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Abstract

In this paper we present an experimental comparative study of five controllers for boost dc-to—dc converters
tecently reported in the control literature. The controllers are obtained using differents approaches and
assumptions on the converter model. They all enjoy some provable stability properties, which are briefly
recalled iﬁ the paper. To carry out the experiments we constructed a low cost electronic card, which
captures the essential features of a commercial product, but with all the sensors required to monitot the
behaviour of the system. The algorithms are compared with respect to ease of implementation, in particular
their sensitivity to the tuning parameters, and closed-loop performance. The latter is evaluated with the
standard criteria of steady-state and transient behaviour, and disturbance attenuation. Motivated by the
experimental evidence we propose several modifications to the basic schemes, for some of them we establish

some new theoretical results.

A control theorist’s first instinct in the face of a new problem is to find a way fo use the tools he knows,
rather that a commitment to understand the underlying phenomenon. This is not the failure of individuals
but the failure of our profession to foster the development of experimental control science. In a way, we have

become the prisoners of our rich inheritance and past successes

Y. C. Ho (1982)

%This work was supported in part by the Consejo Nacional de Ciencia y Tecnologia of Mexico.



1 Introduction

The regulation of switched power converters is a very active area of research both in power electronics
and automatic control theory. A typical example of this kind of devices, that captures the essence of the
problem, is the boost DC-DC converter. This circuit is described by a bilinear second order model with
a binary input. The control task is further complicated by the fact that, with respect to the output to
be regulated, the model is nonminimum phase. Boost converters are usually regulated with simple linear
lead lag cornpensators designed using the averaged linear approximation of the model. There is an obvious
hard constraint on the achievable performance of this class of controllers, and it is just natural to ask if
performance can be improved with nonlinear control. Many theoretical papers in the nonlinear control
literature have been devoted to this problem recently. For must of these algorithms we can establish some
stability properties. However, it is difficult to assess the merits and drawbacks of these schemes, and in
particular the potential performance improvement with respect to the linear designs, based solely on the
theoretical analysis.

This paper summarizes the results of an experimental comparison of nonlinear control algorithms on
a DC-DC power converter of the boost type. We compare five algorithms, including the linear design,
with respect to their ease of implementation and their closed—loop performance. For all these algorithms
local asymptotic stability of the desired equilibrium is insured, The motivation of the present study is not
to illustrate the validity of these theoretical results, but to test their performance when confronted with
situations not predicted by the theory. The behaviour of the schemes is compared with the following basic
criteria: transient and steady state response to steps and sinusoidal references, attenuation of disturbances
in the power supply and sensitivity to unknown loads. Particular emphasis is placed throughout the paper
on the flexibility provided by the tuning parameters to shape the responses. Eventhough this issue is not
always appreciated in theoretical studies, we have found it of prime importance in experimentation.

The rest of the paper is organized as follows: in section 2 we introduce the model of the boost circuit.
In section 3 we present, the five differents strategies to be studied. Their adaptive versions, when applicable,
are given in section 4. In section 5 we give a brief description of the experimental set-up. In section 6 we
present the experimental results. We finish this article with cur conclusions in section 7.

2 Switch-regulated boost converter

In this section we first give the boost converter circuit with its exact and approximate descriptions. Then,
we present some system—theorctic properties of thesc models which are exploited in the control designs.

2.1 Exact and averaged model
Throughout the paper we consider the switch-regulated “boost” converter circuit of figure 1.

L
x u=0 %,

N <

R+AR

us=1

m
I
hY!

Figure 1: Switch-regulated Boost circuit

The differential equations describing the circuit are given by
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where z; and z3 represcnt, respectively, the input inductor current and the output capacitor voltage vari-
ables; E > 0 represents the nominal constant value of the external voltage source and w is an unknown
(time varying) disturbance, which satisfies jw| < E; R reptesents the nominal constant value of the output
resistance and AR reflects the parametric uncertainty; u, which takes values in the discrete set {0,1}, de-
notes the switch position function, and acts as a control input. The regulated output is 2 which should be
driven to some constant desired value Vy > E.

The control laws that we consider are classified into two groups depending on whether they genetate
directly the switching signal u, or they require an auxiliary Pulse Width Modulation (PWM) circuit to
determine the switch position. In the latter case the PWM policy is specified as follows,

w(t) = {1 for t <t <itp+ plte)T

0 for &+ p(ih)T <t<ty +T

where t; represents a sampling instant defined by ¢x41 = & + T, k¥ = 0,1, .. ; the parameter T > 0 is the
fixed sampling period, also called the duty cycle. The duty ratio function, x(-), ranging on the closed interval
[0,1}, is now the control input to the PWM device.

While the first class of controllers directly proceeds from the exact (hybrid) description (1), the control
algorithms that use a PWM policy are designed based on an approximate (continuous—time) averaged model
[9], [13], which is given by

. 1 E

znn = —(1-p) AL + —Zf-

. 1 1

= (1-p) 621 - mzz (2)

where we denote by z; and z3 the average input current and the average output capacitor voltage, respectively.
As discussed in [13] this model accurately describes the behaviour of the converter provided the switching 1s
sufficiently fast and the capacitor voltage is bounded away from zero, i.e., #2 > ¢ > 0. Notice that the only
difference between the two models is that now u is a continuous, and not a binary, signal. i

For ease of reference we will be using the following, more compact, matrix representation of the averaged
model {2), '

Di—(1—p)Jz+Rz=¢& (3)
where L0 0 0 0 E
= . T= el I . g | BEFw
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With the exception of the section on experimental results, throughout the paper we consider only the
nominal model, hence we take AR =0, w = 0.

2.2 Control properties

Control of the boost converter is a challenging problem because, besides being a bilinear system, —-with a
binary input in its exact description, or a saturated one in the averaged model-, it is also a non—minimum
phase gystem with respect to the output to be controlled [13]. The existence of unstable zero dynamics puts
a hard constraint on the achievable performance [3], a fact which is well known in the power electronics
community {6]. It also considerably complicates the task of designing a nonlinear controller, since must
existing techniques rely (in one way or another) on stable invertibility of the plant.

Fortunately, the non—-minimum phase obstacle can be overcomed noting that, with respect to the inductor
current, it is a minimum-phase system, and that there is a one-to-one correspondence between the output
voltage and the inductor current equilibria. The voltage is then indirectly controlled via regulation of
the current. An important drawback of this approach, that was observed in the experiments, is the high
sensitivity to the circuit parameters, in particular to the load resistance. Another fundamental property of
the system that is exploited by some of the controllers is that (as expected) the circuit defines a passive
mapping from the input voltage E to the inductor current z,. Roughly speaking, this feature is used in
passivity—based schemes to design a controller that preserves passiviiy in closed-loop. Eventhough all these
properties have already been reported in, e.g., [13], we repeat them here for completeness.



Property ¥ (Uniqueness of the equiibrium point)
For a constant duty ratio g = @I € (0, 1), the steady state values of the average mput current Z; and
average output voltage 72 of (2) are related by

7
T = = ;]
\= 22 (5)
Consequently, given a desired value Vy for the average output voltage then the corresponding average
input current may be uniquely determined.
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This property follows inmediately from the analysis of the equilibrium point of the averaged model (2),
which is readily obtained as,
- _ E . - _ E 5
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Notice that, since 7T < 1, the average steady-state output voltage Z; exceeds the value of the external
input source E, revealing the “step—up” character of the circuit.

Property 2 (Nonminimum phasedness) :
The zero dynamics of {2) with output z; are unstable while they are (locally) stable if we take 2; as
the output.

fbao

To prove this fact, consider first the case where the average output capacitor voltage zz2 is regarded as
the output of the average PWM model (2). A straightforward elimination of z; from the set of differential
equations (2) leads to the following nonlinear input—output differential representation,

bt (motil) at g |0 s ] aza-n £ G

The “zero dynamics” at an equilibrium point 73 = Vj, associated with this input—output representation,
is obtained by letting z; = 0 and 73 = 0 (see Fliess [2]). The resulting differential equation describing the
“remaining dynamics” of the duty ratio function g is simply obtained as

R(1 - p)?

p=—gyE-(1-mVd (8)
The equilibrium points of (8) are given by
— . w1 E
F=1; B=l-g (9

with the latter being the only physically relevant. The phase diagram of equation (8), shown in figure 2,
readily reveals that this equilibrium point is unstable. We conclude that the average PWM model of the
boost converter, with output represented by the average capacitor voltage 23, is actually a nonminimum
phase systern.

Consider now as output the average input current, z;. One obtains the following differeatial input—output
representation for the average system

L, Y, 1, B[,
at (et rhs) o p)LC]zl-L(RC+1_P (10)

The “zero dynamics” at an equilibrium point 2, = Iy, associated with the input-output represcntation
(10), is obtained as,

= ;TE [(1 - p)?RI; - E] (11)
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Figure 2: Zero dynamics phase diagram a) Non—minimum phase behaviour, b} Minimum phase behaviour

The equilibrium points of (8) are given by

[ E }E
u=1 ; p=1+4 R‘E, p=1- -R_Ia‘ (12)

Again, the latter is the only physically significant point. The phase diagram of equation (11}, shown in figure
2, reveals that this equilibrium point is now locally stable. We conclude that the average PWM model of
the boost converter, with output represented by the average input inductor current y = 2, is a minimum
phase system.

We conclude this subsection with the important, though not unexpected, observation that the averaged
circuit dynamics (3) defines a passive operator. ‘

Property 3 (Passivity)
The boost converter model (3) defines a passive operator E — z1.

ooa

To establish this fact consider the total energy of the average circuit model
1
H=3Dr=Tat Vs (13)
with 7, = }Lz? and Y, = 1C%} the magnetic co-energy and electric energy, respectively. Then, take the

time derivative of H along the trajectories of (3), notice the skew-symmetry of 7, and integrate back to get
the energy balance equation

H{t) - H(0}) + _Il-—lfo 2(r) dr = izl(f)E dr

]
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This equation reveals that the “forces” (1 — u)Jz, appearing in (3), are workless. Notice that the control
action only “transfers” the energy between the inductance and the capacitance, hence it does not affect the
energy balance.

3 Control laws

In this subsection wé present the five control laws that will be compared in this paper. The first one is a
simple statefeedback pole placement scheme based on the first order approximation of the model, which
(in the form of lead-lag circuit) is the industry standard [6). The other schemes are nonlinear and rely on
linearization [11], passivization [13], sliding modes [12] and a combination of sliding modes and passivity



{14]. In the absence of external disturbances and parameter uncertainty, i.e., when w =0, AR = 0, they all
achicve (local) asymptotic stabilization, that is, they insure that for suitable initial conditions z; — Vy with
internal stability. We refer the reader to these references for further details on the schemes.

As explained above they are divided into two groups depending on whether they use or not an auxiliary
PWM circuit to generate the control signal. This means also that for the control design, they use the
continuous (averaged) or the switched (exact) model, respectively. In the lack of a better terminology we
use these qualifiers to classify them below.

3.1 Continuous control laws

¢ Linear Averaged Controller (LAC)

This controller is based on the linearization of the averaged model (2) around an equilibrium point (see
[16] for more details). Given a desired output volage z3 = Vy the corresponding Z; and f can be uniquely
obtained from (5) and (6) as ]
7= Vi : E
<y = RE '

Defining the following error variables

we write the linearized model as

where A and B are given by

Some simple calculations show that the pair (A, B) is controllable. Hence, the poles of (4 — BK) can be
located arbitrarily with a suitable choice of the state feedback gains K = [k; ko]

Now, taking the averaged error voltage as the output we obtain the following transfer function

— Nl(s) = KZ(s—Zl)
D(s)  (s—Pi)(s—P2)

H{s) (15)

As expected from the discussion of section 2.2 and the commutativity of the operations of linearization
and zero dynamics extraction [5], the lincar system has a right hand plane {thp) zero. The latter is given by

RE?

ZI:L—V?

while the two stable poles are located in

1 / E2R*C
e - — 1
P12 2RC(I:l: 1—-4 VIL ) (18)

The system will display an initial undershoot because it has an odd number of real open rhp zeros [8].

If we now take instead as output the averaged error current #;, then we obtain a transfer function as in
(15) but with a left half plane zero located in

_Z
RC

This fact justifies the common practice of using the current to compute the control law for this system,
usually called currert or indirect control.

Z =



o Fcedback Linearizing Controller (FLC)

In [11] a nonlinear (static state feedback) controller that linearizes the input-output behaviour of the
system, with output the circuit total energy (13), was proposed as follows.

1 2 a;  ayC a,L E?
v (me -5+ 5 ) d+ (e n)nt o)

where aj, az > 0 are the design parameters, and

v L
Hy:= T“(C+ R—zﬁvf). (18)

More precisely, it is shown in [11], that the converters total energy (13) evaluated along the trajectories
of the closed-loop system (2}, (17), (18) satisfies the linear equation

ﬁ-}— alﬂ' +azH =agsHy (19)

Notice that H is the energy level required to ensure that as H — H,y we have z3 — V4, as desired. Since the
dynamics is now linear, the convergence rate can be fixed arbitrarily with a suitable choice of the controller
parameters a;, az.

The advantage of having a linear closed—loop dynamics, expressed in some physically meaningful variables,
can hardly be overestimated. It allows us to easily predict the effect of the tuning parameters and simplify
the controller commissioning. However, as will be shown by our experiments, the existence of unmodelled
nonlinearities, and in particular input saturation, limits the validity of these predictions.

¢ Passivity-Based Controller (PBC)

In [13] the following (nonlinear dynamic) controller that preserves passivity of the closed loop was pro-

posed
_ 1 Vi
p=- [ (a- 2] (20)
where the controller dynamics is given by
. 1 Vi Vi
de:_FC-{zu—F;[E*—RI (21—#&)]}' z24(0) > 0 (21)

where R; > 0 is a design parameter.
The system (2) in closed loop with the controller (20), (21) is described by

DPi—(1-p)Ji4+RaZF=0 ‘ 22)
where 7 = z — [%%.2-, 224]7 and
R, 0
me=[ 4]

Looking now at the quadratic function Vy := %ZT'DZ, whose derivative satisfies

. min{Ry, +

Vd=-2[%1 %]Eg—an, a::#‘;’g;—}O (23)
we see that R; injects the damping required for asymptotic stability, and that the convergence rate of 7
to zero is improved by pumping up R;. From these observations one might be tempted to try a high-gain
design, which a more careful analysis (and our experiments) reveals not to be a good idea. To see this notice
that 75 — 0 does not imply that 2z — Vi as desired, unless z94 — Vy as well. To study the behaviour of the
latter consider the signal n := 3(22, — V#), which satisfies

2
, RCH=-2n+ R‘Pj,/" 2] (24)
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This equation clearly shows two important limitations of the scheme: first, that the speed of convergence
is essentially determined by the natural time constant of the converter. Remark that even if #; converges
to zero very fast, 224 (and consecuently z3) evolves with this time constant. Second, that increasing the
damping will induce a “peaking” in 7, and consequently a slower convergence of z34 — V4.

Furthermore, we have that even the convergence rate of 7 is bounded from below by the undamped
dynamics, i.e. a > Rl_c The sluggishness of this scheme has been observed in our experiments. To overcome
this drawback we have tried to add some damping in the subsystem asociated to z34, that is, we modify (21)
to

RC Ezaq " RE
with Ry > 0 the new damping coefficient. This gives a closed-loop of the form (22) but with a new damping

matrix
R 0
0 k+R]

Hence the convergence of # to zero can be made arbitrarily fast. Unortunately, this does not change signifi-
cantly the dynamics of za4, since 7 now satisfies

. 1 Vi Vi
fog = — {sz———d [E+R1 (zl ¢ ) +R2(zz—zzd)]}, z24(0) > 0

. VE, . .
RCH=—-2n+ —E"—(E:lz1 + Ry5)

Another possibility is to use cross terms in the damping matrix Bg. All these modifications were tried
experimentally but no significant improvement was obtained.

3.2 Switched control laws

¢ Sliding Mode Controller (SMC)
In [12] the following indirect sliding mode controller is proposed for the exact model (1)

u=05[1- sgn (s)] (25)

where
s=z,-V2/RE

is the swit.ch‘ing line along the desired current value. It can be shown that this switching policy locally creates
a stable sliding regime on the line s — 0 with ideal sliding dynamics characterized by

v:i . 1 [ v .. _. E
—— __R_C 32_3_2 5 ueq_l— (26)
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Moreover, the ideal sliding dynamics behaviour of the capacitor voltage variable, described by (26), can be
explicitly computed as :

fg(t) = \/de + [fg(ih) - de] e"ﬂac’(‘_t") (27)
where t;, stands for the reaching instant of the sliding line 5 = 0.

This result can be easy explained as follows. Suppose we take the value of zero as the initial condition
for the capacitor voltage zo, this will remain zero, while the switch position u is maintained at the value
u = 1. The inductor current grows, during this “reaching” phase as a linear function of time

2,(t) = % t {28)

When the sliding line s = z; — V2/RE = 0 is reached at time ¢, = (L/R)(Vs/E)?, the voltage capacitor
x5 grows from zero towards its equilibrium value Vg, ideally governed by

'fz(i) = Vdv 1- E_Haé"(t_t“) (29)

Notice that, similarly to PBC, it is the open—loop time constant that regulates this dynamics. Furthermore,
we will show in our experiments that this remarkably simple approach is, unfortunately, ¥xtremely sensitive



to parameter uncertainty and noise. Finally, as usual with sliding mode strategies, the energy consumption
is very high.

¢ Sliding Mode plus Passivity Based Controller (SM+PBC)

To try to reduce the encrgy consumption in the latter scheme we proposed in [14] to combine sliding
modes with passivity. The switching policy is now given by

u = 0.5[1 — sgn (5)] = 0.5[1 — sgn (z14 — VZ/RE) ] (30)

with the controller dynamics givén by
. 1 R E
214 = —E(l — u)Taa + —L—l(zl —Z4) + T
. 1 1
Tad = a(]_ L u)zld - -E;:Czd (31)

Notice that we take now as the switching line s = 14— V;#/RE, where z14 evolves according to the dynamics
(31). The latter being a copy of the open—loop dynamics to which we have added damping via R;.

For this new control policy we can also prove that it locally creates a sliding regime on the line s = 0.
Moreover, the converter state trajectory x converges towards the auxiliary state trajectory z4 and, in turn,
24 converges towards the desired equilibrium state, i.e.,

V2
(x1,22) = (214,T24) = (ﬁ'ﬁ,Vd)

To assess the performance enhancement of SM4PBC it is shown in [14] that while under SMC the
performance index

2

“awyar= [ Lo (en - B s Cteatr) - va| ar (32)
/0 /02 ( RE

is unbounded for all initial conditions, it remains finite with SM+4+PBC (provided we choose the controller
initial values satisfying z14(0) # z1(0) and z34(0) < V3).

Consistent with the statement above, our experiments will show that the as the initial conditions for the
controller are chosen “closer” to the desired equilibrium state of the controlled plant, the state responses
of the plant become smoother with shightly larger settling times but with a much better behaved transient
shape. Unfortunately, it suffers from the same drawback as PBC of providing no freedom to shape the
response of the outpui voltage.

4 Modified control laws

All the control strategies presented above are of the indirect type, where we control the capacitor voltage
via regulation of the inductor current and invoke the one-to-one corresponence between their equilibria to
achieve the output regulation objective, This strategy is clearly very sensitive to parameter uncertainty, in
particular load resistance changes. To overcome this drawback we have tried two different modifications to
the control laws, the simple addition of an integral loop around the voltage error, and the incorporation of an
adaptation mechanism. For the former we do not dispose of any theory to assess the stability of the closed
loop, while for the latter a complete stability analysis can be performed. Interestingly enough, in some of
our experiments the integral action provided a more satisfactory performance than the full-blown adaptive
schemes.

4.1 Adaptive schemes

¢ Adaptive PBC



In [15] we proposed the following adaptive version of the PBC

- Lo r (=% 4 1Y% o (22 — 220) (33)
H= = 1{21 E E Yz2¢ (22 2d,
with controller auxiliar dynamics given by
) g vZ V2 %4
Zag = —-C—{zmg - Z:—E; [E + Ry (Zl - 9—5—) + Lfd‘yzzd (22 - sz)] } (34)

being the parameter # the estimate of %, which is updated with the following adaptive law

= —yza4 (22 — 224) (35)

4 > 0 is a designer chosen constant that fixes the adaptation speed. It is shown in [15] that the system (2)
in closed loop with the controller (33} has an equilibrium point given by,

o (V2 1 '
(21,22, 224,0) = RE’ Va, Va, R (38)
which is asymptotically stable.

To understand the rationale of this scheme compare (33), (34) with its nonadaptive version (20), (21).
The former is obtained replacing in the latter % by its estimate and adding inside the square bracketts in

both equations a term proportional to f. The need for this term, which makes the scheme different from a
“certainty-equivalent” version, is related with a relative degree problem in the stability analysis.

¢ Adaptive SMC
To add adaptation to the basic SMC we propose to modify the switching line as

2
s:xl—ﬂ%

with the parameter § estimated by

2

A E
0= —yVa(z2a—Va), 7<m (37)

To understand the rationale behind this scheme, note that in the switching line, the term 1/R has
been replaced by its estimation #. Morcover, the adaptation law (37) was motivated by the form of the
corresponding adaptive version for the case PBC where zaq has been substituted by V4, this because now we
don’t have any auxiliary dynamics as before.

s Adaptive SM+PBC

An adaptive version for the SM+PBC can be similarly obtained considering the same switching line as
above, but using the estimator )

é = —Y¥Zad (.1'2 = :Bzd) * (38)

The controller auxiliary dynamics is modified accordingly to

. 1 R E
B4 = —f(l — w24 + Tl(zl —z14) + I

. 1 6
Tad = ‘E(l - u)zld - Ez’zd (39)

Again, the rationale behind this scheme is to substitute 1/R by its estimated value theta whenever it

occurs, and take the form of the adaptive law to estimate this value as in the PBC case (35), but now using
T, £2q instead of 2o, 204, respectively.

10



4.2 Adding an integral term

In all our expetiments we have observed the presence of steady state errors in the output. This is due to
the existence of dynamics in the real circuit, associated to parasitics appearing in the electronic and passive
elements, which are not considered in the model. Of course, this error is further accentuated when we perturb
the load resistance. Experimentally we have seen that adding an integral term to the control law we could
compensate this error or make it negligible, such an integral term can be computed in the following way

~K; /0 [ea(s) — Vilds ; Ki> 0

Note that this term is continuous so we can add it only to the duty ratio p(f) which is also a continuous
function, this implies that we can only apply it to the three laws using the averaged model, i.e., LAC, FLC
and PBC. '

5 Experimental configuration

The experimental card was assembled using low cost commercial electronic elements placed on a card designed
in the laboratory. In fig. 3 we show the experimental set-up consisting of the boost circuit card that receives
control signals from a D/A converter of a DSpace card placed in a PC. The DSpace card acquires, using an
A/D converter, the output voltage and inductor current signals previously conditioned from the boost card.
Two DC power supplies are necesary to operate the whole system, one to provide energy to the boost system
(we will refer to it as the power supply in the rest of the paper), and the other one to feed the electronic
part of the card.
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Figure 3: Experimental set-up

In fig. 4 we show the main card which is formed by a boost circuit, a pulse width modulation circuit
(PWM), and some signal conditioners. This design is very closc to that of [4].

The boost circuit is basically composed by an inductor, a capacitor, a resistive charge and a switch, the
last one is implemented by interconecting a FET transistor and a rapid diode in a suitable maner, all this
elements feeded by a DC power supply. The values of its elements are shown below.

Element Value | Unities
Capacitance | 1000 uF
Inductance 170 mi
Resistance 100 Q
Power supply 10 Volt

1
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Figure 4: Boost circuit card

A current sensor together with a current to voltage converter are introduced to make available the
inductor current z,. In this way, in form of a voltage signal we can feed it into the DSpace card to be used
in the control law. In the case of the output voltage z2 we put a voltage divisor so we can reduce the level of
this signal in such a way that its final value is always in the range [0,10] Volts. To compensate the nonlinear
characteristic of the current sensor and some offset introduced by the linear amplifier circuits, we computed
their characterisic functions and implemented their inverse.

In this card we have the choice between controlling the boost circuit by means of a PWM generated signal
or by directly introducing a switching signal coming from the DSpace card. This selection is done depending
on the position of the mode switch. If a PWM control is selected, then we should feed a continuous signal
that represents the duty ratio in the range {0, 10] Volts corresponding to [0, 100]%. The PWM circuit was
designed using a commercial integrated circuit and it was programmed to have a sampling rate of 50 KHz.
On the other hand, if switched control is selected, then we should provide a switching signal going from 0 to
5 Volts.

Another interesting feature of the card is the possibility to connect or disconnect another resistive charge
in parallel to the output by means of a digital output signal coming from the DSpace card that commands
the gate of a MOSFET acting as a switch.

To study the effect of disturbances in the power source w, a driver circuit has been interconected between
the power supply and the boost circuit. In this way we can introduce disurbance signals from a signal
generator or even from the PC.

Programs are written in a PC using C language. The programs containing the description of the con-
trollers are translated and down-loaded into the DSpace memory as assembler programs by means of a
suitable software. Time derivatives in some of the control laws are discretized using a rectangular aproxima-
tion with a sampling period of 6 x 1073 sec.

12



6 Experimental results

The five control laws described in the previous section have been implemented in the above boost circuit
card. Their behaviour is compared with the following basic criteria:

i) transient and steady state response to steps and sinusoidal output voltage references,
ii) attenuation of step and sinusoidal disturbances in the power supply,

iii} response to pulse changes in the output resistance,

To gain some further insight into the behaviour of the converter, and motivate the need for closed-loop
control, we also present the responses of the open -loop system.
Unless indicated otherwise, in all the experiments we consider as desired output voltage the value V; = 20
2
Volts. This corresponds to a desired inductor current T‘;‘}z‘ = 04 Amp. and to an equivalent duty ratio
= E
g=1-#=05

6.1 Response to output voltage references
Step references

In fig. 5 we show the typical behaviour of the open loop system introducing a step in the duty ratio u of
0.5. As we can see, the behaviour of the output voltage z3 is quite good, it’s fast and not to oscillatory.
On the other hand, the current in the inductance 2, has a very large overshoot that exceeds the limit of
current available in the power source for a considerable time. This behaviour is not desirable because it
could trigger the security elements that would disable the powcr source. We also observe that there exists a
small undershoot due to the nonminimum phase characteristic of the system.

nductor current

Capscitor voliage

0 005 01 015 02 “o 005 01 015 02
t (sac) t [sec)

Figure 5: Open loop step response

1

In fig 6 we show a family of step responses of the system under LAC for different locations of the closed-
lop poles of the linearized system. As expected, for faster poles we obtained faster responses. However,
due to the presence of nonlinearities, specially the saturation of the inductor current, the {ime responses do
not correspond to the pole placement proposed. In particular, the response of z is quite sluggish, and we
can not obtain oscillatory responses that are predicted by the linear approximation theory. The former can
be explained via a simple root locus analysis which reveals that for large k) one pole approaches -20 while
the other goes to —oo, so the time response is dominated by the slowest pole. We also observed that for
relatively small gains a significant steady state error appears, while the undershoot amplitude increases for
faster responses. .

In fig. 7 typical responses of the system under FLC for different values of a) and a3 are presented. These
corresponds to different pole locations of the closed-loop system described in the coordinates [H, H]. Again,
faster responses in z, are obtained with faster poles, which yields in it’s turn higger peaks in z,, being the
speed of convergence of z; limited by the saturation. Notice, however, that for comparable convergence rates
there is a significant reduction on the peak size with respect to LAC.

In fig. 8 we show the responses of the PBC for different values of R;. From the plots we see that
Ry, which is the sole design parameter, affects only the behaviour of z;, while 22 remains almost invariant.
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Figure 6: Step responses for LAC

Inductar crrent

0 o005 o1 o015 o2
1(sac)
Duty ratic

1 - -

08

0 005 01 015 02
1 (sec)

%2 (Voit)

Capacitor volkage

005 91 015 02
t {sec)

Figure 7: Step responses for FLC



Actually what happens is that for small damping z, is very slow with a large overshoot, as we increase
the damping x; converges faster ~with no overshoot—, finally at very large values it exhibits a fast peaking.
As explained in section 3.1 damping determines the speed of convergence of z2 towards zzq, the wiggled
responses in fig. 8 corresponding to small damping. However, zz4 remains essentially invariant to R;,. We
should note that the peaking in z,4 predicted by the theory was not observed, we believe because it is filtered
by the dominant pole.

Inductor curent Capacitor vokage

0.2
. f : H Lt o SR A
0 005 01 015 02 0 005 01 015 02
1{sec) t{sec)

Duty ratic

A o
0 005 01 015 02 e 065 01 015 02
tisoc) (sec)

Figure 8: Step responses for PBC

In fig. 9 we present the response of the system with SMC. As we see, the sliding regime is reached
almost instantaneously, thus ) reaches its desired value very fast. From the equations describing the sliding
dynamics (26) we know that the response of z is governed by the natural time constant ﬁ%, which makes
slow this response. Notice that there are no tuning parameters in this control law.

Inductor currant Capacitar volage
T T r T 26 - - - -

¢ 005 01 015 02
t(sac)

t (sec)

Figure 9: Step response for SMC

In fig. 10 we present the response of SM+PBC for different values of the design parameter R;. Again, _
as in PBC, z; and z34 remain almost invariant. Only z; and 2,4 change, both exhibit a peak during the
transient that becomes higger for bigger R, ..

Our conclusion of this subsection is that only LAC and FLC provide some flexibility to shape the step
response. Two important advantages of FLC over LAC is that it achieves the same convergence rates with
smaller inductor currents ~hence less energy consumption-. Further the steady—state error was systematically
smaller. As expected, the predictions of the theory are accurate only up to the point that the saturation
levels (which is an unmodelled nonlinearity) arc reached. We tend to believe that faster responses without
saturation are not possible.
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Figure 10: Step responses forSM+PBC

Sinusoidal references

Eventhough the controllers are designed for a regulation objective a very important characteristic to study in
- this system is its ability to try to follow a time varying desired output signal V;. Obviously, this characteristic
is closely related with its frequency response, and specifically with its bandwidth. In fig. 11 we show the
closed-loop frequency responses for the five control laws. For reasons of physical construction of the system
we can only follow reference signals of the form Vy = Vo + Ay gsin(2rft) > E. The frequency responses were
obtained asuming we are placed in the equilibrium point caused by the dc-component Vi = 20 Volt and
then we take only the alternating part of the response. To generate the gain plot we divide the amplitude
of this alternating cutput signal betwen the ampliude Av4 = 5 Volt for each frequency.

LAC

1w [ 10 13 .4 for 1w 1o o' [
1{Hg

Figure 11: Frequency responses to periodic reference voltage, SVy(t) — 6za(t)
In LAC, we observe that there appears a problem of steady state gain, that is, for higger values of &,

for instance k; = 2.5, k; = 0.01, the steady state gain almost reach 1 which is the spected value, but wich
corresponds to a bandwith of 6 Hz. On the contrary, for lower values of &, for instance ky = 0.5, k3 = 0,
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the steady state gain decreases to 0.4615 with a bandwith of 20 Hz. This problem is due to the fact that
the system has becn linearized arround an equilibrium point, and now we are carrying the system far from
this point putting in evidence its nonlinearities that are not considered in the control law.

In the case of FLC there is no problem of variations in the steady state gain and in this case the
bandwidth can be enlarged choosing a; and a; such that the corresponding damping coeficient is small and
the natural frequency high. For example, chosing @) = 60, a3 = 3600 we have a bandwidth of 10.5 Hz and
for a; = 90, a; = 900 we get a bandwidth of 2 Hz.

In PBC this frequency response is not afected when R is changed, so the bandwith is fixed to 3.1 Hz.
This is also the case for SMC. For SM+PBC the bandwith varies slightly depending on the value of Ry,
for an Ry = 50 we can enlarge the bandwith to 3 Hz, and for Ry = 5 we reduce it to 2.1 Hz. We have
observed also some resonance phenomena in the circuit for low values of Ry, this is manifested in the form
of peaks in the frequency response which dissapear for higger values of R;. We do not have at this point a
physical or theoretical explanation of this phenomenon.

The results of these experiments are summarized in the table below,

Strategy Cut-off frequency range (Hz)
LAC * £ *¥
FLC [2.0, 10.5]
PBC 31
SMC 3.0
SM+PBC 12.1, 3]

Besides the bandwidth we are, of course, also interested in the phase shift introduced in the loop. To
asscss this characteristic we show in fig. 12 some typical time responses of the output voltage for the various
control strategies and a reference signal of 2Hz. We have chosen the tuning that gives the largest bandwidht.
We can see that the smallest phase shift is achieved with FLC, which also provides the best achievable
bandwidth. We should underscore the poor performance of LAC in this respect.

LAC c

02 o4 08 08 1 ¢ Y
PBC t(sac) sNC H(oec)

(Y] 04 06 08 1
s 1{sec) 1(sec)

02 04 - 08 -1} 1
t{muc)

Figure 12: Time responses to a periodic reference signal Vy(t)
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6.2 Disturbance attenuation

In this section we study the behaviour of the control laws in the face of a disturbance in the power supply.
We consider two classes of disturbances steps and sinusoids.

Step disturbance

In this experiment we propose to add a pulse disturbanee w to the power supply (obtained from a signal
generator) of amplitude 3 Volts and duration 0.1 sec. In fig. 13 we show the behaviour of the cutput voltage
#; for each control law and different tunings.
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»
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'R -]
2 .
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[ [X] oz o3 64 0s
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2
e
k3 :
4z las
» ;
"o 0.1 0z o3 o4 1] "o of vz ©3 o4 (1]
MPC 1 (oec) t{aec)
=
2l
L]
Wz
= v
o X %2 03 o4 as

tisec)

Figure 13: Response to a pulse disturbance w(t)

We can see that FLC is quite sensitive to step disturbances, while SMC is almost insensitive to it. To
obtain some quantitative measure we evaluated the energy amplification of the circuit, that is we calculated

the ratio _ _
lZ2ll2 _ ||Zall2

= Tl ~ 301

where || [|3 := [;°(-)?dt. This number provides a lower bound to the £y-gain of the operator Tyz, : w = Z3.
See {10] for some theoretical evaluation of bounds on this norm for FLC and PBC.

In LAC, 7 can be reduced using higger values of k; which implies that the dominant pole is slow, so for
a v = 0.9059 we have chosen k; = 2.5 and k3 = 0.01 which results in a dominant pole near 20.

In FLC, 7 can be reduced proposing high values of a» and small values of a;, this corresponds to poles
with high real and imaginary parts and damping coefficients less than 1.

In PBC, big values of R; reduce +, for instance, a value of R; = 50 corresponds te a 4 = 0.4738. This
is consistent with the theoretical results reported in [10]. The same behaviour was observed for SM+PBC.
For example, taking Ry = 50 we obtain a y = 0.6409.

The range of the gains that we obtained in our experiments is summarized in the table below.
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Strategy Ranges of v
LAC [0.5715, 0.9059]
FLC [0.6855, 1.9787]
PBC [0.6506, 0.9910]
SMC 0.4738

SM4PBC | [0.6409, 1.602]

Sinusoidal disturbances

In these experiments we obtain the frequency responses of the output voltage under periodic perturbations
introduced in the power supply. To this end, we add to the voltage source E a perturbation w = Ay, sin(2n ft}
where A, =3 Volts and we scan diferent values of f.

The magnitudes of the Bode plots (w ++ &,} for the open loop system and those of the controllers (for
different tuning parameters) are given in fig. 14. We see that in all cases the closed-loop behaves like a low
pass filter and the question is what is the effect of the tuning gains on the steady-state gains and on the
bandwidth and roll—off of the frequency responses.

Note that in these courves for each controller, variations in the parameters imply variations in both,
steady state gain and cut-off frequency. Of course the best curve is that with the minimum steady state gain
and cut-off frequency.

1w
Rt 1o oc te)

w
1) 10

Figure 14: Magnitude Bode plots {w — £3)

In open loop the cut—off frequency is of 14Bz, hence extremely bad disturbance attenuation. For the
LAC controller, the steady state gain can be reduced if the gain &, is decreased, this corresponds also to a
very small increasing in the cut-off frequency. For high values of ki and k3 (k; = 2.5, k2 = 0.01} the steady
state gain could arrive up to 1.5625 with 10 Hz of cut-off frequency and for smaller values (ky = 0.5, k3 = 0)
this gain is 1.125 with 10.1 Hz of cut-off frequency.

In the case of FLC controller, depending on the pole locations, we can have steady state gains that go
from 1.16 for fast poles (a; = 60, az = 3600) until 3.1 for a dominant slow pole (a1 = 120,82 = 1600).
These pole locations correspond to cut-off frequencies of 14 Hz and 2.4 Hz respectively. Thus appearing a
compromise between steady-state gain and cut-off frequency depending on the pole locations.

For PBC we have smaller steady-state gain and cut-off frequency for bigger values of R;. For instance, a
steady-state gain of 1.3775 with a cut-off frequency of 7 Hz, correspond to an R, = 50. And for an R; =5,
the corresponding values are 1.875, 10.1 Hz.
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In SMC, since there is no design parameter, the steady-state gain and the cut-off frequency are unique
and they take reaspectively the values 1.06 and 10 Hz . Wich means that disturbance rejection in this
controller is quite good. For SM+PBC, as in the case of PBC, we have smaller steady-state and cut-off
frequencies for bigger values of R;. For instance, with an ) = 5 we have an steady-state gain of 1.3125 and
a cut-off frequency of 7 Hz, and for R; = 50 we have 1.75 and 10.2 Hz, respectively.

In the following table we show the steady-state gain and cut-off frequency ranges we obtained experi-
mentally for each control strategy.

Strategy | Steady-state gain range | Cut-off frequency range (Hz)
Open loop 2 14
LAC [1.5625, 1.125] [10.0, 10.1]
FLC [3.10, 1.16] [2.4, 14.0]
PBC [1.375, 1.875] [7.0, 10.1]
SMC 1.06 10
SM4-PBC [1.3125, 1.75] [7, 10.2)

It’s important to remark that this cut—off frequencies are relatively small compared with the posible
perturbations caused by the natural line frequency noise (50/60 Hz), so the rejection of this kind of natural
perturbations is assured.

6.3 Robutness to load uncertainty

In this experiment we introduce a load change that reduces the effective resistance from its nominal value
of B = 100 to R+ AR = 509 during the interval [0.5,1] sec. To implement this effect a digital signal
generated in a DSpace card is sended to the gate of a MOSFET transistor to turn it on or off. This transistor
is actuating as a switch that connects or disconnects a resistance of 100 Q placed in parallel with the nominal
load, which is also of 100 €.

The open-loop response is shown in fig. 15. As we can see, there appears a steady state error in the
voltage output 3, that even if it’s small, there is no way to reduce it.

Capacitor vaktage
= : H
o
10 - -
15 [} 05 1 15
tisee)

Figure 15: Open-loop response to a step change in the output resistance

As discussed in section 4 the fact that all control strategies are indirect makes them extremely sensitive
to this kind of disturbance, introducing in particular a large steady-state error. To remove this error we tried
an heuristic approach of adding an integral loop around the output voltage error (for continuous control laws)
as well as the adaptive versions reported in section 4. Notice that we do not dispose of an adaptive scheme
for FLC, however for simple step changes in the load the integral action cortected the steady-state error.
It is an interesting open question how to provide FLC with adaptation capabilities to track time-varying
parametets, as done for PBC.

Non adaptive versions

We show in fig. 16 the behaviour of the output voltage signal z; of the system been controlled for each
strategy when there appears a pulse change in the output resistance, which is clearly unadmissible,
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Figure 16: Qutput voltage behaviour for a disturbance in the output resistance

Adaptive versions

The adaptive version of PBC described in (33} with 4 = 1 and Ry =77 is shown in fig. 7?. Observe that
the parameter estimate converges very close to the true values, i.e. 0.1 and 0.2 Q! (remember that the
algorithm estimates ), but that this small discrepancy induces an steady state error both in the inductor
current {which should be F; = 0.8 for the new load resistance) and the output voltage. The error however
vanishes when we come back to the nominal resistance, where now the estimate exactly converges to the true
value. Given the proof of asymptotic stability of the desired equilibrium, the existence of this steady—state
error for higher currents is particularly distressing. The only explanation we have is that since more current
is passing through the electronic elements their parasitic losses become more significant. It may also be that
the additional computations demanded by the adaptation law induce numerical errors. This critical issue of
numerical sensitivity has been already observed in our work on control of induction motors [7].

As usual in adaptive control, eventhough we started the experiment with the right value of the load
resistance, the estimate moves initially away from it. This in some way speed—up the step response of the
output voltage.

For adaptive SMC we take again ¥ = 1 and observe the same phenomenon of lack of parameter conver-
gence when the load is reduced. In this case, however, there is no steady state error in the output voltage,
this because as we see from the ecuations, adaptation introduces an integral term in the output voltage error.
The inductor current exhibits very high frequency components due to the low frequency used to generate
the switching signal u.

In SM+PBC we took again v = 1 and observed a behaviour very similar to PBC, with the addition of
the high frequency oscillations in the current mentioned above.

Adding an integral term

In fig. 20 - 22 we present for the three laws employing a PWM, LAC, FLC and PBC, the responses to a
pulse disturbance in the output resistance. In alt cases the steady state error vanishes in a relatively short
time with small overshoot. There is however some degradation in the quality of the first step response, alarge
overshoot, that could not be reduced via tuning without seriously degrading the transient and steady-state
performances.

It is worth noting the oscillatory behaviour of LAC and PBC for both load values. To dampen the
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Figure 17: Response to a pulse disturbance in the output resistance for adaptive PBC
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Figure 18: Response to a pulse disturbance in the output resistance for adaptive SMC
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Figure 19: Response to disturbance in the output resistance for adaptive SM+PBC

oscillations the integral term had to be considerably reduced with the ensuing increase in the settling time.
While for PBC this destabilizing effect of the integral action is not a serious problem, because we dispose
of an adaptive version, for LAC it casts some doubts for its practical application.
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Figure 20: Response to a disturbance in the output resistance for LAC + Integral term

7 Conclusions
The following conclusions of our experimental study are in order:

¢ Nonlinear designs provide a promising alternative to classical lead-lag controllers. In particular LAC
performed very badly in tracking time-varying references, and exhibited an undesirable oscillation
when an integral term was added to compensate for load uncertainty.

¢ FLC performed very well in output regulation and tracking but exhibited a higher sensitivity to voltage
disturbances than the other schemes. Incorporating an integral action effectively compensated for a
step change in load resistance, eventhough no theory is available to sustantiate this. To handle other
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Figure 21: Response to a disturbance in the oulput resistance for FLC + Integral term
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Figure 22: Response to a disturbance in the output resistance for PBC + Integral term
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type of load changes (e.g., slowly time varying) the integral action will not be sufficient and some kind
of adaptation should be incoporated into the controller.

& The main drawback of PBC, which is shared also by SMC and SM+PBC, is the inability to shape
the output response, which evolves according to the open-loop dynamics. This, of course, stems from
the fact that we cannot inject damping to the voltage subsystem without nonlinearity cancellation. On
the other hand, PBC achieved a better disturbance attenuation, hence it may be a viable candidate
for applications where rise time is not of prime concern. We should stress that, as shown in motor
control, this is not a limitation intrinsic to passivity—based designs, rather it pertains to our ability to
inject (pervasive) damping to the controlled variable. :

e SMC and SM+PBC proved very robust to source disturbances but highly sensitive to parameter
uncertainty. The latter could be alleviated incorporating a novel adaptation mechanism. The lack of
flexibility of SMC is somehow alleviated in SM+PBC, at least to shape the disturbance attennation
characteristic. Unfortunately, both schemes suffer from the main drawback mentioned above.

¢ We can conclude our study stating that all of the algorithms were easy to implement in our Dspace—
based facility. In contrast to the study carried out in [7] we were not interested here in issues pertaining
to numerical sensitivity and computational complexity, this might prove important in a low-cost im-
plementation.
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