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A PASSIVITY PLUS FLATNESS CONTROLLER FOR THE
PERMANENT MAGNET STEPPER MOTOR

Hebertt Sira-Ramirez

ABSTRACT

A passivity based controller, in suitable combination with the flatness
property of the system, is proposed for the effective feedback equilibrium to
equilibrium regulation, via planned trajectory tracking, of the angular position
in a permanent magnet (PM) stepper motor. The control scheme is shown to be
easily modifiable as to include traditional proportional-integral-derivative
(PID) feedback control actions which efficiently account for unmodeled load

torque perturbations.

KeyWords: Passivity based control, differential flatness.

L. INTRODUCTION

Feedback controller design for nonlinear systems is
generally faced with a hard-to-resolve compromise: How
to modify the system structure by means of suitable
feedback without altering the beneficial nonlinear pro-
perties of the system, which are known to be helpful in a
given stabilization task, while imposing, on the closed-
loop behavior, some of the intuitively simple and concep-
tually appealing features of a /inear behavior? Moreover,
how to neutralize, rather than completely eliminate,
by means of the same feedback. those locally de-stabiliz-
ing forces in the system which work against the pre-
specified control objective and, necessarily, increase the
feedback control authority?.

By a simple examination of the “energy manag-
ing structure” of the system, it has been shown in [13]
that a nonlinear feedback control design strategy can be
proposed which is based on “neutralization and
enhancement”, rather than “elimination and imposition™.
Generally speaking, “neutralization” demands less effort
than complete elimination. This is particularly important
in regards to the locally de-stabilizing fields of a given
open-loop nonlinear system. On the other hand, “enhance-
ment” of the beneficial forces. namely; the stabilizing, or
dissipative, forces of the system is far simpler and less
demanding than the corresponding replacement, or force-
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ful “imposition™, in favor of a linear closed loop behavior.
Feedback linearization, however intuitively appealing
and conceptually effective, is recognized to be entirely
based on “elimination and imposition™.

However, at the same time, the conceptually appeal-
ing “hidden linear controllable™ features of a given nonlin-
ear system should not be under-estimated. or entirely
neglected, as they are a valuable asset in feedback control-
ler design and system analysis. Some of the linear features
provide irreplaceable conceptual characteristics and de-
sign options. such as: simplicity, robustness with respect
to internal instability problems, design flexibility, as
well as -a usually neglected- “inverse physics” as “seen”
from the system’s internal properties and limitations to-
wards the designer demands. All these features, and
possibilities, have been elegantly bestowed into a single
and ubiquitous property: differential flatness (see the far
reaching theoretical contributions, and interesting
applications examples, developed by Prof. M. Fliess and
his colleagues in [4-6]).

In this article, a nonlinear feedback controller is
proposed which effectively combines the natural energy
dissipation properties of the PM stepper motor system
with its differential flatness property. These two impor-
tant structural properties of the system can be combined in
the context of a dynamic passivity based feedback
controller. The controller naturally arises from energy
modification and damping injection considerations
achievable on the basis of identifying, and exploiting, the
natural “conservative and dissipation” structure of the
nonlinear system dynamics. The passivity based con-
troller translates into an efficient control scheme which
allows for an equilibrium-to-equilibrium stabilization
task. based on off-line planned trajectories prescriptions
and on-line feedback trajectory tracking.
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Section 2 discusses the natural “energy managing
structure” of the nonlinear multi-variable system and
proceeds to identify, by means of a simple partial state
feedback, the Generalized Hamiltonian nature of the PM
stepper motor and-its energy dissipation characteristics.
An energy shaping plus damping injection based dynamic
feedback controller is also synthesized which requires
knowledge of the passive outputs reference trajectories.
The flatness property of the stepper motor system, already
established in [8], is further discussed in the context of
passivity (see the seminal article by Byrnes et al, [2]).
The passive outputs trajectories, which, due to flatness, are
parameterized in terms of flat outputs trajectories, are then
substituted in the feedback controller expression. The
proposed dynamic feedback controller, computed on the
basis of energy considerations, is now placed in terms of
the off-line planned trajectories for the flat outputs. Sec-
tion 3 presents the simulation results and proposes a
variation of the developed controller. In order to account
for constant load torque perturbations, a simple modifica-
tion of the controller is made to include a traditional outer
loop PID supplementary controller. Section 4 is devoted
to some conclusions.

I1. A PASSIVITY PLUS FLATNESS BASED
CONTROLLER FOR THE PM
STEPPER MOTOR

The PM stepper motor model used in this article is
directly taken from the work of Zribi and Chiasson [14].
Further developments of nonlinear state and output feed-
back control techniques can be found in the articles by
Bodson et al. [1] and Chiasson et al. [3]. An actual ex-
perimental sliding mode control implementation of a
design. based on flatness considerations, was reported in
an article by Zribi et al. [15).

2.1. A nonlinear model for the permanent magnet
stepper motor

Consider a nonlinear model of a permanent magnet
(PM) stepper motor (see Fig. 1)

Fig. I. PM Stepper motor (1, = 2).
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where i, represents the current in phase A of the motor. i,
is the current in the phase B of the motor, 8 is the angular
displacement of the shaft of the motor, v, and v,, stand,
respectively, for the voltage applied on the windings of
the phase A and phase B. The parameters R and L, the
resistance and self inductances in each of the phase
windings, are constant and assumed to be perfectly
known. Similarly the number of rotor teeth N,, the
torque coefficient of the motor X, the rotor load inertia
J and the viscous friction B are assumed to be known and
constant. Magnetizing characteristics of typical stepper
motors are nonlinear. Thus, reallistically speaking, K, is
not a constant, as assumed here. This fact, however, does
not significantly change the design procedure proposed in
this article. The load torque perturbation, denoted by T, is,
for all analysis purposes, assumed to be zero.

2.2 The simpler D-Q nonlinear model of the PM
stepper motor

The nonlinear model 2.1 is deemed as inconvenient
due to its inherent complexity, given, perhaps, by the
transcendental nature of the trigonometric functions
entering the description of the system. This fact has lead
to the, so called, D - Q (direct-to-quadrature) transforma-
tion, which is a partial state coordinate transformation in
combination with an input coordinate transformation.
This transformation, which gets rid of the trigonometric
functions is given by

ig| | cosV. 8 siniV,0) ||i,
i,| |-sinV,6) cos(N,8)

ty

Yy

Yy

cos(N,0) sin(V,6) [[v
" |—sinV,6) cos(V,6) [

o) ] @2

The current i, is the direct current and i, is the
quadrature current. Also, v, and v, are addressed as the
direct and quadrature voltages, respectively. They act as
the new control inputs to the system.

The transformed system is given by

di,

= =%(ud—de +N,@lLi )
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di,

do_1lp ; _

“ar —jKal=BO)

do _

4, @3

2.3 The control problem

The control objective is to drive the system from a
given initial equilibrium value towards a final equilibrium
value achieving, as a result. a desired final value for the
position variable 6.

The equilibrium point (7., 7, @, §) of the trans-
formed system. for a given constant value of the direct
voltage. v,=7, and v, =7, =0, is given by

7‘,=—R;, i,=0. =0, 8 = arbitrary constant

We assume that the equilibrium value of i, is not
zero. In fact, we will keep i, away from zero throughout
the equilibrium point transfer maneuver. As it will be
shown, this is quite easy to guarantee.

Suppose, for a moment, that the vector relative
degree (1. 1} outputs: i, and i, are held constant at some
value (i, i,)=(7,,0)". Then the zero dynamics corre-
sponding to this set of values is given by the linear system

d8_ . do__B

Lw___ 9 ol
P T At 24

which exhibits two eigenvalues; one located at the origin.
and the other located in the left half portion of the com-
plex plane. at the point (~B/J, 0). The system outputs,
(iy, ). are then weakly minimum-phase [2).

2.4 A passivity canonical model of the PM stepper
motor

Consider the following positive definite (Lyapunov)
storage function

Vi i, o, 0)=%[L(if,+i;) +I 0+ 2.5)

where 7is a strictly positive constznt.
The time derivative, along the controlled motions of
the system, of the storage function satisfies

V=—[RG+i})+Bw+v,i,+ v,i, + 100

' For a definition of vector relative degree. the reader is referred
to the book by Isidori. [7] pp. 220.

S Vit uqiq+79w=i,,( ud+y‘?—j")+ Vi, (2.6)

This expression, plus the weakly minimum-phase
characteristics of the outputs i, and i,, reveals that the
system is passive between the modified inputs (8, )=
(vy + yw/iy, v,) and the original outputs (i, i,). This
justifies the following additional input coordinate trans-
formation

8,=v,+ 42 9 =v, @7
d

which allows one to write down the system, in matrix
form, as

di,
dr 0 NLw 0 -$2i.
L oo old, fa )l te
OLoogz—N,Lcuo-Kmo i
00J 0|do 0 k, o o ||®
000 y| a 6
40 y% 0 0 o©
dt
~R0 0 0|
0—-R O 0 |
+
0 0-BO (@
000 o0f{?8®
10
01| %
+00§q (2.8)
00

The outputs of the system are taken to be y, =i, and
¥2 =i, the direct and the quadrature currents. These are
expressed, in matrix form, as

ta

o

3
=15983]

o &

The obtained model, clearly exhibits the conserva-
tive and the dissipative structure of the system since it is of
the following special form

Mix = Tx)x+ Rx + G
y=G'x (2.10)

with

M=2F >0, )+ F(x) =0, R=RT<0
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In fact. it is easy to see the relation of the above
“canonical form” with the traditional Generalized Hamil-

tonian systems. Let V(x) be expressed as V(x) :%x’Mr,

with A evidently being positive definite and symmetric.
The gradient vector of V(x), given by (3V/ox")7, and

denoted by %% is simply found to be Mx. We rewrite the
system (2.10) in the form

t=(r' 1onr 1Y+ (o' A '"BY 430" Goyo
=gt 'Y =@V @1

i.e.. the system is in generalized Hamiltonian form
(including dissipation terms)

. _ 10V pdV
x=Jx .r +R3;+G(x)l9
y=G"w (2.12)

2.5 A controlier based on “energy shaping plus
damping injection”

The “energy shaping plus damping injection” dy-
namic feedback controller design method, extensively
treated in [9], yields. the following dynamic feedback
controller specification,

19‘,=Ldift-i:,(r)—N,La)i;(r)+yiQ§1+ Ri(6)
d

19‘1=L%i;(l)+N,La)i;(r)+K",{,+Ri;(t) (2.13)
with ¢, and &, satisfying,

IS =K ,i.)-B, +Ry@~¢)

%= KELO+RAE—C) @.14)

with Ry, R, being positive design constants.
The original control inputs to the system are deter-
mined from the equalities,

v‘,=0d-y€dﬂ; v, =9, @.15)

Note that under equilibrium conditions, we have that
U,=U,and 5, =7 ,. Furthermore, if i(r) is made to
converge to zero and @ converges to zero, it follows that
£, also converges to zero. Under these circumstances 8
and {, converge to a common limit.

We state the tracking error stabilization properties of
the feedback controller (2.13), (2.14), as follows

2, No. 1, March 2000

Proposition 2.1 The passivity based dynamic feedback
controller yields a state vector tracking error dynamics,
described by the vector. e =[i,—i}(1). i, —i, (1), @ —¢,
6 - (], which is globally exponentially asymptotically
stable to zero.

Proof. Substituting the control input expressions, given
in (2.13), into the d-q system model (2.3), we obtain, using
the following definitions of the state tracking error
variables: e, =i, - i ,(t) and e, =i,— i (1), &= ®—{, and
ey=0-

0 NLo 0 -yiQ
L 0O 0fe, e
0L 0 0e -NLo 0 -k, 0 |}
00 J 0feé 0 Kk, 0 o0 ||%
000 7|eé €4
2 0 0 0
L
-R 0 0 0 |fe,
0 -R 0 0 e,
+ 2 2.16
0 0 -B-R, 0 [ AL
0 0 0 -R,|L®

Using the modified energy function V(e) = %(Lef +
Le3 +Je3 + yel), one establishes that, V(e) < aV(e),
with, & < 0, being a constant dependent on the system
parameters L, J, R and B and the design parameters, R,
and R, given by,

_ min{R,B+R;R,)
T max{L,J, 7

As a consequence of this fact, it is clear that the
speed of convergence is inherently limited by the
system constants and cannot be made arbitrarily large.
The tracking error is then globally exponentially asymp-
totically stable to zero, i.e.

i ife) i, =i (), ¢, 8¢, (.17

In the absence of load perturbations, the desired
current i _(f) is made to converge to zero and, then, igalso
converges to zero. The planned flat current i (¢) is
made to converge to a nonzero constant. Then, iy
converges to the same value. The outputs i, and i, are
passive, hence, @ and ¢, converge to zero. The angle 6,
and ¢, both converge to a constant to be established.
The flatness property, makes the final value of 8 to
be completely determined at will, as shown in the follow-
ing section.
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2.6 Differential flatness of the system

The PM stepper motor is easily seen to be differen-
tially flat, since all variables in the system can be com-
pletely parameterized in terms of differential functions of
the independent variables constituted by the direct
current i, and the motor shaft angular position 8 (see
[14,8] and [15]). The flat outputs. denoted by F = (F, F,)
=(iy, 0), yield,

i,=F, 0=F, 0=F, i, =KLF:+KLE

9, =LF, +RF,—N,L1~":(7(1—IEZ +EB—F:.)

m m

K K, K

m m m

04=KQF‘3”+LQF3+R( L 4B r)

+N,LF,F +KF, (2.18)
All system properties, in particular those concerning
the ones needed for passivity based controller design, are
already reflected in the above complete differential
parameterization, as it can be easily verified.

Indeed, from (2.18) it is readily seen that iy and i,
are passive outputs. For this. let i, and i, be arbitrary
constants, say. i ,, i ,. Then, it follows, that F, =i, isa
constant (i.e., it has no zero dynamics). The differential
equation KL'F‘2 +7(,l'}—[~"2 = 74 yields an exponentially

m m
asymptotically stable to zero angular velocity F,. The
flat output angular position, F,, thus exponentially as-
ymptotically converges to a constant value. The outputs
y= (i i,) are, thus, weakly minimum-phase. Since they are
also vector relative degree equals to {1, 1}, they are,
according to the results in [2], passive.

2.7 A dynamic controller combining passivity and
flatness

The idea of combining passivity based control and
differential flatness arises from the fact that the passivity
based controller requires pre-specified passive outputs
trajectories i (1) and i (). Instead of directly specifying
those trajectories. it is proposed to specify them in terms
of the flat outputs. i.e., we take advantage of the fact that
the passive outputs are differentially related to the
flat outputs (which, incidentally, are devoid of zero
dynamics). The (off-line) specification of such flat out-
puts already determines the rest of the system variables,
including the passive outputs themselves.

Hence, we propose to plan the trajectories for the
flat outputs and use them on the designed passivity
based controller by substituting on it the differential
relations linking the passive outputs with the flat outputs.

w

The passivity based controller, exploiting the flatness
property of the system, is then given by,

dJ=LF;(t)—N,Lu{kl Fio+

B <. ., " »
Ksz(t)] /%5:+RFI(1)

+N LoF (0)+K, 8,

q

=1 L FnPe B F:
v L[KM(FZ(I)) +KMF;(!)

+R

K’"Fz(t)+KmF1(r)] (2.19)
with ¢, and ¢, satisfying,

J§|=Ku.[7g—mﬁ;(f)+%ﬁ;(t)} ~B¢ +R(@-¢)

K= 1F2F () +R (6~ 2.20)
d

with Ry, R,y being, as before, positive design constants.
The advantages of this combination are manifold.
First, if a passivity based controller has been designed,
on the basis of physical energy dissipation considera-
tions, the controller actions tend to take advantage of the
beneficial nonlinearities by enhancing their dissipation
properties while neutralizing the locally de-stabilizing
fields. This yields a controller which requires less
authority to achieve stabilization or trajectory tracking.
Secondly, the flat outputs are fundamental system out-
puts which are devoid of internal dynamics and corre-
spond to the linear controllability properties of the
system. Hence, indirectly forcing these outputs to track
pre-specified trajectories does not, per se, yield any inter-
nal stability problems. Note that the only troublesome
aspect of the passive outputs associated zero dynamics,
describing the constrained angular position evolution, lies
in the fact that these passive outputs are only weakly
minimum-phase with a potential towards instability. The
prescribed passive outputs trajectories already contem-
plates that the corresponding angular position be forced
to adopt a final constant value with correspond-
ing zero angular velocity. The fact that the position
output is a flat output circumvents any undesirable
closed loop behavior arising from the possible adverse
effects of the weakly minimum-phase characteristic of the
constrained evolution of the passive outputs.

ITII. SIMULATION RESULTS

We consid. . PM stepper motor with the following
parameters

R=84Q L=0010H, K,=0.05V —s/rad
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J=3.6x10°*N - m - s¥rad.
B=1x10"N-~m-s/rad. N, =50

It was desired to transfer the angular position 6
from the initial value of 6,=0 rad.. towards the final value
6:=0.03 rad., following a trajectory specified by means of
an interpolating time polynomial of the form Az, t,, 1)
satisfying

Wto, to, 1 =0, Yt 1o, 1) =1 3.1)

Thus,
6'(t)= 6, + 1z, 1, 1)[6F - 6] (3.2)

One such possible expression, including a particular
interpolating polynomial Ar. 1, 1), is given by

5 el
r—t r—t r—t
0 r‘_r: 0 +r3 0
t=tg 1=ty 1,—1,

0't)=6,+

and 1,=0.01s,£,=0.02 5.

The flat output variable, i,, was also made to follow
a similar time trajectory i}(t), taking the d-current co-
ordinate from the value i {t,) =i,=0.3 A, towards the final
value ift) =i, =0.5 A, during the same previous time
interval [f,, #]. In other words, we specified i (1) as

F0)=1 g+ YA Lo EXE = ) (3.4)

The passivity based feedback controller, proposed
in the previous section, was used with the passive outputs
reference trajectories given by (3.4) and

in=-24-80+L860 (3.5)

K K,

The design constants Rz and R,y and ¥, were set to be
R;=0.05, Ry=2, y=l
Figure 2 shows the simulations of the closed-loop

performance of the stepper motor mechanical and trans-
formed electrical variables, in the d - g coordinates,

S 3 commanded by the designed passivity based controller
- (6r-6,) (3.3) with passive outputs reference trajectories planned in
0 . . .
terms of the flat outputs. Figure 3 depicts the electrical
variables in the a — b coordinates. The load torque was set
with to zero in these simulations.
In order to account for unmodeled constant load
r; =252, r, =1050, ry = 1800, torque perturbations, entering the angular velocity
dynamics as 7, we used an outer loop proportional-
ry=1575, ry=700, ry =126
0.3
0.030] S )
ogas] &0 [rad] 02]ig0 [A]
0.0204 0.1
0.0154 001 et
ogi0
0.008 Sl
0.0001 — -0.24
000 001 002 003 004 0.0 001 0.02 003 004
Time [s] Time [s]
. Vo) V]
64 oXt) {rad/s) _ 4 s —
. 3
2 Tz
04 -
T T T T 2 T T T T T
0.00 0.01 0.02 0.03 0.04 0.0 001 002 0.03 004
Time (s] Time (s|
0.504 et v, 0 [A]
g 9
aas] ® (Al 1
s?
0.404 =
0.354 204 T
0.]0% — N
0.00 0.01 0.02 0.03 004 Y™ 001 00 003 004
Time (s} Time (s}

Fig. 2. PM Stepper motor closed loop response to Passivity + Flatness based controller (transformed d-q variables).
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00101 021
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0.00 001 0.02 0.03 004 0.00 001 0.02 0.03 004
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.
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o] 2
1]
04
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0.20 14
015
010
0.05 - 0
0,00+ S S
0.00 001 002 003 004 0.00 001 0.02 003 0.04
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Fig. 3. PM Stepper motor closed loop response to Passivity + Flatness based controller (a-b variables).

integral-derivative (PID) controller feeding back the
dynamic controller angular velocity tracking error
€(t)= ¢, — 8°(1). Although the design approach we
followed was straightforward and intuitive, systematic
methods for multivariable PID design do exist in the
literature. The reader is referred to the book by Sinha
(12] (chapter 7) and, also, to the works of Seraji [10,11].
The proposed PID controller guarantees, in this case,
that £, actually tracks 8°(r), in spite of the perturbation
load torque. Since w is guaranteed to track &), by the
previous arguments, the net result is that @ tracks 6'(n
in spite of the unknown but constant perturbations.
The integral action of the PID controller corrects the
angular position deviations.
The modified controller was set to be

0J:L%i;(t)—N,La)i;(I)+yf—':§3

+Ri,—kp €+k n+k o€
zsq=L%i;u)+N,Lwi;(x)+ng,+Ri;
k,,qe—k,qn—koqé (3.6)
n=e¢
Figure 4 shows the performance of the modified
passivity based controller in the presence of constant
but unknown load torque perturbations. We used

kpy = ke, =0.01. kyy=k;, =60 and kp, =kp, =0.001. The
load torque amplitude was taken to be 10~ N-m.

1V. CONCLUSIONS

In this article, we havé proposed a combination of
“passivity and flatness” for the feedback regulation of a
(nontrivial) nonlinear multi-variable system constituted
by the PM stepper motor. The passivity based consider-
ations lead to a natural feedback controller that takes
advantage of the dissipation structure of the system, en-
hancing its stabilizing features, while creating suitable
feedback that relegates to the conservative structure of the
systemn the natural de-stabilizing fields of the open-loop
dynamics. As a result, a dynamic feedback controller
which requires less control effort, or authority, is obtained
as compared, for instance, with a feedback linearizing
controller. The manifold conceptual advantages of differ-
ential flatness were combined with those of passivity in
order to provide natural equilibrium-to-equilibrium state
trajectories for the passive outputs, in terms of the flat
outputs of the system. The “stabilization-via-trajectory
tracking™ scheme is, generally speaking, a more demand-
ing control objective which results in smoother transient
performances for the motor currents and applied voltages.
The controlled system comfortably tracks these trajecto-
ries thanks to their intimate relation with the hidden linear
controllability properties of the system. The control
scheme can be easily modified to include a traditional
outer loop PID controller which effectively accounts for
the unmodeled presence of constant, but unknown, load
torque perturbations.

In the dynamic feedback controller proposed in this
article, speed and position measurements are required.
The detected speed may be replaced by a “filtered deriva-



Asian Journal of Control, Vol. 2, No. 1, March 2000

0.038 7 03
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0,025 4 .
00201 0.1
0.015 1 0.0
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Fig. 4. PM Stepper motor closed loop response to Passivity + Flatness based controller including perturbation torque.

tive” of the position. This requires demonstrating the
overall closed loop system stability. Another challenging
problem includes the complete removal of all mechanical
sensors. An important practical issue is constituted by the

time-varying, or otherwise uncertain, characteristic of

some of the stepper motor parameters. This requires
extending the proposed control scheme to include robust
and adaptive feedback control schemes. These topics

constitute research alternatives which need to be further

developed in the future.

REFERENCES

. Bodson. M., J.N. Chiasson, R.T. Novotnak and R.B.
Rekowski, “Feedback Control of a Permanent Magnet
Stepper Motor.” IEEE Trans. Contr. Syst. Technol.,
Vol. 1, pp. 5-14 (1993).

. Ch. Byrnes. A. Isidori and J.C. Willems, “Passivity,
Feedback Equivalence, and Global Stabilization of
Minimum Phase Systems.” IEEE Trans. Automat.
Contr.. Vol. 36. pp. 1228-1240 (1991).

. Chiasson. J.N. and R.T. Novotknak, *Nonlinear Speed

Observer for the PM Stepper Motor,” IEEE Trans.

Automat. Contr.. Vol. 38. No. 10 (1993).

. Fliess, M.. J. Lévine, P. Martin and P. Rouchon, “Sur

les Systémes Non Linéaires Différentiellement

Plats,” C.R. Acad. Sci. Paris, Série I, Mathématiques.

Vol. 315, pp. 619-624 (1992).

. Fliess, M.. J. Lévine, P. Martin and P.'Rouchon.

“Flatness and Defect of Non-linear Systems: Intro-

ductory Theory and Examples,” Int. J. Contr., Vol. 61,

pp. 1327-1361 (1995).

6.

7.

8.

10.

12.

13.

14.

Fliess, M., J. Lévine, P. Martin and P. Rouchon, “A
Lie-Bicklund Approach to Equivalence and Flatness
of Nonlinear Systems,” IEEE Trans. Automat. Contr.
(to appear).

Isidori, A., Nonlinear Control Systems, 3rd. Ed.,
Springer-Verlag, London (1995.)

Mounier, H. and J. Rudolph, “Extending Flatness to
Infinite Dimensional Systems,” in Les Systémes plats:
aspects théoriques et pratiques, mise en oeuvre,
Journée thématique PRC-GDR *“Automatique” (1999).

. Ortega. R., A. Loria, P. Nicklasson and H. Sira-

Ramirez, Passivity-based Control of Euler-Lagrange
Systems, Springer-Verlag, London (1998).

Seraji. H., “Design of Proportional plus Integral Con-
troller for Multivariable Systems,” Int. J. Contr., Vol.
29, pp. 49-63 (1979).

. Seraji, H., “Pole Placement in Multivariable Systems

Using Proportional, Derivative Output Feedback,”
Int. J. Contr., Vol. 31, pp. 195-207 (1980).

Sinha, P.K., Multivariable Control, Marcel Dekker,
N.Y. (1984).

Sira-Ramirez, H., “A General Canonical Form for
Feedback Passivity of Nonlinear Systems,” Int. J.
Contr., Vol. 71, pp. 891-905 (1998).

Zribi, M. and J.N. Chiasson, “Position control of a PM
Stepper Motor by Exact Linearization,” IEEE Trans.
Automat. Contr., Vol. AC-36, No. 5 (1991).

. Zribi, M., H.N. Ngai, L.H. Xie and H. Sira-Ramirez,

“Static Sliding Mode Control of a PM Stepper
Motor,” Proc. Eur. Contr. Conf., Karlsruhe, Germany
(1999)



Hebertt Sira-Ramirez: A Passivity plus Flatness Controller for the Permanent Magnet Stepper Motor 9

H. Sira-Ramirez was born in San
Cristébal (Venezuela) in 1948. He
obtained the Electrical Engineer’s
degree from the Universidad de
Los Andes in Mérida (Venezuela) in
1970. He later obtained the MSEE
and the EE degree, in 1974, and the
PhD degree in EE, in 1977, all from
the Massachusetts Institute of Technology (Cambridge,
USA). Dr. Sira-Ramirez worked for 28 years at the
Universidad de Los Andes from which he was
Vicepresident and. since 1998, a Professor Emeritus.
Currently, he is a Titular Researcher in the Centro de
Investigacién y Estudios Avanzados del Instituto
Politécnico Nacional (CINVESTAV-IPN) in México City
(México).

Dr. Sira-Ramirez is a Senior Member of the Institute
of Electrical and Electronics Engineers (IEEE), a Distin-
guished Lecturer from the same Institute and a Member of
the [EEE International Committee. He is also a member of
the Society for Industrial and Applied Mathematics
(SIAM), of the International Federation of Automatic
Control (IFAC) and of the American Mathematical Soci-
ety (AMS). He has published over 200 technical articles,
and has coauthored a dozen contributed books. He is a
coauthor of the book, Passivity Based Control of Euler-
Lagrange Svstems published by Springer-Verlag, in 1998.
He is a member of the Academia de Mérida (Venezuela).

Dr. Sira-Ramirez is interested in the theoretical and
practical aspects of feedback regulation of nonlinear dy-
namic systems.



