a desired constant value
V4> E for the output capacitor voltage of a
‘boost’ converter, the dynamically generated
duty ratio function (63), with I, given by (21),
locally asymptotically stabilizes the state trajec-
tories of the average PWM model (14) towards
the desired equilibrium point (I, Vy, U), with p
converging to a constant value g=U=1-
E/Vd'

3.1.3. Further remarks. The passivity-based
dynamical duty ratio synthesizer design is carried
out under the assumption that the average PWM
model (14) of the converter captures the
essential behavior of the actual switch-regulated
circuit described by (5). This assumption has
been shown to be only approximately valid due
to the fact that, in practice, infinite sampling
frequency and corresponding infinitely fast
switchings are impossible to achieve. However,
_ for sufficiently high sampling frequencies, feed-

back controllers designed on the basis of average
models can indeed be used to regulate the actual
switched converter, with rather satisfactory
results (see Kassakian et al., 1991). The scheme,
shown in Fig. 12 is based in this philosophy. The
underlying approach has been extensively used
for similar nonlinear dynamical feedback con-
trollers, and its validity has been justified both
from a theoretical viewpoint and through
extensive computer simulation results (see e.g.
Sira-Ramirez and Lischinsky-Arenas, 1991, and
references cited therein).

Two additional remarks are in order, regard-
ing the use of a feedback PWM scheme such as
the one shown in Fig. 12:

(i) The average-based duty ratio synthesizer
produces a computed duty ratio function.
As such, it is entirely possible that these
computed values exceed the physical
bounds of the required actual duty ratio
function, which is necessarily limited, to

1 i .—“‘!mul)

Limiter

the closed interval [0, 1]. For this reason,
a hard limiter must be used in conjunc-
tion with the derived dynamical feedback
regulator, as shown in Fig. 12. As a
consequence of this limitation, only local
asymptotic stability of the closed-loop
system may actually be guaranteed.
Large initial-state deviations may induce
destabilizing saturation effects, which
have not been accounted for in the
previous developments.

(ii) The duty ratio synthesizer (63) requires
the on-line values of the average PWM
circuit states z; and z,. These average
states can be approximately obtained by
low-pass filtering of the actual circuit
states x, and x,. Note, however, that in
the scheme presented in Fig. 12 the
actual circuit states x,; and x, are used for
feedback, rather than their averaged, or
filtered, versions z; and z,. It should be
pointed out then that, again, for large
sampling frequencies the difference bet-
ween using one or the other set of states
is entirely negligible, due to the underly-
ing low-pass filtering effects of the system
itself.

3.2. Controller design: the ‘buck-boost’
converter

Following exactly the same procedure as in the
previous case, one concludes that for the
‘buck-boost’ converter a direct regulation policy
of the output voltage is unfeasible due to
nonminimum phase phenomena. We thus sum-
marize in a proposition the dynamical feedback
regulation scheme for achieving indirect output
capacitor voltage regulation, towards a given
desired equilibrium value V,, through input
current stabilization towards a desired constant
value I;, computable in terms of V;, as given by
(36).

Proposition 3.2. Given a desired constant value
Vy for the output capacitor voltage of a

Nonlinear,
. | passivity-based

He(calculated)

synthesizer

dynamical duty ratio

Fig. 12. PWM feedback control scheme for indirect, passivity-based, output voltage regulation for DC-to-DC power converters.
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‘buck-boost’ converter, the dynamically gener-
ated duty ratio function given by

. 1-p { 2
p=— e - )
A= CIE+ (- LR A7)

_BE+ (@ - I)R, _R/,C

R 3 [LE + 2,1 - #)]}

(67)

locally asymptotically stabilizes the state trajec-
tories of the average PWM model (29) towards
the desired equilibrium point (I, Vy), with u
converging to a constant value given by
u=U=1-VE/RI,, with I, obtained from V,
from (36).

Note that the zero dynamics associated with
the controller (67) is given by
(I—-p)

b="gcp A= pYRI— pE},  (68)

which has three equilibrium points given by

E [[EV E

=1; =14+ -+ (——)+~-.
K R T AR AT T A A
Two of the equilibrium points (x =1, and the
one corresponding to the plus sign of the square
root) are unstable, while the remaining one,
which is the only physically significant one is

locally asymptotically stable.

3.3. Controller design: the ‘buck’ converter

The developments leading to a duty ratio
synthesizer for the ‘buck’ converter are similar to
those presented for the other converters. We
only point out that, unlike in the previous cases,
a direct output voltage regulation scheme is
feasible due to the fact that the ‘buck’ converter
exhibits no zero dynamics for such an output. In
this case, the duty ratio synthesizer turns out to
be static rather than dynamic. If, as before, we
denote by V, the desired output capacitor
voltage, the passivity-based controller may be
described as in the following proposition.

Proposition 3.3. Given a desired constant value
V,< E for the output capacitor voltage of a
‘buck’ converter, the statically generated duty
ratio function given by

_E__l_< _Ki>
F=ETER\""R (70)

locally asymptotically stabilizes the state traje-
cotries of the average PWM model (38) towards
the desired equilibrium point (I, V), with I
given by I;=V,/R while p converges to a
constant value given by u = U = V,/E.

’

It is easy to see, by substituting z, in terms of
Z, and 7,, that this controller is just a classical
‘proportional derivative’ controller.

The indirect output voltage regulation scheme
results in a dynamic controller with asymptoti-
cally stable zero dynamics. The details are not
presented.

4. SIMULATION RESULTS

Simulations were performed for the closed-
loop behavior of a ‘boost’ circuit regulated by
means of the passivity-based indirect PWM
controller (63). In order to test the effectiveness
and robustness of the proposed feedback
controller with respect to unmodeled parasitic
resistances and unmodeled realistic switching
devices, the following stochastically perturbed
version of a ‘boost’ converter circuit, taken from
the work of Czarkowski and Kazimierczuk
(1993), was used for the simulations:

1 R
X = —zr(u)—(l—u =

LRR+r) "
E+n Vr
+— =(1-uw)- 71
 t-a-0d, )
1
¥=(1-u)— R

R+r)C" T R+7)C™

where r(u)=r_turps+ (1 —u)Re+rc|R) n
is the resistance associated with the inductor; rps
is the resistance associated with the ON state of
the transistor used in the realization of the
switching element constituted by a transistor-
diode arrangement; Ry is the forward resistance
of the diode; r: is the resistance associated with
the output capacitor; and rc| R denotes the
resistance of a parallel arrangement of rc and R.
The voltage Vi represents a small constant
voltage drop associated with the conducting
phase of the diode. The signal 5, added to the
external source voltage, represents an external
stochastic perturbation input affecting the system
behavior.

Note that the perturbation input 7 is of the
‘unmatched’ type, ie. it enters the system
equations through an input channel vector field
given by [1/L 0]T which is not in the range
space of the control input channel, given by the
vector field

xps+ Re+rc|| R R Ve
e P T e S
L L(R+710) L
R
=X
(R+r)C’

The peak-to-peak magnitude of the noise was
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chosen to be approximately 20% of the value of
E. The circuit parameter values were taken to be
the following ‘typical’ values: C=20uF, R =
30Q, L=20mH, E=15V, nn=005Q, rc=
02Q, rs=01Q, Re=0.05Q, Vr=0.7V. The
sampling frequency for the PWM policy was set
at S5kHz. The duty ratio function is obtained
from a sampling process carried out on the
output u(r) of the smooth dynamical duty ratio
synthesizer (63). To avoid the use of low-pass
filters, instead of using the averaged state
variables z, and z, for feedback on the duty ratio
synthesizer, we used, as it is customarily done,
the actual PWM controlled states x; and x, on
the controller expressions. The desired ideal
average input inductor current was set to be
I;=3.125 A, with a steady-state duty ratio of
U =0.6. This corresponds to an ideal average
output voltage of z,=V,;=37.5V. Figure 13
shows the closed-loop state trajectories as well as
the duty ratio function and a realization of the
computer-generated stochastic perturbation sig-
nal 7.

As can be seen from the simulations, the
proposed dynamical feedback controller (63)
achieves the desired indirect stabilization of the
output voltage for the nonideal stochastically
perturbed model around the desired equilibrium’
value. The average steady-state errors, with
respect to the desired equilibrium values, range
from approximately 2.5% in the average
inductor current variable to 2.6% in the average
capacitor voltage variable. The ideal duty ratio is
achieved within less than 0.5% error. The
controller performance also exhibits a high
degree of robustness with respect to the external
stochastic perturbation inputs.

Inductor current
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15
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04 5 ‘
[ 0.005 0.01 0.015

) 0.005

Unknown load resistance variations generally
affect the behavior of the closed-loop perfor-
mance of the controlled converter. Simulations,
shown in Fig. 14, were performed to depict the
sensitivity of the regulated input current, the
output capacitor voltage, and the duty ratio with
respect to abrupt, but temporary, unmodeled
changes in the load resistance R. An unmodeled
sudden change in the load resistance was set to
80% of its nominal value. As can be seen from
the figures, the controller manages rapidly to
restore the desired steady-state conditions
immediately after the load perturbation disap-
pears. As expected, the state variable most
affected by such a perturbation is the output
voltage. Conversely, the duty ratio function is
barely affected by such sudden load changes.

An extension of the above presented con-
troller design method, which is also capable of
handling unknown but constant loads, has been
undertaken by the authors within the context of
nonlinear adaptive regulation. The reader can
find details in Sira-Ramirez et al. (1995).

5. CONCLUSIONS

Traditional state average models, or infinite
switching frequency models, of DC-to-DC power
converters were shown to be EL systems for a
suitable set of average EL parameters. The
derived average PWM models were also shown
to be interpretable in terms of ideal circuit
realizations, including internal controlled sources
and modulated external inputs.

Physically motivated dynamic feedback duty
ratio synthesizers were derived for the indirect
average output voltage stabilization of DC-to-

Capacitor voltage

_ uwafe#:a.*mmwmw,

% ocs 0ot 0015

Perturbation noise

001 0015

Fig. 13. Simulation results for performance evaluation of the indirect PWM controller in a realistic perturbed ‘boost’ converter.
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Fig. 14. Robustness evaluation of the indirect PWM controller in a realistic perturbed ‘boost’ converter.

DC power converters of the ‘boost’, ‘buck-
boost’, and ‘buck’ types. The dynamic feedback
controllers are based on the modification of the
total energy function of the average converter
circuit model. This procedure, together with the
possibilities of enhancing the dissipation struc-
ture of the average models through suitable
‘damping injections’, were shown to yield
asymptotically stable closed-loop behavior with
feasible locally asymptotically stable controllers.

Other useful connections of passivity-based
controllers with differential flatness (see Fliess et
al., 1992), associated with the average PWM
models of DC-to-DC power converters, remain
to be explored. Similarly, sliding-mode con-
trollers, based on passivity considerations,
remain to be developed for DC-to-DC power
converters.
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