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Letters

Output-Feedback Global Stabilization
of a Nonlinear Benchmark System Using
a Saturated Passivity-Based Controller

Gerardo Escobar, Romeo Ortega and Hebertt Sira-Ramirez

Abstract— We address the problem of regulation of the benchmark
rotational/translational proof mass actuator using a passivity-based con-
troller, We show that a (relatively straightforward) modification of the
output feedback saturated input controller proposed by the authors in
a previous paper provides a simple and robust solution to the global
asymptotic stabilization problem. The design technique is based on the
practically appealing principles of energy shaping and damping injection.
Computer simulations show that the performance is comparable, and in
some respects better, than the one obtained with a far more complicated
full-state unsaturated feedback controller.

Index Terms—Nonli syst
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I. INTRODUCTION

Controlling a translational oscillator with an attached eccentric
rotational proof mass actuator (TORA)' was recently proposed as
a benchmark problem for nonlinear system design [1). Several solu-
tions, based on full-state unsaturated feedback, have been proposed
in the literature. In [2] they present two control laws, one of them a
cascade controller and the other one a feedback passivating controller.
In [3] they propose a control law based in £ disturbance attenuation
approach. See also [4] for an interesting experimental comparison.

The TORA is a simple underactuated Euler-Lagrange (EL) system,
that is a system described by the EL equations of motion. The problem
of controlling this class of systems——for which one can profitably
exploit the Lagrangian structure—has been systematically studied in
[5], [6] and [7], see also the recent book [8], and [9] for a related
approach. The main objective of this brief note is to show how
the stabilization algorithms developed in those papers apply mutatis

mutandi to this problem, providing simple and robust solutions. In
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Fig. 1. Rotational/translational proof mass actuator.

II. PROBLEM FORMULATION

The TORA system shown in Fig. 1 consists of a cart of mass M
connected by a linear spring with stiffness k to a fixed wall.’> The
cart has only one-dimensional motion parallel to the spring axis. The
proof mass actuator attached to the cart has mass m and moment of
inertia I around its center of mass. The latter is located at a distance
from its rotational axis. The gravitational forces are neglected because
the motion occurs in an horizontal plane. The control torque applied
to the proof mass and the disturbance force on the cart are denoted
by u, and £, respectively. Similarly to the references quoted above,
in the sequel we will concentrate on the behavior of the unperturbed
system, therefore we will assume f =0.

Let g,1 be the translational position of the cart and g,2 the angular
position of the proof mass, where gp2 = 0 is perpendicular to the
motion of the cart, and ¢,» = 90° is aligned with the positive g,
direction. '

The equations that describe the mechanical behavior of the system
can be obtained applying the EL equations to the systems Lagrangian

E(‘Ip»dp) = Tp(qp: 4p) — Vp(dp) ey

where g, = [gp1, gp2] € IR? are the generalized coordinates. The first

——a,

respectively, and they are defined for the TORA as

4na secona‘terms 1n (1) dre trhe Kineuc'and poiehtial energy hinctions,

particular, we prove that a (relatively straightforward) modification
to the output-feedback saturated passivity-based controller (PBC)
proposed in [7] ensures global asymptotic stability. The modification
is needed because in [7] we consider only fully actuated? EL systems
while the TORA example is underactuated. Computer simulations
show that the transient behavior is comparable, and sometimes better,
than the one obtained with a full-state unsaturated feedback controller.

Manuscript received January 18, 1997. Recommended by Associate Editor,
M. Jankovic. This work was supported in part by the Comission of European
Communities under contract ERB CHRX CT 93-0380 and by the Consejo
Nacional de Ciencia y Tecnologia of Mexico.

G. Escobar and R. Ortega are with the Laboratoire des Signaux et Systémes,
CNRS-SUPELEC, Gif-sur-Yvette 91192, France.

H. Sira-Ramirez is with the Departamento Sistemas de Control, Escuela
de Ingenierfa de Sisternas, Universidad de Los Andes, Mérida, Edo. Mérida,
Venezuela.

Publisher Item Identifier S 1063-6536(99)01610-3.

! Also called RTAC in [1].

2 An EL system is said to be fully actuated if the number of control actions
equals the number of degrees of freedom, otherwise it is underactuated.

. 1. )
(g2 4p) = 5 Gy Dplgp)idp
.T[ M+m

—mlcos(gpe) | .

=% —ml cos(gp2) I+m® |
1
Vo(gp) = 3 kqxz;r
This yields the model
. e MVy(
Dy (9p)dp + Cpldp. dp)dp + _(;qu—) = Mpu, 2
P

where M, = [0, 1]7 and (following the procedure of passivity-based
control first articulated in [10]) we have factored the workless forces
via the definition of

. 0 —mlgyesi
Colgp, dp) = I:O m quosm(qu) .

Hence, enforcing the property that

Dp(qp) = CP(Q}h‘jp) + CZ(Qpr)
3See [1] for further details.
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which is instrumental for the design of tracking PBC. Notice that the
TORA has no natural damping. .
For ease of reference we give the full systems equations as

M+m —ml cos(gp2) | [Gp1
—mlcos(gp)  I+ml? Gp2
[0 —mlgp2 Sin(‘]ﬂ)} [‘jpl ]
+ 0 0 3
92

" ['5 8“3;] - [H 3

This is a very simple EL system that can be globally asymptotically
stabilized (GAS) at any given constant equilibrium point, in particular
at zero, using the energy-shaping plus damping injection principles
introduced in control by Takegaki and Arimoto [11]. In its most
elementary variation this technique leads to a proportional plus
derivative (PD) controller

Up = —kpgp2 — kadp2
et N’

UES UD1

where kp, kg > 0, and ugs, up: are the energy-shaping and damping
injection components of the control, respectively. The proof of GAS
is easily established using the total energy

H =T,(4p,4p) + Volap) + % kpqu

as Lyapunov function and applying LaSalle’s principle.

_In this paper we pose the more practically intetesting problem of
making the zero equilibrium GAS assuming that only g2 is available
for measurement. Furthermore, we assume the input is subject to a
saturation constraint, i.e,

Iupl S Umax- (4)

III. SOLUTION

To solve the problem we follow the approach proposed in [6],
which consists of designing an EL PBC with an interconnection
constraint to ensure the closed-loop is still an EL system. In this way,
the energy and dissipation functions of the closed-loop are simply the
sum of the corresponding functions for the plant and the controller,
respectively. Since these functions fully characterize the behavior of
EL systems, the choice of the PBC boils down to a suitable selection
of its energy and dissipation functions. This procedure was later
extended in [7] to the case of saturated inputs. Notice, however,
that in [7] we consider only fully actuated systems, hence a slight
modification is needed to handle the TORA example. We refer the
reader to those papers (and to [5], [8]) for further details on the
PBC methodology. In particular Section II of [7] contains all the
background material required for the understanding of this paper.

We propose an EL controller with scalar generalized coordinate
g € IR, zero kinetic energy, potential energy Ve(gp2,qc) and
Rayleigh dissipation function F.(d.) chosen as

1 qe+bqp2 ap2
Ve(ap2:4c) = 3 / o2(s) ds+ / o1(s) ds
0 0
v 1o
Felde) = Sab dc
where a,b are positive constants, and ci(s) = ki sat(s), ki >0,
i = 1, 2, with sat(s): R — IR, a saturation function. We can take,
for instance, sat(s) = tanh(s) or sat(s) = 27" tan™"(s), which,
as pointed out in [7], are strictly increasing functions satisfying the
following properties:
1) sat(s) =0 & s = 0;

2) s[sat(s)] > 0 Vs;
3) sat(—s) = —sat(s).

Notice that the potential energy of the controller depends on the
measurable output gp2; this allows us to carry out the energy shaping
step. The damping will be propagated via the controller dynamics.
As explained in [6], to preserve the EL structure in closed-loop we
impose the interconnection constraint

Uy = =~ ___BVC(qC, ‘Lpz)
. 5qu.

The controller dynamics is then given by

up = —02(gc + bapz) — 01(gp2) 5

ge = ‘aaZ(QC + bqw)- (6)

The rationale behind this controller may be found in [6] and [7].
It may be roughly summarized as follows. From [6] we know that
to ensure uniqueness and stability of the zero equilibrium the overall
potential energy

V(gp,9c) = Volgp) + Ve(ge, @p2)

must have a global minimum in zero. This can be easily verified here
because V,(gp) is a quadratic function of g1 and Ve(gc, gp2) is the
sum of two integrals of strictly increasing saturation functions, with
global minimum at ¢. + bgp2 = 0 and g2 = 0, respectively.

Now, as thoroughly discussed in [6], due to the inability to inject
damping directly (which stems from the fact that we do not measure
velocities), to ensure the equilibrium is asymptotically stable we must
verify a dissipation propagation condition. In our case, this condition
(i.e., Assumption A.1 of Theorem 3.1 of [6]) may be stated as follows:
If in the system dynamics (3) we fix u, and g2 to constant values
then gp1 is (or converges to) a constant value.

Again, it is easy to see that this condition is verified, since
gc + bgp2 = 0, g2 = 0 = ¢ = 0. Now by direct substitution of
up = const, g2 = 0 in the model (3) and after some manipulations
we obtain that these conditions imply g1 = const. It is interesting
to recall that, as pointed out in [6, Remark 3.2], the dissipation
propagation assumption is strictly weaker than the standard zero-state
detectability condition from gp2.

Finally, it follows from the proof of Proposition 7 in [7], that to
enforce the input constraint (4) a restriction on the saturation gains
must be also imposed.

The proposition below follows immediately from Theorem 3.1 of
[6], Proposition 7 in [7] and the derivations above.

Theorem 1: Consider the TORA system described by (3), (4)
in closed loop with the passivity based controller given in (5)
and (6), with a,b positive constants. Define the state vector x =

[gp15 dp15 @p2, dp2s QC]T' If
k14 k2 < tmax ™

then z = 0 is a globally asymptotically stable equilibrium of the
closed-loop system. Consequently, for any set of initial conditions
z(0) = xo we have

Jm z(t) = 0.

Remark 2.1: Note that the control law (5) can be seen as a
proportional plus derivative saturated controller where the derivative
part is implemented using a dirty derivative estimation of the angular
velocity error. The interest of using the saturations is to prevent
the peaking phenomena as clearly pointed out in [12]. However, as
discussed in [5], it makes the rate of convergence slower. We would
like to stress the simplicity of our control scheme with respect to
schemes reported in [3] and [2].
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TABLE I
Description Parameter Value Units -
Cart mass M 1.3608 Kg
Arm mass m 0.096 Kg
Arm eccentricity |1 0.0592 m
Arm inertia I 0.0002175 Kg/m™2
_Spring stiffness [k 186.3 N/m

P
[} 1 2 3 4

L3
time (sec)

Fig. 2. Transient behavior for translational and angular positions.

Remark 2.2: After a preliminary version of this paper was ac-
cepted for publication in [13] we became aware of [14], where a
dirty derivative (similar to the one used in robot control and in this
paper) is added to the controller of [2] to relax the assumption of
measurable velocity. We should point out that in the present work we
have additionally considered the presence of input saturation.

Remark 2.3: Commissioning of this controller boils down to the
selection of the positive coefficients a,b, ki, ko. Notice that the
only constraint imposed by the theory is (7). However, transient
performance is considerably affected by this choice. Some guidelines
for the selection of these coefficients may be found in [5].

IV. SIMULATION RESULTS

Computer simulations have been carried out to show the perfor-
mance of the proposed controller. We use the TORA model (3) with
the parameters values shown in Table I with the physical constraints
lap1] £ 0.025 m and |u,| < 0.100 Nm given in [1].

All initial conditions are set to zero except the initial translational
position which is set at its extreme value g, (0) = 0.025. We selected
sat(s) = tanh(s) for the control law and after a few iterations in
simulation to get the best transient behavior we chose the following
parameters:

a=2550, b=4.5, k5 =0.035 k,=0.018.

Notice that k; + k2 is much smaller than the allowable bound (7). We
observed, however, that transient performance was actually degraded
for larger values of these gains.

A typical response of the system in closed loop with the proposed
controller is shown in Figs. 2 and 3 (continuous trace). As we see
the system exhibits good settling behavior, it stabilizes around 3 s,
with a control effort, [u,| < 0.04 N-m, well below its admissible

upper bound.
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Fig. 3. Applied control and controller state.
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Fig. 4. Translational and rotational responses to an external disturbance.

It is interesting to compare our results with the ones obtained
with the full state feedback unsaturated controllers reported in [2].
First of all, notice that our results pertain to the original system,
while those given in [2] are carried out for its scaled version, (1)
in [2] where the arbitrary value 0.1 is given for the scale coupling
factor € = ml/\/(T+ mI2)(M + m). This factor equals 0.2 for
the benchmark problem of [1], hence the plots are not directly
comparable. Second, as pointed out in [2] the best results were
obtained with the controller P3, which is a passifying controller
consisting of a standard PD plus a nonlinear term that enforces
the passivity property. Thus is very similar, at least in spirit, to the
controller presented in this paper, although our controller is saturated
and uses only output feedback. It is quite clear from the figures of [2]
that the behavior of the backstepping-based controllers that did not
exploit passivity properties, that is P1 and P2, is significantly inferior.

In any case, to carry out a comparison we have rewritten the
controller P3 in [2] in the original variables of the benchmark
problem. We propose for this controller the parameter values ko =
0.01, k&y =1, and k2 = 0.03 which give a good transient response.
Both controllers were simulated under the same initial conditions, and
in order to make this comparison more clear we have superimposed
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Fig. 5. Applied control and controller state for an external disturbance.
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Fig. 6. Translational and rotational responses for gp2(0) = 107.

in all our figures the responses obtained with P3 of [2] (dotted line) to
our responses. Notice from Figs. 2 and 3 that in spite of the fact that
our controller is saturated and uses only output feedback the settling
time is sometimes smaller for our controller.

In order to evaluate the robustness of the closed loop system with
respect to the external disturbance f, we apply a pulse of amplitude 1
N, and duration 0.1 s to the system once it has reached its equilibrium
point. A plot of this response is shown in Figs. 4, and 5. Notice that
in this simulation the settling time for the controller P3 is slightly
smaller than in the controller we propose.

To illustrate the global nature of our controller we present a
simulation where we want to “unwind” the arm from an initial value
of gp2(0) = 107 to the zero position, with all other initial conditions
equal to zero.* In Figs. 6, and 7, we show the transient behavior.
Remark from Fig. 7 that the controller actually saturates but global
convergence is preserved as predicted by the theory.

4Notice that we are looking at the evolution of the system in Euclidean
space, hence the points gp2 = nm,n = .-+, —1,0, 1, -+ are different. This
is done just for the purposes of illustration.
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Fig. 7. Applied control and controller state for gp2(0) = 107.

V. CONCLUSION

The main (quite obvious, but unfortunately often overlooked)
message that we wanted to convey with this paper is that when
controlling physical systems it is useful to exploit its physical
structure. In particular, for EL systems all the information on the
dynamic behavior is contained in the energy and dissipation functions,
hence it seems sensible to concentrate on these function for the
controller design. This is the basic principle of PBC. The simplicity
of the controller presented in this paper should be contrasted with
the derivations reported in [2] (see also [15]). In the latter paper the
first step is to make a coordinate change that transforms the system
into the cascaded structure required by the backstepping technique.
Unfortunately, since this coordinate transformation destroys the phys-
ical structure of the system, the controller design is now far from
transparent—though in some sense systematic.
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