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Abstract

A feedback regulation scheme, based on an off-line tra-
jectory planning, is proposed for the terminal descent
trajectory of a vertically controlled spacecraft attempt-
ing a soft landing maneuver on the surface of a planet
with no atmosphere. The approach is based on recog-
nizing that the vertically controlled spacecraft model is
“Liouvillian”, i.e., it has a defect regarding the flatness
property of the spacecraft mass variable. This fact con-
siderably facilitates the feedback controller design task
which results in a linear, time-varying, state feedback
regulator complementing an ideal open loop controller.
Simulation results demonstrating the robustness of the
approach are presented.

1 Introduction

The problem of soft landing on the surface of a planet
has received some attention in the control systems lit-
erature. Initial approaches considered an optimal con-
trol viewpoint. Fuel optimal and time optimal regula-
tion schemes were developed in an early contribution
by Meditch (1964), who also showed that both opti-
mal control problems are totally equivalent. Flemming
and Ritschel (1975) also provided further studies within
the optimal feedback control viewpoint. A tutorial re-
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view article was written by Cantoni and Finzi (1980).
Non-optimal control approaches, based on-discontinu-
ous feedback regulation techniques, were also given by
Sira-Ramirez (1990),(1992), where sliding mode con-
trollers and smoothed dynamical pulse width modula-
tion controllers were derived.

In this article, a feedback regulation schemie is devel-
oped which allows for the efficient regulation of a termi-
nal descent maneuver of a vertically controlled space-
craft. The approach is based on an off-line trajec-
tory planning which exploits the fact that the verti-
cally controlled spacecraft model is “Liouvillian”, i.e.,
it exhibits a defect regarding the flatness of the total
spacecraft mass variable. In fact, the spacecraft height
position dynamics is shown to satisfy a scalar linear
time-varying differential equation whose defining pa-
rameter (i.e., eigenvalue) is constituted by a differen-
tial function of the flat variable. In other words, the
spacecraft position dynamics can be expressed in terms
of quadratures of the flat output and of a finite number
of its time derivatives. This fact considerably facili-
tates the feedback controller design task by allowing
an off-line computation of the ideal open loop control
which regulates the spacecraft towards a constant hov-
ering equilibrium position. As usual, from such a smail
height hovering position the final touchdown maneuver
can be safely accomplished with a shut-off of the main
thruster. The approach therefore results in a linear,
time varying, state feedback regulator complementing
the ideal, off-line computed, open loop controller.

Differential flatness constitutes a far reaching struc-
tural property of a large class of nonlinear systems.
The flatness property trivializes the controller design
task, as differentially flat systems have been shown to
be equivalent to linear systems, modulo endogenous
feedbach. The concept and its many interesting appli-
cations, have been introduced and developed by Prof.
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Michel Fliess and his co-workers (1992), (1993}, (1995),
(1996) in a series of remarkable articles and tutorial ex-
positions. In spite of their common occurence in real
life systems, flatness is not present in some interest-
ing examples. For instance, the well studied “ball and
beam” mechanical system is not flat. The Kapitsa pen-
dulum and some other mechanical systems, such as sev-
eral real life, and toy, helicopter models are not differ-
entially flat either. The state space average model of
the famous Cuk converter is not differentially flat and
neither is the discontinuous model of the Series Res-
onant Converter. The lack of flatness of a system is
addressed as the defect (see Fliess et al, 1993; 1995).
Interestingly enough, average models of some of these
non flat systems turn out to be flat. The dynamical
model of the vertically controlled spacecraft. treated in
this article, is not differentially flat.

Liouvillian systems constitute the simplest extension of
differentially flat systems into the area of systems which
are not linearizable by means of endogenous feedback.
The class of Liouvillian systems constitutes a subclass
of non-flat systems with an identifiable flat subsystem
of maximal dimension i.e., they are nonflat systems of
lowest defect. A nonflat system is said to be Liouvil-
lian, or integrable by gquadratures, if the variables not
belonging to the flat subsystem can be expressed as el-
ementary integrations of the flat outputs and a finite
number of their time derivatives. This class of systems
has been recently introduced by Chelouah (1997), from
the perspective of Differential Galois theory in the con-
text of Piccard-Vessiot extensions of differentially flat
fields. The idea has also been shown to have inter-
esting implications on finitely discretizable nonlinear
systems, as inferred from the work of Chelouah and
Petitot (1995).

Section 2 is devoted to present the vertically controlled
spacecraft model and the corresponding analysis de-
picting the difficulties inherent in the regulation of such
a system. In this section we also demonstrate the Liou-
villian character of such a controlled system. Section 3
derives the feedback control schemé and proposes the
linearization-based feedback regulator accomplishing 2
smooth landing maneuver stably guiding the spacecraft
towards the final hovering position. Section 4 presents
some simulation results testing the robustness of the
proposed controller.

2 A Landing Model for a Vertically Controlled
Spacecraft

2.1 A non-differentially flat system

Consider the nonlinear model describing the motion
and mass behaviour, of a thrust controlled vehicle at-
tempting a vertically regulated landing on the surface
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of a planet of constant gravity acceleration g and negli-
gible atmospheric resistance (see Meditch, 1964; Flem-
ming and Rischel; 1975; Cantoni and Finzi 1980. See
also the interesting discussion by Cellier et al, 1996).

il = I
i = g
2 g Za
i3 = —ou (2.1)

where z, is the position (height) on the vertical axis,
positively oriented downwards (i.e.,, z; < 0 for actual
positive height), z2 is the downwards velocity and z;
represents the combined mass of the vehicle and the
residual fuel (See Fig. 1). The control input is repre-
sented by the controlled rate of ejection per unit time,
denoted by u. The parameter o is the relative ejec-
tion velocity. The constant a is a positive parameter
such that the product oo is the maximum thrust of
the braking engine. The control input u is restricted
to take values on the interval [0,1). This means that
the spacecraft cannot accelerate towards the surface of
the planet and the maximum downward acceleration is
represented by the free fall condition u =0.

x <0
@
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x=0
ca
Figure 1: A vertically controlled spacecraft.

It is quite easy to show that the above system is not lin-
earizable by means of static state feedback and hence,
according to the results of Charlet et o (1991), it is
not linearizable by means of dynamical state feedback
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either. As a result, the system is not differentially flat
(Fliess al, 1995).

Indeed, consider the following locally invertible state
coordinate transformation, valid away from the singu-
larity line 73 =0,

r = z
zZy = I
— I = n
22 = I 1 zy - 23
23 — z9—calnzg T3 = exp( )
a

The transformed system clearly exhibits an uncontrol-
lable coordinate given by z3.

L =
i3y = g—owexp (230;21) u

2.2 The soft landing spacecraft as a Liouvillian
system

The system (2.1) has a defect. In fact, the largest flat
subsystem is represented by the variable z3.

The flat output of the larges: flat subsystem of the
vertically controlled spacecraft is, therefore, given by
the variable mass coordinate z3, denoted by F. The
height variable z;, that we denote by W, and the down-
wards veloaity z;, represent the non-flat outputs. How-
ever, the height coordinate W may be represented by a

quadrature of a differential function of the flat output
F.

The following integro-differential parametrization is
readily obtained from the system equations (2.1), and
the flatness of the mass variable F.

I3

W

I

2 (2.4)
The system is Liouvillian since the non-flat output W
can be expressed in terms of quadratures of a differen-
tia! function of F, specifically, a function involving F'
and F. Notice, however, that in this particular case,
the fat variable F can also be obtained by an elemen-
tary quadrature of the non-flat variable W

F= l(y—ﬁ") F

2.3 Analysis of the differential-integral parame-
trization

The preceeding differential-integral parametrization
(2.4) contains useful information regarding the rela-
tions between the possible static equilibrium values for

2
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some of the variables and it also contains the properties
of the system variables.

For instance, if W = Wis a given nonzero constant,
which is the case of a hovering condition above the
ground, then W = W =0 and from (2.4), the vari-
able F is exponentially asymptotically stable to zero
with eigenvalue —g/a < 0. This means that the space-
craft consumes all the fuel mass, and its own “dead”
mass too!, in order to keep the constant equilibrium
condition of the height variable W. The system does
not exhibit a physically meaningful equilibrium point
for the flat variable F. when the non-flat output W is
held constant with the descent velocity being identi-
cally zero.

A free fall condition is given by W = ¢. This implies
that F =0 i.e., the spacecraft mass remains constant,
and the control input is u =0 as read from (2.4). On
the other hand, notice that thie gravity acceleration g is
necessarily larger than iV’ in a controlled descent. Oth-
erwise, the spacecraft increeses its mass which is phisi-
cally impossible. For persistently controlled descents
(u(t) # 0 on any open interval of time} one may even
assume that the quantity. — (y — W (t}) /a, is bounded
away from zero and that it is sinaller than a strictly neg-
ative constant —pu. As a result, the iass variable evo-
lution F(t) is strictly decreasing, and, moreover, from
linear systems theory resuits {sce Chapter 7 of Callier
and Desoer, 1991), it is czponentiully asymptotically
stable to zero. Notice, however, that, physically speak-
ing, much hefore F(t) is close to zero, the fuel mass has
been completely depleted and the spacecraft mass be-
cornes constant. ‘Thus, F(t) has a physical lower bound
represented by the “dead mass” of the spacecraft.

3 A Feedback Coutroller based on Off-line
Trajectory Planning and Flatness

3.1 Trajectory planning and the open loop con-
troller

We assume that the spacecraft is initially located at
a certain hovering height, W {ty), in a ianding site ex-
ploration maneuver. Qur control problem consists in
achieving a controlled descent that softly brings the
spacecrafi fromn the initial height W(t) = Wo to a
smali final height W(T) = W < C. in a finite amount
of time T — tg. The contro! input should not saturate
to any of its extremal values, 0 or 1, since this means
either free fall or an undesired vertical ascent moving
the spacecraft away from the rarget equilibrium posi-
tion. The initial mass of the spacecraft. at the instant
to. is assumed to be known and given by F(to) = Fo.

We propose a suitable planned trajectory for the non-
flat output W, which we denote by 1" (t) satisfying the
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initial and final conditions, W~ (ty) = Wy and W*(T")
Wr and our previous assumption —(g —W*(t))/a <
—p. This may be achieved by specifying a suitable, suf-
ficiently smooth, polynomial spline function y(t, to, )
satisfying the conditions

’

a7
Wlto,to, T) = 0 5 ¥t t,Tleme
7=1,2,..finite

d
‘b(TvtOyT) =1 1 d—ti”(,(t’to'T)":T
i=1,2,..finite
<—¢(t’t°;ﬂ_g> <—p VEE[to,T] (3.1)

The planned trajectory (3.1) imposes a finite number
of initial and final time derivatives of the prescribed
“polynomial spline” y(t,t5, T'). These conditions guar-
antee a sufficiently smooth departure from the initial
hovering equilibrium and a sufficiently smooth arrival
at the final hovering position. The required planned
trajectory would then be given by,

W (t) = Fo+ ¢(t, 1, T) (Wr — W) (32)

The planned trajectory (3.2) is used in solving the fol-
lowing linear time-varying ordinary differential equa-
tion for the flat mass trajectory F*(t)

F)=—= (9 -W'0) F'() i Fo)=F (3.3)

The solution of (3.2) is next used in the off-line com-
putation of the ideal (open-loop) control input u(t)
achieving the desired height transfer under ideal con-
ditions. The open loop control, according to (2.4), is
given by

wvO=—- (s-W @) PO (39

3.2 A feedback controller based on approximate
linearization

Evidently the open loop controller (3.4) cannot be used
alone in an actual descent maneuver due to its lack
of robustness with respect to initial and on-line per-
turbations. The traditional solution idea is then to
compensate for the small deviations around the ideal
trajectories F°(t), W"(t). This is accomplished on the
basis of linear (time-varying) feedback computed from
an approximately linearized model.

We define, 215 = z, — W*(t), 25 = 1, — W*(¢t) and
z33 = z3 — F*(t). The incremental control input is
defined by the relation u = u"(t) +u;.
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A Jacobian linearization of the system (2.1), around
the planned trajectories, is given by

Ty = zy

R g— W‘(t) oa

s ( () ) e (F-(t)) “

T3 = —oug (3.5)

A suitable linear time-varying feedback controller for
the linearized system (3.5) would be given by

F-(t) [ (9}_7“(;)(:)) Tag+ 2(wnTas

oo
+wlzys+ /\Iad]

Usg =

(3.6)

where ¢ and w, and X are positive design constants
representing the positive damping coefficient and the
natural frequency of the time-invariant closed loop lin-
earized dynamics of the incremental height and velocity
variables.

The closed loop systern is then given by

Tis = I

Tys = —20wnTys— wizu — Az

. 1 5 e

i = —= (A0 9= W () z3s

- [F 0")} (2ungis +wizis)  (37)
The incremental variables z,5 and z; are the state
variables of a time-invariant linear system with eigen-
values placed at will in the open left portion of the
complex plane. This system is excited by the state
variable z35, which we may show is an £, signal which
converges to zero. This implies that z,5; and 125 are
asymptotically stable to zero. In order to show that z34
is an £, signal we proceed as follows. According to the
assumption that —(9 —W=(t))/a < —pu, and the fact
that X is a positive constant, it follows that the quantity
—(AF*(t) + g —W"(t))/a is also strictly smaller than
—u <0, for all t. Since the quantity F*{t) is exponen-
tially stable to zero, the second summand in the last of
Eqn. (3.7) represents a forcing input signal which de-
cays to zero as t =+ oco. It follows from linear systems
theory (Callier and Desoer, 1991), that the incremental
variable z34 is an £, signal which is also asymptotically
stable to zero. So, in fact, the linear system describing
the linearized flat subsystem {z,4,z3;) is excited by an
L, signal which decays to zero. The linearized closed
loop system (3.7) is then asymptotically stable to zero
for any given set of incremental initial conditions.

The proposed feedback controiler is given by

u = u'(t)+ust)
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(79 —W ) (F™(£) + 236)
aa
.-

¢ ;
+% [2wnzas + wiz1s + Azas)

(3.8)

4 Simulation Results

Simulations were performed to test the effectiveness,
and robustness, of the proposed feedback regulation
scheme (3.8).

We prescribed the planned trajectory W*(t), for the
non-flat output z;, by means of the following polyno-
mial spline,

W= (t) = Wo +(t, to, T)(Wr — W) (4.1)
with
— t—to\* t —to
v = () [- (r=%)
t—to\? (t—to\? t—io \*
+"(T—zo) o \T—tg) pil (T—to)
t—to\*®
—re(7=%) ] “2
with
= 252, rp,=1050; r; =1800; ry =1575;
rs =700 ; re =126 (4.3)
The initial surveying hovering height was set to be

Wo -700 m and the final hovering equilibrium
Wr —1 m. The prescribed trajectory W*(t) has
its first four time derivatives equal to zero at the ini-
tial time t =5 and its first five time derivatives equal
to zero at the final time t = T. This guarantees a
landing maneuver with a sufficiently smooth departure
and arrival features. The initial mass was set to be
Fo = 1500 Kg. The parameters defining the system
model were set to be

c=50Kg/s ; a=200m/s ; g=163m/s’

Figure 2 displays the results of the off-line computa-
tions represented by the solution of the differential Eqn.
(3.3) for the flat mass variable F*(¢) and the calcula-
tion of the open loop control. The ideal non-flat output
trajectory W*(t), together with the computed nominal
mass trajectory F*(t), in turn allows for the computa-
tion of the ideal open loop control policy u*(t) from the
expression (3.4). The time evolution of all these ideal
descent maneuver variable is shown in Fig. 2, along
with the corresponding ideal vertical velocity W*(t)
and ideal vertical acceleration W*(¢).
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Figure 2: Off-line trajectory planning

The controller parameters were set so as to obtain real
closed loop eigenvalues of the controlled system

(=1; wa=04; 2=08

Figure 3 depicts the performance of the feedback con-
trol policy (3.8) when significant initial setting errors
of the initial surveying hovering height are included.
As depicted in the simulations, the controller manages
to reset the spacecraft position and downward velocity
to the prescribed initial values of the planned landing
maneuver.

5 Conclusions

A trajectory planning approach, has been proposed for
the feedback regulation of a soft landing maneuver in a
partially differentially flat vertically controlied space-
craft system. The approach is allowed by the Liou-
villian character of the controlled model. This feature
allows for an off-line computation of all relevant signals
required for the trajectory planning control scheme.
The off-line computations include the calculation of the
non flat variable evolution which: iz in correspondance
with the given flat output traj-ctory. This requires
the solution of a linear time-var:iug differential equa-
tion with appropriate initial data. The off-line compu-
tations also include that calculazion of the open loop
control input signal in terms of ti:¢ planned flat output
trajectory and the computed non-flat variable trajec-
tory, represented by the spacecraft height. The open
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Figure 3: Closed loop performance of the off-line com-
puted plus lincarization-based controller.

loop control would perform a smooth descent under
ideal, unperturbed, flight conditions and exact initial
settings. The proposed feedbak controller uses the off-
line computed open loop control signal complemented
with a lincarization based feedback controller piovid-
ing the necessary on-line correstion maneuvers. The
incremental control input policy, which is just a propor-
tional derivative feedback controller with time-varying
compensation terms, was shown to asymprotically sta-
bilize the resulting linearized model desciibing the de-
viations from the off-line computed ideai descent tra-
jectory. The performance of the controller was satisfac-
torily tested using digital computer simuiations which
included initial errors with respect to the planned tra-
jectory initial setting values.

Several extensions are possible regarding the proposed
approach. The first one would be to include a more
general spacecraft inodel considering lateral and for-
ward motions over the landing horizontal plane. An-
other possibility is :epresented by suitably corabining
the presented approach: with an optimal path scheme
guided by an optimal fuel expenditure, or equivalently
by a minimum time descent, requirement.
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