INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL
Int. J. Robust Nonlinear Contral 2000: 10:301-320

A Liouvillian systems approach for the trajectory
planning-based control of helicopter models

Hebertt Sira-Ramirez!-*'!, Rafael Castro-Linares' and
Eduardo Licéaga-Castro?

Y CINVESTAV-1PN, Depurtamento de Ingenieria Eléctrica, Apartado Postal 14-740, 07300 Mexico, D.F., México
2Department of Mathematics, Glasgow Caledonian University, Glusgow G4 OBA, Scotland, U.K.

SUMMARY

A feedback regulation scheme. based on off-line trajectory planning and an approximate state linearization,
is proposed for the hover-to-hover stabilization of simplified, underactuated, models of a helicopter system.
The approach, based on the "Liouvillian’ character of the helicopter kinematic equations, advantageously
uses the total, or partial, differential flatness property of the system models. The controller performance is
evaluated through digital computer simulations which include initial state setting errors of significant
magnitudes. Copyright € 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The regulation of helicopter systems has received sustained attention in the past. In Reference [1],
a state-space feedback linearization approach was followed in order to calculate the inverse of
a helicopter model. Nevertheless, the simplifying assumptions lead to maneuvers constrained to
very low bandwidths. A sliding mode control approach, using dynamical feedback linearization
techniques and generalized canonical forms, proposed by Fliess [2], was carried out in Reference
[3] for an actual laboratory scaled helicopter. In that work, the zero dynamics of the system was
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suitably ‘absorved’ by the sliding mode controller dynamics. More recently. the concept of outer
differential flatness was introduced and used in Reference [4] for trajectory generation in an
experimental model helicopter (see Fliess et al. [5-7] for basic definitions and results on
differentially flat systems). While some traditional models of helicopters turn out to be differen-
tially flat, some more recently developed models of either real (see the work of Thomson and
Bradley [8,9], or "toy" helicopters (cailed toycopters), turn out to be non-differentially flat. For
interesting studies dealing with a toycopter stabilization problem, which resorts to a physically
motivated approximation to a flat system, the reader is referred to the work of Mullhaupt and his
colleagues [10].

In this article we propose a trajectory planning approach. combined with approximate
(Jacobian) linearization around the specified trajectory, to regulate hover-to-hover maneuvers in
several simplified under-actuated models of a helicopter system. The Liouvillian character of the
system. i.e. the presence of an integrable defect (see [11]), is exploited to carry out an off-line
trajectory planning resulting in nominal state and nominal control input trajectories. Jacobian
linearization around the nominal trajectories results in a controllable time-varying system for
which a stabilizing feedback controller is specified using linear systems theory.

In any of the treated cases. the proposed controller synthesis method entitles an off-line
trajectory planning on the basis of the the desired displacement trajectories. This forces us to
off-line solve ordinary differential equations with appropriate initial (hovering) conditions with
the desired displacement trajectories viewed as given data. It should be pointed out, however,
that the longitudinal dynamics model of the helicopter adopted here is indeed differentially
flat and it can be exactly linearized by means of dynamic state feedback. This may be inferred
from the closely related work of Martin er al. (see [12]) where a PVTOL aircraft model is
considered. The approach in Reference [12] requires a dynamic extension of the original
model by the introduction of appropriately defined auxiliary state variables. The main
difference between our Liouvillian system-based approach and one entirely based on the
differential flatness of the suitably extended model, is that the computation needed for the ideal
open-loop control involves the off-line solution of a second-order nonlinear differential
equation. The flatness-based approach, on the other hand, would not require such an off-line
calculation, but, instead, an equivalent associated burden is transferred to the on-line solution of
a nonlinear second-order differential equation representing the dynamic feedback controller. Our
controller, on the other hand, is linear and static, though time varying, and somehow ‘simpler’ in
nature than the one we would have obtained based on the full-fledged differential flatness
approach.

Section 2 revisits a ninth order model for the helicopter dynamics developed already in
Reference [13]. The proposed simplifications leading to more tractable, but still underactuated,
models are directly obtained from such a model under the assumptions of constant lateral
velocity and constant lateral and normal velocities (see also the works of Liceaga et al. [1]).
Section 3 contains a brief introduction to Liouvillian systems and discusses the unstable
nature of the ‘remaining or zero dynamics. The proposed feedback control scheme, based on
approximate linearization and off-line trajectory planning, is also presented in this section and
a linear time varying controller is derived which complements the off-line computed nominal
control input. This guarantees some robustness to the proposed systematic control scheme. In
Section 4, simulation tests are performed for the closed-loop system which include initial state

perturbations. The conclusions and proposals for further research are presented in the last
section.
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2. SIMPLIFIED MATHEMATICAL MODELS OF A HELICOPTER

2.1. The full mode!

In this paper, we consider simplified models of a, so-called, Lynx helicopter which has been fully

reported in various works (see [13,14]). Such a helicopter is modelled by the following set of
first-order ordinary differential equations:
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where u, v and w are the forward, lateral and normal velocities (also called translational velocities)
the angles ¢, 6 and ¥ are the roll angle, the pitch angle, and the yaw angle, (referred to as the
attitude angles) and the quantities, p, g and r are the roll rate, the pitch rate and the yaw rate. u,,
Uy, u3 and u, are assumed to be the control variables; u,, u; and u; are related to the components
of the main ‘rotor’ thrust and may be associated with collective, longitudinal cycle and lateral
cycle, respectively, while u, represents a torque produced by the tail ‘rotor’ thrust. The constants
Ixx, iy, and i, represent moments of inertia, Iy is the distance between the rotor hub and the
fuselage centre of mass, |, is the distance between the tail hub and the fuselage centre of mass, M is
the helicopter mass and g is the gravitational force.

2.2. A simplified model with constant lateral velocity

If one considers flight with constant lateral velocity one sets /() = ¢(t) = 0 and At) = p(t) = 0
with r(t) = 0, p(t) = O for all r > 0. Under these assnmptions, we may consider all motions to take
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place on the plane z = 0. These assumptions readily lead to u; = u, = 0 in Equations (1). The

following set of simplified differential equations for the longitudinal dynamics of the helicopter
are ubtained:

1 . 1
u= % sin(f)u, — -A—/I-cos(())uz

1 1.
w=g - Mcos(@)u, +Msm(9)u2

=g

!
g=—u )}

Yy

If we denote by x the forward position of the rotor-craft and by y its vertical height, then the
first-order model (2) is rewritten as the following ‘second-order’ model:

1 . 1
X = —Msm(e)ul —Mcos(e)u2

1 1.
j=g-— Mcos(f))u1 + Msm(@)uz

0. = LU1 (3)

where the constant parameter L is defined as L =1l,/i,,. Note that under null horizontal
displacement x = constant, X = u = 0 and X = u = 0. It thus follows that the vertical displace-
ment dynamics is governed by

1

V=9~ MeosO) Uy 4
A free fall condition implies that j = g and u; = 0. A hovering condition implies that j = 0 and
u; = Mgcos(6) and, finally, an ascending condition implies that j < 0 and u, = M(g — j)cos(6).
A reasonable assumption is that descent maneuvers are never faster than a free fall condition, i.e.
g > Jy. This condition is, in turn, guaranteed if we let u; be strictly positive and 6 bounded, in
absolute value, to angles strictly smaller than n/2. However, these assumptions entitle an
implication on the unconstrained dynamics (3). Eliminating u, from the first two equations in (3)
and solving for u; we obtain

uy = M[(g — y)cos(f) — %sin(6)] )

We, therefore, assume that the following conditions are valid for any given maneuver:
. T n
(g — y)cos(8) — Xsin(f) > 6 > 0, -3 <9<§ 6)

where § is a strictly positive constant.
Solving for u,, from the first two equations in (3), we obtain the following expression:

u; = — M[(g — y)sin(6) + Xcos(6)] )
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We easily see that no restrictions may apply to the sign of u, which are compatible with
elementary maneuvers such as hovering, null vertical or horizontal displacement. We thus merely
assume that u, is a bounded control input and, hence

(g — y)sin(B) + Xcos(0)] <« (8)

for a strictly positive constant x.
A final assumption is made, regarding the need for continuous controls u;. We shall demand
that the absolute value of the time derivative of u, be bounded for any maneuver, this is

luy] <e 9)
2.3. A simplified model with constant normal and lateral velocity

When one considers flight with constant normal and lateral velocities, one further sets @ = 0, for
all t > 0. The motions are now restricted to the line z = 0, y = constant. In this case, the control
input u, is automatically determined as u; = Mg/cos(f) + u,tan(f). These additional simplifica-
tions lead to the uncontrollable model found in Reference [4], which is at variance with real-life
experience. Further, imposing the condition w = 0, one is lead to the following set of differential
equations for the helicopter model:

b=q
g =Lu,
X=u
1
u= —gtan(e) _muz (]0)

where x denotes, as before, the forward position of the rotor-craft and L = I,/iy,. It is worthwhile
to notice that this model is different from the one analysed in Reference [4] where the forward
velocity dynamics. in straight level flight, reduces to X = — gtan(). We rewrite the model (10) as
the ‘second-order’ model

g= Luz

1

X = —gtan(9)—MTs(6)u1 (11)

Straightforward manipuiations of Equation (11) yield the relationship
1 .
g — %tan(f) = sec?(6) [g + e sm(e)] (12)
The right-hand side of Equation (12) must always be positive for reasonable maneuvers that do
not exceed an attitude angular displacement restriction — Omax < 8 < Omay With O < /2. It
then follows that the quantity g — Xtan(f) can be assumed to be non-negative. In fact, for the

flight conditions considered in this section it will be assumed that there exists a strictly positive
scalar u such that g — Xtan(f) > u.
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3. REGULATION OF THE SIMPLIFIED HELICOPTER MODELS

3.1. Liouvillian systems

Differentially flat systems, or flat systems in short, were introduced by Professor M. Fliess and his
coworkers in a series of articles [5-7]. Flat systems are characterized by the fact that all system
variables, including the inputs, can be expressed in terms of differential functions of the flat outputs.
The flat outputs constitute a set of independent differential functions of the state, possibly
involving the inputs and a finite number of their time derivatives. The set of flat outputs has the
same cardinality as the set of control inputs. Differentially flat systems constitute a subclass of the
set of controllable nonlinear systems which are equivalent to a linear system in Brunovsky’s form
by means of endogenous feedback, i.e. one that does not require external variables to the system
for its synthesis.

A non-flat system may still be controllable, but not all its variables can be expressed as
differential functions of a particular set of independent outputs. The number of variables, not
expressible in terms of the flat outputs, is known as the defect of the non-flat system. Liouvillian
systems constitute a natural extension of differentially flat systems into the area of systems which
are non-linearizable by means of endogenous feedback. The class of Liouvillian systems contains
a subset of the class of non-flat systems with an identifiable flat subsystem of maximal dimension.
A non-flat system is said to be Liouvillian, or integrable by quadratures if the variables not
belonging to the flat subsystem are expressible as elementary integrations of the flat outputs and
a finite number of their time derivatives. The introduction of this class of systems has been
recently given by Chelouah in [11] from the perspective of Differential Galois theory in the
context of Piccard-Vessiot extensions of differentially flat fields. The idea has also been shown to
have interesting implications on finitely discretizable nonlinear systems, as inferred from the work
of Chelouah and Petitot [15].

Some models of helicopter systems are differentially flat and they are linearizable by means of
dynamic state feedback. However, they may also be regarded as Liouvillian systems. This is
explained by the fact that, in such cases, ‘flat’ outputs of a particular subsystem may be proposed
in terms of the original variables of the system. These variables have the additional property that
the ‘remaining variables’ may still be expressible in terms of elementary quadratures of such ‘flat’
outputs. Hence, strictly speaking, in such cases, a differential parameterization of all the system
variables is no longer possible, but, instead, an integral-differential parameterization could be
established. This last property, characterizing Liouvillian systems, may be suitably exploited at
the off-line stage of a control scheme based on trajectory planning. The advantage with respect to
existing flatness-based schemes is confined to the fact that a static, linear, time varying controller
can be synthesized while solutions of nonlinear differential equations are conveniently relegated
to the off-line stage of the controller design, rather than to the on-line stage where a set of
similarly complex dynamic controller equations must be solved.

3.2. The helicopter model as a Liouvillian system: simplified model with constant lateral velocity

Let us now consider the model (3) of the helicopter. This system is differentially flat, and, hence,
linearizable by means of dynamic state feedback. The flat outputs are given by

1 1
= — 1 6\ — —
P=x+ M sin(@), Z=y+ M cos(6) (13)
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which, as pointed out in the closely related work of Martin et al. (see [ 12]), define the equivalent
to the Huvgens centre of oscillution in a set of similar equations describing a pendulum.
By defining the input-dependent auxiliary state variable

I 140
9=u +7 (0 (14)

system (3) may be shown. after some lengthy algebraic manipulations. to be equivalent to the
following set of elementary linear pure integration systems:

M=y, G =y, (15)

with v, and ¢, representing new external control inputs (see also [16]).

The helicopter model (3), however, can also be regarded as a Liouvillian system, with the flat
subsystem being represented by the state variables (0, 8, y. y). The ‘flat’ outputs for this subsystem
are given by the attitude angle 8 and by the vertical displacement y, which we denote by F and R,
respectively. The following partial differential parameterization of the system variables allows for

some elementary equilibrium analysis and also establishes the main features of the system to be
controlled:

q o E . M F s
6=F, O0=F uy;=-— =R, y=R, = + ——sin(F) — R 16
fh y y U COS(F)<g T Sin(F) ) (16)
The ‘remaining’ system variables, represented by the horizontal displacement variables (x, X),
are expressible in terms of quadratures of the proposed flat outputs F and R and its second-order
time derivatives F. R. Indecd. from (3) and the previous considerations, we obtain, modulo initial
conditions and specific integration limits,

e
I

( E .. 1 (.
- J tzm(Fl(g + ——sin(F) — R)dr —ijcos(F)dr

LM
¢ = ”x« (F) +is' (Fy—R)d dt—-l— Fcos(F)dodt (17)
Y=o Jl aER g T T T 7T IM

This is, system (3) qualifics as a Liouvillian system with flat subsystem outputs given by F and R.
The zero dynamics of the system, corresponding to a resting hovering position, characterized by
x = constant, v = constant. is given, according to (3), by the zero dynamics

F = — LgMsin(F) (18)

System (18) is a locally stable oscillatory system with equilibria located at the origin and. also, at
the attitude angles of the form F = +kn, k = 1,2, ... . Thus, as expected, the system is weakly
minimum phase with respect to the horizontal and vertical co-ordinates x, y, taken as the system
outputs.

3.2.1. Off-line vajectory planning. Suppose a rest-to-rest maneuver is demanded which transfers
the helicopter svstem from a given equilibrium (or hovering) position towards a second desired
equilibrium position. It should be clear that it is far simpler (while perhaps, physically speaking,
more appealing) to specify the desired rest-to-rest maneuver in terms of the vertical and
horizontal displacements than it is to specify it in terms of one of the displacements and the
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suitable attitude angular trajectory. For this reason. suppose we select suitable trajetcries x*(t)
and y*(t) for the horizontal and vertical position variables in order to specify a certain displace-
ment maneuver. Such a selection allows, for example. to take the helicopter from an initial
equilibrium hovering position. given by (x(ty;), ¥(f,:)). towards a final hovering position specified
as (x(Thyy), y(T () where the quantities ty;. t,;, T, T are. in principle, independent (finitc) instants
of time. One may also include intermediate hovering positions, ‘backing-ups’, advancements, and
ascents and descents of arbitrary lengths and durations. Also, the time evolution of the ‘off- line’
planned trajectories x*(t), y*(t) are assumed to start with a sufficient number of zero initial and
final time derivatives. extending these properties to intermediate resting positions.

The partial differential flatness properties of the variables 6 = F and y = R, allows one to
express the control inputs u, and u, as the open-loop control laws

\¥ . F F
=_. -_— —s] F y 1= ]9
i cos(F) (g S5 LM sin )) = L (19)

Thus, for a desired displacement maneuver given by .\‘l*(r), R(t) = y*(1), the corresponding attitude
angular trajectory may be computed by finding the solution F*(t) of the following nonlinear
second-order differential equation:

F* = — LM[¥*(t)cos(F*) + i*(t)sin(F*)] (20)

with initial conditions given in complete accordance with the desired maneuver. Notice that, for
an equilibrium-to-equilibrium maneuver, the angular position F*(t) and the accelerations, ¥*(t)
and j*(¢t) must be zero at the initial and at the final times. Under such conditions F*(t) would also
be identically zero for all times hefore the transfer motions are started and also after the transfer
has been accomplished. From (19). the corresponding control input u, would also be zero during
these time intervals while u; should remain: constant. [t thus remains to be proven that the
solutions of (20) from zero initial conditions. with x*(t) and y*(t) representing rest-to-rest
maneuvers in a certain open time interval. {min{ty, t,;} max{t,. t,}], actually yield F*(t) =0
for all ¢t > max {1y, £}

The preceding statement is proved by considering a suitable energy function for the system (20).
Let to < min{ty;, t,;} and T > max{ Ty, T,). Define an energy-like function of the form

V(F*(t), F*(1)) = L (F*1))* + {1 + LM j ' [X(o)cos F* () + (g — §(0)) sin F*(0)] F*(o)da} (21)

The time derivative of V, along the trajectories of system (20), is identically zero for all . Fort = t,
the system is assumed to be in equilibrium, with F*(to) =0 and F*(to) = 0, and since
V(F*(to), F*(to)) = 1, then, the expression ¥ (F*(t), F*(1)) = | represents a first integral, or an
integral manifold of the nonlinear system (20). This manifold is given by the graph, in the
co-ordinate plane (F. F), of the implicit function

HE*0) + LM | [(0)cos F*(0) + (g — #(a))sin F*(0)] F*(6)do = 0 22)
For any open interval of time «r,.1) = (T.1) in which ¥ = =0 w_ith F(t,) =0, one has that
@) (F*(1)? —LMgcos F¥t) = — LM gcos F*(r,), ie. (3) (F*(t)) = LM g(cos F*(t) —
cos F*(t,)). This implies that for any ¢ > t, > T, cos F*(r) > cos F*(1,) as long as there is angular

displacement. The argument, being valid for any 1, implies that the evolution of F*(t) is such that
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Figure 1. Integral manifold for rest to rest maneuver in the phase plane (F, F).

it monotonically approaches the value zero. Once F*(t) =0, for some ¢ > t,, then the angular
velocity also becomes zero. We conclude that the time-parameterized integral manifold (22)
necessarily departs from the origin and arrives back at the origin of coordinates of the plane (F, F)
for any rest-to-rest maneuver (see Figure 1).

In this work we emphasize the use of polynomial splines, also known as Bezier polynomials, for
the specification of the desired trajectories, x*(t) and y*(t), although some other options for
trajectory planning are equally possible.

Let Z(1. ty;, Toe) and n(1, t;, Ty) be polynomials in ¢, satisfying the following conditions:

Ethis this Tne) =0, {ﬂ(fm ti, Ty)=0

. : (23)
(T tais Tne) = 1, T, tvi, Tg) =1

where we also demand that a finite number of time derivatives of the polynomials, (t, t;, Tue)
and n(t, t.;, Tos), be equal to zero at the initial and final maneuver times, ty;, tyi and Ty, Ty,
respectively. Then, the functions given by x(ty) + C(t, this, Tne)(x(tne) — x(ty;) and y(t,;) +
n(t, tyi, Toe) (W(ty) — ¥(ty:)), suitably interpolate between the initial and final values of the horizon-
tal and vertical displacements. The horizontal and vertical displacement maneuvers may be
assumed to occur independently during the finite intervals of time given by ty; < ¢ < Ty, and
ti St < Ty it

x(th;) fort <ty

(1) = { x{tw) + E(t thir Toe)(Xne — Xpi)  fOr £y S <ty 24
X(the) for t > tys
ylty) fort <t,;

yH() = { vlty) + 0l i, T — yu)  for 1 <2<t (25)
L ¥t for t >ty
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3.2.2. 4 trajectory tracking feedback controller. Define the state variable and control input
tracking errors

Xip= X — X*(1), X5 =X — X*(1)
Xy =V — R*(t), xy5 =) — R*(”

Xss= 0 — F*(t), Xes = 6 — F*(1)

Uy = U —%W (g —R*n+ %sin(f‘*(t)))

Ups = Uy — Fl(t) (26)
The linearized dynamics, around the ideally regulated open-loop trajectories, is given by

Xys = X2

. . I 1

X5 =(R* —¢g)xss — XY sin(F*)u, 5 — W cos(F*)u,;

X35 = Xas

Xag = — X*Xs5 — lc:os(F"‘)u“, + l sin(F*)u,;

M M
Xss = Xgs
Xes = Lt vx))

The linearized system is of the form X; = 4(t)x; + Blt)u,s. The system is found to be control-
lable, as the following well-known Silzerman’s controllability rank condition

d® d\s
rank B(r).(A(l)—a—l)B(t),..., .—1(1)—a—t B(t)| =6 (28)

/

is satisfied.

A linear time-varying state feedback controller for this system, of the ‘proportional plus
derivative’ (PD) type, including time-varying compensation terms, results in the incremental
correction inputs

l:uw] [ Msin(F*) M cos(F*)] [u'é* — g)xss + kepXis + kx,,.\-z,,] [ 0 ]
Uzs a M COS(F*) -M Sin(}'_*) - .ﬂ"*xs‘, +k3‘p"(36 +k.\'d'\'-¥é i(kﬂpxib +k9¢x5,,)
(29)

where k,,, Ky, Kyp, Kyas Kop, Kea. are striclty positive design constants.
The closed-loop linearized system is given by

Nys = Xa5

. 1
N2 = — KypXypg — KXo + Y] COS(F*) [hapXss + KpaXos]
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X3s = Ngo

. 1 . .

Xag= — Ky pXag — kyaXas — M sin(F )[kopxso + koaXes]
Xss= Xes

"666 = — [kOp + LM((g - R*)COS(F*) - i*sin(F*))]xSa e ked'\‘6é

+ LMcos(F*¥) [kx,,x” + k,,xu] — LMsin(F*) [k,.,,.\-u + ky,,x“] (30)

It is not difficult to show, in the light of the result given in the appendix, that the closed-loop
system (30) may be rendered exponentially stable to zero under the physically meaningful
assumptions stated in Section 2.2, and for a set of suitably chosen controller design constants and
displacement reference trajectories. Notice, first of all, that the closed-loop time varying linear
systeri (30) is of the ‘interconnected’ form

d [f] [An(f) Alz(t)][f]
z - (31)
de| ¢ Az(t) A()JLE

with & = [X;5 X25 X35 Xas]T€ R* and { = [xs5 Xes)® € R? and

0 1 0 0
—ky, —k, 0 0
Aplt) =4, = ? 0 ’ 0 1
0 0 —kyp —ky
0 1
Azalt) = " ey (32)
— [kep + LM((g — R*)cos(F*) — X*sin(F*))] — kea
while the ‘interconnection’ matrices are given by
0 0
i cos(F*)ky,  cos(F*)Ske,
As(t) = —
12(0) LM 0 0
—sin(F*)ky, —sin(F*)kg
0 0 0 0
Ay () =LM , X (33)
cos(F*¥)k,, cos(F*)k, —sin(F*)k,, - sin(F*)kyy

It is, first of all, evident that the decoupled matrix A,, is (uniformly) exponentially stable for
any set of positive design constants Ky, k.4, k,, and k. To see that there exists controller design
constants and attitude and horizontal displacement trajectories which render the matrix 4,,(1)
(uniformly) exponentially stable, notice the following facts:

(1) Assumption (6) particularised for § = F*, y =R and x = x*, and the positivity of the
design constants ky, and kg, imply that the real parts of the pointwise-in-time eigenvalues
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of A,,(t) are bounded above by a strictly negative constant given by the real part of the
expression

— koa + /ksa — ko, + uLM)
2

(2) The norm of the matrix A,,(t) is clearly bounded by a positive constant. This is trivially true
for any maneuver entitling bounded horizontal and bounded vertical accelerations.

(3) According to Equation (5), the quantity M((g — R*)cos(F*) — X* sin(F*)) coincides with
u¥ and therefore A4,,(t) may be rewritten as

y 0 i
2O0=1 g + Lul)  — ko

Theorem A.1 in the appendix states that if the norm of the time derivative of A,,(¢) is sufficiently
small, then the matrix A4,,(t) is uniformly exponentially stable. This implies, in compliance with
the last fact and Equation (9), that | Lu¥| < Le should be a sufficiently small quantity. Generally
speaking, this condition is fulfilled for reasonably ‘slow’ maneuvers, ie. those which produce
suitably bounded magnitude values for the time derivatives of R* and x* up to a third order, and
corresponding small attitude angular magnitude values for F*. Our design approach, based on
off-line trajectory planning, is quite convenient for complying with this type of requirement.

The linear interconnections are indeed time-varying maps which remain bounded in the region
of operation of the system. The exponential asymptotic stability of 4;, and A,,(t), and the fact
that the norms of these matrices are bounded by positive constants imply, in accordance with the
Corollary A.3 in the appendix, that there exists a positive constant bounding the norm of the
interconnection matrix for which the trajectories of the linear system (30) are exponentially stable
from arbitrary initial conditions. It is easy to see that the squared norm of the interconnection
matrices is bounded by the sum of the squared norms of the following vectors of design
parameters: LMTk,, k. k,, k,4]" and (1/LM) ke, kea]™. Positive design constants, k,p, kya, Kyp
ky4, kop, Koa. can always be found, such that the sum of the squared norms of these vectors is as
small as required, without destroying the exponential asymptotic stability of 4;; and A,(1),
which, as it was demonstrated, only demanded strict positivity of the controller design parameters
and the physically plausible assumptions of Section 2.2.

Based on the above arguments, one finally has the following full feedback controller:

M e oo,
u = s (FH (1) (g R*(@n) + ™ sin(F (t))) + Uy
1':'-*
= 4w, (34)

3.3. The helicopter model as a Liouvillian system: simplified model with constant normal and lateral
velocity

Let us consider the simplified model of the helicopter longitudinal dynamics given by Equations
(10). The system is not linearizable by means of static state feedback and, hence, according to the
results of Charlet et al. [2), it is also non-linearizable by dynamic state feedback either. The
system is clearly Liouvillian, with the flat subsystem being represented by the kinematic state pair
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(8, 9). The following partial differentiul paramererization of the system variables allows for some
elementary equilibrium analysis and also establishes the main features of the system:

. F
0=F, g=F u,=—
., 4 Us L

F = — LM~ cos(F) — LgM ssin(F) (35)

Thus, the zero dynamics. or remaining dynamics. corresponding to a resting hovering position,
characterized by x = constant, ¥ = u, =0 and X =1, =0, is given, according to (35), by the
dynamics (18). Thus, as expected. the system is weakly minimum phase around the origin, with
respect to the horizontal position co-ordinate x. taken as a system output.

3.3.1. Off-line trajectory planning. As in the previous case. a desired displacement maneuver is
specified as x*(¢) for the horizontal position variable x. The maneuver takes the initial equilibrium
hovering position, located at x(ty;), towards a final hovering horizontal co-ordinate value,
specified as x(Ty) .

The partial differential flatness property of the variable @ allows one to express the control
input u, as the quantity F L. The following nonlinear second-order differential equation is readily
obtained for a given displacement trajectory.

F*= — LM[3*(t)cos(F*) + gsin(F*)] (36)

with initial conditions given by the ideal hovering condition F*(ty;) = 0, F*(t,;) = 0. Notice that
(36) can be obtained from (20) by letting 3**(r) be identically zero. Hence, the same arguments
related to the integral manifold of (20) can be now repeated for the corresponding first integral of
(36). The solutions of (36) departing from zero initial conditions and performing a rest-to-rest
maneuver for the horizontal displacement, x*(r). will return the origin of co-ordinates in the plane
(F, F) after the maneuver has been accomplished.

3.3.2. A trajectory tracking feedback controller. Define the state tracking errors as
Xis =0 —F*(1) xps=10 —F*(1). X35=X —X*(t), Xq5 =% — X*(¢)

F*@)
L

Uy =5+

(37

The linearized dynamics. under the assumption of small deviations from the planned trajecto-
ries, is given by

X1s = Nas

Nag = Luy,

N = Xgs

) NE 3 * . 1

Ny =—[g —X¥*a@an(F9] x5 — mum (38)

The time-varying linear system (38) is found to be controllable using Silverman's criterion (38).
A linear state feedback controller results in the following incremental correction input, which is
a sort of ‘proportional-derivative” tvpe of feedback controller, with appropriate time varying
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compensation terms:
1
Uzy = — MCOS(F*)[[Q — \* 1an(F*)].\',o- - [/\'.\-,»-\'3.)' + ko -\'4.i]] - Z [knpxw + kau-\'za] (39)

where kg, koa, k., and k4 are strictly positive design constants. The closed-loop linearized systermn
is given by

X15 = X35
X25 = — [kep + LM cos(F*(1))(g —X*(t)tan(F*))] X5 —KgaX2s +LM cos(F*()) (kepXas + kraXaas]

X35 = Xas

Xeg = — [kxpxaa + kyaxag] + [knp\'x.s + KgaXa4] (40)

LM cos(F*(1))

It is not difficult to show, in the light of the results given in the appendix, that the closed-loop
system (40) is exponentially stable under the physically meaningful assumptions given in Section
2.3 which determine the operating region.

A full feedback controller for the helicopter model. based on the above considerations, is thus
given by
1

I [F*(’)] + Uz (41)

U, =

with u,; given by (39).

4. SIMULATION RESULTS

Numerical simulations were carried out in order to evaluate the performance of the controllers
designed for each simplified model. These simulations are presented in this section with the
following values of the helicopter system parameters:

M =4313kg. g =98m/s*, L =10456x10"*rad/Ns?

4.1. Simplified model with constant lateral velocity

4.1.1 Off-line trajectory planning. For the simplified model with constant lateral velocity (3) we
first consider a trajectory planning example. corresponding to the off-line computations repre-
sented by Equation (20) for given desired displacements x*(r) and y*(r} starting and ending with
ideal hovering conditions while requiring a position transfer between two known equilibrium
values in the x-v plane. The desired horizontal and vertical displacement maneuvers were also
specified as polynomial splines in the manner given in (20) and (21) with

-\’“hi) = 100 m. 'Y(Thi) e 300 m. 'hi = 20 S Thf = 405
,‘.(l\'i) =30m. _V(T\.i) =200 m. SIS 20s T\.{ =40s
For simplicity, we used the same polynomial function for both the horizontal and vertical

displacement trajectories and assumed they occurred during the same transfer intervals. For
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a transier in the interval. [t;. T;], we considered a polynomial of the form

(t.t, Ty) = =t P o ik, I o) L=t Y’
ALCRITIE Y Tr_ti " )ZTr—[i 3 Tf—ti T+ Tf_[i
T W AL 42)
= —
+rs Ti— 4 e Te—t (

ry =252, ry =1050, ry=1800, ry=1575 rs="700, re= 126

with

Figure 2 shows the nominal horizontal and vertical displacements x*(t), y*(t) and the corre-
sponding off-line computed attitude. angle trajectory 6*(t) = F*(t). The figure also shows the
nominal control inputs u}(t) and u3(r).

4.1.2. Closed-loop feedback controller performance. A typical combination of desired horizontal
and vertical displacement maneuvers, including initial states perturbation errors was used to
verify the performance of controller (24). Figure (3) depicts the performance of the closed-loop
system for the attitude angular displacement as well as the horizontal and vertical displacements
corresponding to prescribed trajectories of the form (20), (21) with t,; = 20s, Ty,; = 40s and
t,; =20s and T, = 40s. The simulation included initial discrepancies from the ideal hovering
conditions. The feedback controller (24) is shown to effectively correct all initial discrepancies and

x*(1) Tu()
-/ T
0 0

0 % 2 L& N &

0 20 2 4 9 60
time [s} time {s]

3 y*(t) X

Rl
Kl

5 10 X 2 & %N & 0 20 % 4 5 6
time {s] time {s)

(N]
0

0 10 2 W 40 %N 60
time (s}

Figure 2. Off-line computed nominal state trajectories and nominal control inputs; simplified model
with constant lateral velocity.
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N}
[m]
[ N~—
2 » @ % ®© >

[ 10 ﬁme [s] [] 1 2 ol
IN]
y(t) — A
w [l f i u,(t)
L] " x ﬁm: [s] L] » [ ] [] 0 2 tim’é [s] 4« 0 [ ]
o(t)

»
time [s}
Figure 3. Closed-loop response in a hovering point-to-hovering point maneuver with initial state setting

errors; simplified model with constant lateral velocity.

manages to achieve satisfactory tracking of, both, the computed attitude reference trajectory F*(t)
and the originally given horizontal and vertical positions trajectories X*(), y*(0).
4.2. Simplified model with constant normal and lateral velocity

4.2.1. Off-line trajectory planning behaviour. For the simplified model with constant normal and
lateral velocity, a typical horizontal displacement maneuver was specified by a trajectory of the
form (20) with an interpolating polynomial also given by (42). The initial and terminal times, as
well as the initial and terminal points on the horizontal line co-ordinate were taken to be

x(ty) = 100m, x(Ty) =300m, ¢y =20s, Ty = 40s

The off-line computed reference attitude angle trajectory F *(t) is obtained from the solution of
the differential equation (36) with the given x*(¢) and initial conditions chosen to exactly coincide
with the ideal hovering conditions. The corresponding open-loop control input u}, is given,
according to the partial flatness property of the kinematic subsystem, by

ut = F*/L

Figure 4 shows the off-line computed nominal state and input trajectories.

4.2.2. Closed-loop feedback controller performance. The performance of the proposed controiler
(36), (39) and (41) was tested in a typical desired horizontal displacement maneuver, including
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3004 x*(t)
2004 {m]}
1004 —-
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0 10 20 30 40 50 60
e o*(t) time [s]
004 (radl
054
T I T 1 T 1
0 10 20 30 40 50 60
w00 U7 (®) time [s]
50
0] INL__
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-100-

T T T T T T T

0 10 220 0 4 50 60
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Figure 4. Ofi-line computed nominal state trajectories and nominal control inputs: simplified model with
constant normal and lateral velocity.

initial states perturbation errors. Figure 5 depicts the performance of the closed-loop system for
the attitude angular displacement and the horizontal displacement variables corresponding to
a prescribed trajectory of the same form as in the previous section. The feedback controller (41)
manages to effectively correct all initial discrepancies and achieve satisfactory tracking of, both,
the computed attitude reference trajectory F*(t) and the originally given horizontal position
maneuver x*(t). Tracking is achieved with insignificant discrepancies.

5. CONCLUSIONS

In this article we have proposed a linear time-varying state feedback controller complementing
a nonlinear off-line (i.e. open-loop) nominal control input ideally solving a trajectory tracking
task for simplified, underactuated, models of a helicopter system. The approach is based on
exploiting the fact that the simplified models belongs to the class of ‘Liouvillian’ systems, which
generalizes the class of differentially flat systems. This last property allows for an off-line
trajectory planning of a chosen subsystem ‘flat’ output in terms of the required position
displacement trajectories. Given such desired displacement trajectories, the corresponding atti-
tude angle trajectory and the required control inputs are off-line computed using the partial
differential flatness of the model. The ideal open-loop control is then completed with a lineariz-
ation-based static, though time-varying, state feedback controller providing the required
robustness to the open-loop control scheme with respect to initial setting errors. The proposed
static feedback controller has been tested through computer simulations, with encouraging
results.
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Figure 5. Closed-loop response in a hovering point-to-hovering point maneuver with initial state setting
errors; simplified mode! with constant normal and lateral velocity.

A more complete study may be pursued using the full nonlinear model of the helicopter derived
in Reference [14] and presented in Section 2. Also, the approach proposed in this article is useful
for handling regulation tasks defined on several non-differentially flat systems examples, which
are still ‘Liouvillian’.

APPENDIX

Theorem A.1 (Rugh [18, pp. 135-138])

Suppose that for the linear time-varying system x(t) = A(t) x(t), the matrix A(r) is continuously
differentiable and there exist finite positive constants a and y, such that for all ¢, | A(?)}| < « and
every pointwise eigenvalue of A(r) satisfies Re[4(t)] < — 7. Then there exists a positive constant
B such that if the time derivative of A(t) satisfies | A(t)| < B for all ¢, the state equation is
uniformly exponentially stable.

Theorem A.2 ([15, pp. 133-134]), and also Cellier and Desoer [19, pp. 190-192]).
Suppose the linear time-varying system %(t) = A(t)x(t) is uniformly exponentially stable and

there exists a finite constant x such that | A(t) || < « for all t. Then, there exists a positive constant
B such that the linear state equation

2(t) = [A(t) + B(1)]z
is uniformly exponentially stable if || B(t)|| <  for all ¢.
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The following is an immediate corollary of the above theorems.

Corollary A.3
Consider the unforced linear time-varying interconnected system defined in R™ ™"

dict_[Au 0 ¢ 0 A |] € Al
2 H A S P o H

with £e R™ and { e R™. Let A,,(t) and A4,,(t) be uniformly exponentially stable matrices
whose norms are bounded by constant scalars. Then there exists a positive constant p such that

the interconnected system (A1) is uniformly exponentially stable if || 4,,(t) || + [| A2 (1) || < p for
all ¢.
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