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Abstract. In this article, a difference flatness approach is used for trajectory tracking tasks of an approximately
(Euter) discretized model of a nonlinear, single link. flexible joint manipulator. The system’s flat output is
commanded to follow a prescribed trajectory achieving a desired angular position maneuver. A new robust
discrete time feedback controller design technique. of the siiding mode type, is then proposed for the closed loop
regulation of the link position around the prescribed trajectory. The effectiveness of the approach is illustrated
by means of digital computer simulations in a rest-to-rest stabilization maneuver and in a stnusoidal reference
trajectory tracking task.
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1. Introduction

Flexible joint manipulators constitute a step closer to the modeling of realistic robotic
systems than that achieved by the rigid joint model. Elastic, or flexible, joint manipulators
have been extensively studied in the past by many researchers. We refer the reader to the
works of Book [3], Spong { 10] and the recent book chapter by De Luca [4], for historical and
technical details of this area. Most of the contributions in theoretical studies. as well as in
many experimental implementations, include continuous-time models, based on nonlinear
ordinary differential equations (see, for example [9]). Controller design, in these instances,
has been greatly facilitated by the fact that most of treated models are exact/v linearizable
and. hence, differentially flur. This fact holds, in an extended sense, even for the infinite
dimensional models (see for instance, Fliess etal. [5]). In spite of being of crucial importance
in the experimental implementation of designed nonlinear controllers, no articles, within
our knowledge. deal with either exact or. approximately, discretized models of flexible
joint manipulators. Exploitation of the associated difference flatness has remained open for
contributions, so far.

Difference flamess for discrete time nonlinear systems is a concept that directly stems
from the concept of differential flatness, introduced. within the context of continuous non-
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linear controlled systems by Prof. Michel Fliess and his colleagues in a series of articles
(Fliess et al. [6]-[8]). The fundamental property of flainess, in discrete time nonlinear
systems, is analogous to its continuous time counterpart: It allows for a complete difference
parametrization of all system variables. including the inputs, in terms of a special set of
independent variables, called the flur ourpurs, exhibiting the same cardinality as the set of
control inputs, which are difference functions of the state, i.e. they are functions of the state
and of a finite number of advances of the state. The relations between difference flatness.
forward accessibility and static and dynamic feedback linearization have been explored in
the works of Aranda-Bricaire et al. [1]-(2] from an algebraic viewpoint.

Here, we are particularly interested in exploiting the difference flatness associated with the
discretized single-link flexible joint manipulator. A reference trajectory tracking controller.
based on flatness and sliding mode control, is proposed which equally allows for a rest-to-
rest stabilization maneuver, or, if desired, a large amplitude sinusoidal reference tracking
task for the manipulator’s angular position.

Section 2 provides some basic definitions and fundamental generalities about the class of
difference flat systems. The formulation, as presented, follows directly from the continuous
time counterpart. Section 3 presents the discretized model of the single-link flexibie joint
manipulator and obtains the difference parametrization of all system variables in terms of
the flat output, constituted by the link angular position. We proceed to specify two types
of desired trajectories for the flat output. The first one results in a rest-to-rest maneuver
covering a large angular displacement, devoid of oscillations. The second trajectory entitles
the tracking of a periodic signal, for the link position, of monotonically increasing amplitude
until it reaches a prescribed steady state sinusoidal oscillation of fixed amplitude. A new
sliding mode based feedback control strategy is then proposed to have the system accurately
track the proposed off-line planned trajectory and exhibit a certain degree of robustness
with respect to initial and un-modeled perturbations causing temporary deviations from the
nominal trajectory. Section 4 presents the simulation results evaluating the performance
of the proposed sliding mode plus flatness control scheme. Section 5 is devoted to the
conclusions and suggestions for further research in this field. An appendix, at the end
of the article, collects the basic background results on a new sliding surface nonlinear
dynamics paradigm which guarantees finite time reachability of the stiding surface and
exhibits robustness with respect to bounded perturbations.

2. Difference Flat Systems

Let us consider a discrete-time single-input single-output nonlinear dynamic system de-
scribed by

x(k+1) = ¢(x(k), u(k))
y(k) = h(x(k)) (h

where x(-) € R" is the state. u(-} € R is the input and y(-) € R is the output. The functions
¢: R" X R — R"and h: R" — R, are assumed to be analytic functions on their domains.
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In order to simplify the notation, we denote that value of the variable D at stage k by Dy,
that is D, = D{(k). We now introduce the following definition.

Definition 1. A scalar function p: R**' — R is a difference function of a state vector x;
if p can be expressed as o = P(Xk, X1, - . ., Xesr), for some finite integer L, i.e., p is a
function of x, and a finite number of advances of x;.

From the system equations (1) it follows that the value at time k of a scalar quantity,
which is a difference function of the state, necessarily involves a finite number of advances
of the control input u;. Following the continuous time case, introduced by Prof. M. Fliess
and his colleagues [6)-[8], we propose the following definition.

Definition 2. System (1) is difference flat if there exists, for some finite integer M, a scalar
difference function of x; denoted by F. = u(xy, ux, - - . , ux+m), called the flat output, such
that the following relations are valid for all k and for some finite integer J

xe = W(F, Fevrv oo Figs)
vi = (hoY)(Fi, Frero ooy Fiyp)
up = (Fe, Fivraooos Frasar) (2)

We refer to relations of the form (2) as difference parametrizations of the state, output
and control input variables, in terms of the flat output F. The difference parametrization
(2), of the variables of the system (1) in terms of a flat output F, contains all the structural
information about the system, such as the minimum or non-minimum phase character of
the output and state variables, the detectability of the system as well as some other useful
information including a convenient static parametrization of the systems equilibria in terms
of the flat output equilibrium values.

Example: The nonlinear system
3
Xpkel = Xk H X2k FOX 4 Yot = Xok U

where 6 is a constant parameter, is difference flat, with flat output i = x\ «. The difference
paruametrization (2) is readily obtained as

Xap = Fiy — F. — GFE. up = Frya—2Fey + Fio — 6 (Fk;+l S FE)
On the other hand. notice that the system
Nkt = Xk +9xf.k. Xogsl = X2k T X3k, Nag+l = X3+

ix nor difference flat. To demonstrate this assertion, notice that the trajectories of the state
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variable, x;, solely depend upon its initial conditions. Suppose, contrary to what we want to
establish, that a difference parametrization, of the form (2) does exists for the system state
and the input variables. Chose an arbitrary input trajectory, say uf k = 0, 1. ... and com-
pute, on the basis of the difference parametrization of the control input. the solution F}*, for
altk’s, of the implicit difference equation u} = ¢ (Fi, Fi41, - .. Fx+s+1). This can be done
for any arbitrary set of initial conditions for the flat output F and a number of its advances.
ie., for F§, Fy,... F;. Use the generated flat output trajectory F7. k = 0,1,2...., in
the difference parameterization for x;, given by, say, ¥1(Fi, Fiel, ... Fr+s), and evaluate
the corresponding x;,, k = 0. I..... Itis clear that for each possible specified trajectory
up, k = 0,1,2,..., and each set of possible initial conditions for F* and its advances,
a new corresponding trajectory, x|, is generated for x;. This means that somehow, the
control input variable u; has a certain influence on the behavior of x, ;. This is a con-
tradiction to the fact that. clearly, x;, only depends upon its initial conditions. Such
an hypothesized difference parametrization cannot exist and the system is not difference
flat.

Nevertheless, the examined system contains a largest flat subsystem represented by the

variables x; and x3, with flat output, F; = x,, and difference parametrization given
by

ok =F., x3p=Fip— Fe. up = Fiyy —2F + Fi

The non-flat variable x; is usually called the defect (see [7]).

It follows from (2), that complete knowledge of a flat output trajectory {F'}. k=0, 1, ...
immediately determines the corresponding state, output and control input trajectories {(x7).
{¥¢), and {u}}, for all times k.

Remark. Notice that, in the difference parametrization (2), the integer J, specifying the
number of advances of F; which are needed to determine the state vector x,, cannot be
strictly smaller than n — 1. For, suppose that only F; and, say, the first p — 1 advances of
Fi suffice for the difference parametrization (2) to hold valid, with p < n. Then, letting
% =21k -2 2p4) = (Fio Fiar,y ..., Figp—1), it follows that, upon elimination of the p
variables z in the equation x; = ¥/ (3;), there are n — p state variables which are locally
uniquely determined by the rest of the state variables. This contradicts the fundamental
algebraic independece among the state variables.

Let 2t = (214, ..., 2Zax) be defined as an n-dimensional vector zx = (Fi, ..., Fiyno1).
Then, if 7 (z) isalocally invertible map, it can be regarded as a locally invertible state coordi-
nate transformation linking x; and z;. Thus, given x,, the flat output and its advances, com-
prised in 7, would be completely determined. The relation uy = 9 (Fi. Fisry -« . Frones
Fiyn) = 3(zk, Fry,) allows. in principle, to determine Fy.., if and only if 1y is specified.
Thus, Fi4n = Zui41 plays the role of an independent control input of a similar nature than
ug. Let vy = Fiy, denote the local solution of uy = &(zi, ) for a given uy. ie., let
Uk = Znk+1 = Ozt ur). The local state representation of z; in terms of the new input vy
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is thus given by

Shk+l = J2k

L2k+1 = I3k

Sn—lk4+) = Znk

Ink+t = Ui
Fo = 21k (3)

Under all the previous assumptions, the original system (1) is therefore locally equivalent,
under state coordinate transformation x = ¥ (z) and static state feedback uy = #(z¢, w),
to a linear controllable system of the form z; k10 = Fiyn = v

3. The Flexible Joint Robot

Consider the following Euler-discretization model of a flexible joint robot, shown in Fig-
ure 1. {10]

X = Xk + Txox
melT . K.T
Yig4l = X+ sin{xy x) — ] (X1x ~ X3x)
Nkl = Xagx + Txgy
a T
Xkl = X4x T+ 7 (xl.k"x3,k)+7uk 4)

where v, is the link angular position, x; is the link angular velocity, x3 is the motor axis
angular position and v is the motor axis angular velocity. The control input u represents the
motor applied torque while the fixed parameter T is the duration of the sampling interval.
I is the inertia of the link, J denotes the motor inertia, mg L is the nominal lad in the link
«nd K, is the fiexible joint stiffness coefficient. The model (4) does not take into account
the motor viscous friction nor the inertia of the actuator about the three independent axes.
However. ithas been shown that it represents the manipulator dynamics and also it is suitable
for control design {10].

3.1. Difference Flatness of the Flexible Joint Manipulator

The system is difference flat, with flat output given by the link angular position x,. This
~vans. in particular. that all system variables, including the input u, are expressible as
difference functions of x;. The system equations (4) lead to the following difference
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motor

Figure 1. Single link flexible joint manipulator.

parametrization

X1k = Xk

X1 k+1 — X1k
Xok =—

T
I (x1442 — 2x144 : L .
X3k = Xix+ X (\LHZ ;lg" I+XH)_ n8 sin(xy ;)
« a
Xlk+1 — X1k I (xhes = 3x 042 + 3% 041 — X1,
i = ( +T )+K ( L+ lk+‘;r3 L+ lk)
mglL

e (sin(.r,.kﬂ) = sin(.1‘1_k))

1 1 '»—2. 5 Xz
= (j+[)(-‘l..k+- Okl + M.A)

T2
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JI (.\'1.1-4 = 4xy g1+ 0 prr = X4 + Xu—)

K. T
J mel | . .
- 7(———22—- (Sln(.f|_k+3) —2sin(xy 441) + sm(.\‘,_k))
— mgL sin(x; ) &)

‘i he last equation immediately suggests the following state-dependent input coordinate
transformation

Xy pon — 2X) ke F X0k
= (.I+I)< | k-2 L.A+l u)
T_
JI (o =403 + 650400 = X0 g o+ .\'l.k)
K, T
J mgl N . )
s (sin(x)442) = 28in(xy k) + sinlxy z)) = mgL sinx 6)

where v, represents the new. or transformed. input coordinate. Thus. the system is seen
Lo be equivalent, after state feedback and an input coordinate transformation. to the linear
system

Xih4d = U €]

3.2, Off-line Trajectory Planning
22,1, A Rest-to-Rest Stabilization via Trajectory Tracking

Suppose it is desired to bring the link angular position variable x, from an initial equilibrium

value. ¥4 at time k = K. towards a final equilibrium position, /", at time k = Ko,

along a prescribed path x;, satisfying the initial and tinal conditions. We prescribe such a
desired trajectory as

—final

l,ik.k = fi]lll‘liul + (.\ | Eilniliul) (p(l\. Kl , KZ) (8)

with (K. K. K2) =0 and (K2, K. K2) = 1. Specifically. we choose. as an interpo-
lating polynomial, a Bezier polynomial in discrete time. The expression

k—K\° k- K,
kK. K2) = [————) |r, = (—————
o 1- K2) (KZ"KI) [” r2<K2"K|>
N (k—Kl )2 (k—K. )
r —— - ——
*\NK.— K, *\ K. - K,

k— K, \? k— Ky )}
9 - S - 9
+’5(K2—K1) ’G(Kz—Kl &
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Figure 2. Rest-to-rest planned maneuver for link angular position (flat output).
with
r =252, r;=1050, ry=1800, rq=1575, rs=700. re=126

defines a rather “smooth” interpolation between the inital value of zero, at time & = K.
and the final value of 1, at time £k = K.

Figure 2 shows the shape of the prescribed angular trajectory, x7 . for the flatoutput x;. In
this particular instance, the initial value of the angular position was taken to be x; g, = /2
and the final value of the angular position was taken to be x| g, = —7/2, with K} = 4 s
and K, = 6.

The difference parametrization (5) allows to off-line obtain the behavior of all the state
variables and of the control input once the trajectory for the flat output v, has been prescribed
as xy . This aspect represents an important design asset of flatness. specially when hard
limitations, of the saturation type, are imposed on the control input amplitudes. The oft-
line prescribed trajectory can be suitably modified in order to satisfy the control input
restrictions.

Simulations were performed to obtain the open loop behavior of the system state variables
and control inputs in accordance with the off-line planned trajectory x{,, as given by (8).
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(v, A flexil-le joint manipulator model with the following parameter values was used for
the ~tmulaticns:

m=04+Kg, ¢=981m/s’, L=0.18m, J=0.002N— ms’/rad,

i =0.059N — ms*/rad, K, =1.61N—m —s/rad

[ proposed maneuver entitled starting the motions at time K; = 4, from an equilibrium
position located at x; g, = /2, with no initial velocity, and to perform a rotation of the
link. during u time interval of only 2 s, towards a final position given by x; x, = —m/2,
arriving at the new position also with zero angular velocity. In order to properly initialize
the ~tates of the manipulator, the initial angular position for the motor axis, corresponding
1o the link equilibrium, was computed from the equilibrium condition

Gk =Xk~ TEgE sin(x] x) (10)
a
[hes value turned out to be x3 ¢, = 1.12 rad. The final resting equilibrium position for the
moltor axis, at time k = K3, can be similarly computed. This yields, x3 , = —1.12 rad.
Figure 3 depicts the nominal (open loop) trajectories of the state variables and the control
input variables behavior for the given planned angular position maneuver on the described
flexible joint manipulator.

A Reference Trajectory Tracking Tusk

Suppoae now. it is desired to make the link angular position variable x; to undergo a sinu-
soidal oscillatory maneuver which departs, with zero amplitude, from an initial equilibrium
value for the link position, I"l""'i“’, attime k = K. The amplitude of the sinusotdal reference
signal will steadily increase until time k = K. From time k = K, onwards, the desired
trajectory is a sinusoidal signal of constant amplitude M. We prescribe such a desired
trajeciory as

-—r—ilnitial for k <K,
o= 1 El Mok, Ky, K2 sin(wk - K1) for Ky <k < K, an
Tl £ M sin(w(k - K1) for k> K,

with ¢ (k. Ky, K3) given by (9).

Figure 4 shows the shape of the prescribed reference angular trajectory, x| ,, for the flat
output x;. The initial value of the angular position was taken to be x| ¢, = 7/2, as in
the rest-to-rest maneuver, while the sinusoidal motion was allowed to reach a maximum
sreohitude value of M = 2 rad. The transient phase of the tracking maneuver was set

~ w2 place during the interval given by K| = 2.5 s and K; = 8.5 s, with a total
~er. . of complete oscillations. During this time interval we have chosen ! = 4. Thus,
m =271 {K: — K,) = 4.188 rad/s.

il
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Figure 3. Nominal state and input trajectories for re<i-to-rest angular maneuver.

As in the previous case. the difference parametrization (5) allows to off-line obtain the
nominal behavior of all the state variables. and of the control input, for the proposed refer-
ence trajectory for the flat output v;. Figure 5 depicts the nominal (open loop) trajectories
of the flexible link state and control input variables, corresponding to the given sinusoidal
reference angular motion.

3.3. A Sliding Mode Based Feedback Controller Design

In this section we propose a feedback. sliding mode-based, control scheme for the on-line
regulation of the flexible joint manipulator model. The proposed controller processes the
off-line prescribed information about the planned trajectory, x{,, in order to conform a
sliding surface coordinate function, denoted by oy, and to directly compute the required
feedback on the basis of the actual deviations of the closed loop flat output trajectory with
respect to the off-line planned evolution. The reader is referred to the Appendix for the
basic background related to a nonlinear discrete-time sliding surface dynamics paradigm,
used at leisure within this section.
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Fivure 4. Reference signal for link angular position in trajectory tracking maneuver.

Using the results of the Appendix, a sliding mode controller can be proposed which
~siotically forces the system to track the given desired trajectory. xj . for the flat
. We consider the sliding surface coordinate function

o = (Fiaes = X ea) + @3 (Yeaz = X gpa) + @2 (e = X1401)

+ay (xix = x74) (12)

Let e; denote the flat output reference tracking error e, = x; — x;. Then, if the evolution
of o is indefinitely constrained to zero, the corresponding zero dynamics is characterized
by the asymptotically stable linear dynamics

i+ Ayepgr + ey + a1gg =0 (13)

Inii ~ing on the evolution of oy the nonlinear paradigm dynamics o141 = [(op). de-
~eribed in the Appendix, one obtains from (7) the prescription of the transformed control
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Figure 5. Nominal state and input trajectories for sinusoidal angular reference signal tracking.

input, vy, as

Ve = X s — O3 (Yikes— X p3) — 02 (X1ka2 — X7 442)
—ay (Xy 51 — X 4y) = Tlow) (14)
where,
X+ = Xpx+ Txag
K,T? K,T?
Xi442 = (1 - )xl.k + 2T xay +( 2 )Xs.k
I 1
mglLT?

+ ( )sin(.r._k)
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K, T? K, T K,T?
X k43 = (] -3 a] )-"l.k + (3T— t/ )~\'Z.k +3 ( ] )-\'S.k

K,T? mglLT? .
+ ( ; )x4_k + gl (2sin(xy 1) + sin (xi % + Tx24)) (15)

The complete sliding mode feedback controller is constituted by the expressions in equa-
tions (6), (8), (9), (12)<«(15) and (A.1).

4. Simulation Results

Numerical simulations were carried out for assessing the closed loop responses of the sliding

mode controlled flexible joint manipulator represented by the previously given parameter
values.

4.1. Rest-to-Rest Maneuver

First. a rest-to-rest trajectory traking task was considered which takes the link from the

initial angular position x; ¢, = 7/2 at time k = K, towards the final desired position
x1.x. = —m/2 at time k = K,. The initial conditions for the numerical simulation were
taken to be

X1k, = lrad, - x4 =0rad/s, x3= 0.62059 rad. x4 = Orad/s

wich represent a significant initial deviation from the prescribed trajectory.
The sliding mode controller parameters, as defined in the appendix, were set to be

A=01 B=006 K=0.05

The auxiliary function o was chosen in accordance with the stable characteristic polynomial
coefficients given by

a; =0.6, a;=0.12, a =0.008

This is. after the sliding surface coordinate reaches zero, the tracking error signal, ex =
X}, — X1k, evolves according to the asymptotically stable linear dynamics

€3+ 0.6ek+2 + 0.128k+| + 0.008¢, =0

whose characteristic polynomial has all its roots located at the point, 0.2, located inside the
unit circle centered at the origin of the complex plane. The discretization interval was set
tybe T =0.2s.

The closed loop responses of the flexible joint manipulator to the planned rest-to-rest
maneuver are shown in Figure 6. In spite of the significant initial deviations. the sliding
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Figure 6. Closed loop sliding mode controlled responses for rest-to-rest angular maneuver, with initial deviations.

mode controller manages to stabilize the link to the correct initial settings and performs
the subsequent desired trajectory tracking accomplishing the large angle equilibrium-to-
equilibrium transfer in a total time span of 2 seconds. The closed loop equilibrium transfer
is devoid of oscillations due to the joint flexibility.

4.2. Reference Trajectory Tracking

A reference trajectory traking task was next considered which takes the link from the initial
angular position x;, x, = /2, attime k = K} = 2.5 s, and induces a sinusoidal behavior
of monotone increasing amplitude until time k = K, = 8.5 s, where the amplitude ceases
to increase and becomes constant with a peak-to-peak amplitude of 4 rad. We set the initial
conditions for the numerical simulations as

Xk =lrad. x3g =O0rad/s, x3 =0.62059rad, x4=0rad/s
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Fiwnre  Closed Joop sliding mode controiled responses for the sinusoidal angular reference signal tracking task.

with initial deviations.

which. again. represents a significant initial deviation from the prescribed traject-
ory.

The sliding mode controller parameters were set to be the same as in the rest-to-rest
maneuver, The tracking features of the closed loop system towards.the desired sinusoidal
~aference trajectory are shown in Figure 7. The sliding mode controller first stabilizes the

.k to the proper initial settings of the prescribed trajectory and subsequently drives the
svstem to perfect tracking of the prescribed large amplitude sinusoidal swings.

5. Conclusions

In this article, we have examined the relevance of difference flatness for the regulation
-l tracking tasks. via trajectory planning and sliding mode control, of an approximately

cretized flexible joint manipulator model. Difference flatness facilitates a systematic pro-
. lure for feedback controller synthesis directly from the associated difference parametriza-
ton provided by the flatness property. The difference parameterization represents an off-line
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computational asset for trajectory planning Jinked to the possibilities of compiying with
state variables and control input trajectory restrictions. Generally speaking. many other
features of the given system are also determinable from such a ditference paramctrization.
Issues such as minimum or non-minimum phase properties of state and output variables, de-

tectability, passivity. etc. can be inferred from such a parametrization. These developments.
however, will be reported elsewhere.

Appendix

In this appendix. we present some generalities about sliding mode control of nonlinear
systems. Our devolopments are based on establishing a nonlinear autonomous dynamic
system “paradigm” which exemplifies the sliding surface coordinate behavior. The idea is
then to force a particular system output. like the flat output. to mimic the proposed prefered
dynamics, with the aid of a suitable feedback control action.

A.1 A Robust Paradigm for Discrete Time Sliding Surface Dynamics

Let K, A, B be three strictly positive numbers with A > B. Consider a scalar nonlinear
discrete-time dynamic system given by the following set of relations:

K sign oy for |0 > A
or1 = C(a) = { <25 (lox| — Bysignoy for B < [0y] < A (A.1)
0 for o < B

where “sign™ stands for the sigmum function. We then have the following result.

THEOREM A.l The trajectories of system A1) are globully asymptotically stable to zero
in finite time if und only if.

K< A

Moreover, o, globally converges 1o Zero in just one step (i.c., after k = 1), if und only if
K < B.

Proof: Consider a Lyapunov function candidate given by
Vie) =0, with V,=V(o) (A2)

Notice that V; is strictly positive and it is bounded below by zero. Then, according to the
scalar system dynamics (A.1). we have
K?—af for |ov| > A
Vier = Vi = { =555 (loi] = By =0 for B <|oi| < A (A.3)
0-of for |oy| < B
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Suppose that. at some instant k, |oy| > A, then for the Lyapunov function candidate V,
to be strictly decreasing while this condition is valid, it is sufficient that |K| < |A|, since,
then. (K| < |A| < |ox| and therefore V;,, — V, = K? — o} < K* — A? < 0. Under the
above conditions, the evolution of oy reaches the region B < |oy| < A in a single step. In
this region. the condition | K| < |A] implies that

-

Viei =V = m(kﬂ-[ - BY —q
= K _p2_ (A -8 ,
- T |- 8]
2 , (A—B)?
“ -y [”U"' - _TG‘?] < .

Therefore. in the region B < |oi| < A, the magnitude of |o'| monotonically decreases with
finite negative steps given by

A = K 1 K B (A.5)
POk — O = A_38 Gk A_B .

As it can be seen from (A.5), in the region B < {oi| < A, each element of the sequence of
negative steps { Ay} is found within the interval

min {K—A —B8} < Ay < max{K — A —B)

The mugnitude of |o| thus decreases until it eventually satisfies the condition jo (K)| <
B at some finite instant K. From the definition of the dynamics it follows that o; =

Ofork = K+ 1.K +2.... and the system is globally asymptotically stable in finite
time.

To prove necessity. suppose the system is globally asymptotically stable to zero in finite
time. It follows that, for each k. there exists a subsequence of integers j, > I, such that
V(k + ji) = Vi < 0. Then there exists a finite K such that for all k¥ > K the sliding
surface coordinate o, becomes zero after reaching the region |o| < B. Suppose, contrary
i what we want to establish that |K| > |A[, then motions starting on the region |o| >
‘A° 4+ B(K — A))/K will never leave this region since V.| — V; > 0 and the magnitude
of || becomes constant (and equal to K') after the first step. We have a contradiction since
the system is not globally asymptotically stable to zero.

It is clear that for any given initial condition, o (0), at k = 0, the next value of the surface
satisties gt1) < K. Therefore, it K < B theno; =0 fork > 2.

A.2  Robustness of the Sliding Surface Evolution towards Zero

2t {iz} be a sequence of bounded perturbations taking values on the closed interval
[ -N.N] of the real line. ie., ;x € [—=N, N] for all k. Consider then, the additively
perturbed version of the nonlinear scalar sliding surface coordinate dynamics (A.1) given
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by
O = ()
U = 0p + 1k (A.6)

We then have the following robustness result.

PROPOSITION A.2 The sliding surfuce coordinate evolution (A.6) is usymptotically stable
to zero in finite time if

K+N<A and N < B (A7)

Proof: The proof is immediate after realizing that if the condition (A.7) is satisfied then.
under the worst possible circumstances, the sliding surface coordinate o reaches the region
B < loy] < A after just one step. In this region. the value of |o| invariably decreases.
in spite of the values of the perturbation 1. The trajectory eventually reaches the region
lol < B at certain time K. It is verified. from (A.1) that for k > K, the perturbed
value of the surface coordinate, oy, becomes zero and never leaves the region [— 8. B].
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