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We examine the performance of two nonlinear feed-
back trajectory tracking controllers designed to achieve
the regulated transfer from a stable operating equilib-
rium point towards a more efficient, yet open loop
unstable, equilibrium point in a nonlinear multivariable
exothermic chemical reactor system. A passivity based
controller, designed with reasonable passive outputs
reference trajectories, is shown to be unsuitable, due to
unrealistic reactant concentration and temperature
controller profiles in the unrestricted controls case,
or, due to comtroller saturation, and convergence to
undesirable equilibria, when hard constraints are
imposed on the control input signals. However, an
exact tracking error linearization controller, designed
with similar reference trajectories for the flat outputs is
shown to be entirely feasible in the unrestricted controls
case and, furthermore, devoid of control signals satura-
tions in the restricted case. The differential flatness
property is then used to synthesize a suitable feedback
passivity based controller with passive outputs refer-
ence trajectories indirectly specified in terms of the flat
output trajectories. The obtained “passivity plus flat-
ness” (PF) controller is shown to be entirely equivalent
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to the “linearizing plus flatness” (LF) controller when
plant parameter perturbations and initial state setting
errors are absent from the equilibrium transfer man-
euver. However, when such perturbations are present,
the LF controller is shown to be superior to the PF
controller in several respects.
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1. Introduction

Differential flatness, introduced by Prof. M. Fliess and
his coworkers in [4 -6], represents a remarkable struc-
tural property of systems which are linearizable by
means of endogenous feedback. As such, it may be used
to advantage in establishing the most salient features
and characteristics of a given system, particularly in
the context of a specific controller design technique
at hand. Flatness greatly facilitates the feedback con-
troller design task for a nonlinear multivariable sys-
tem, specially, if tracking of prescribed output vector
trajectories is to be enforced.

Differential flatness has been advantageously
exploited in the fecdback regulation of different classes
of chemical reactors. The case of coupled chemical
reactors was treated in an article by Rudolph {14].
Several examples of nonlinear chemical reactor con-
trol tasks were undertaken by Rothfuss et al. in [13].
The relevance of flatness in the regulation of a class
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of infinite dimensional models of chemical reactors,
including time delays, was examined in an article by
Mounier and Rudolph [10]. Applications of ideas
related to differential flatness also include systems
described by partial differential equations. In this con-
text, an interesting application to the control of chemi-
cal reactors has been recently given in the work of
Fliess et al. [7].

Passivity based control, on the other hand, also
enjoys great respectability due to the relative simplic-
ity of the control laws and the emphasis on stability
by physically oriented considerations, rather than
straightforward linearization. As such, passivity based
controllers tend to take a clever advantage of the
“dissipation structure” of the given nonlinear system
by respecting those beneficial nonlinearities that help
in the stabilization of the system. Typically, passivity
based controllers only try to eliminate the locally
destabilizing forces by means of suitable feedback.
Seminal work in this area, in the context of dissipativ-
ity, was initiated by Willems [19]. A contribution, from
a geometrical perspective, is represented by the article
by Byrnes et al. [3]. Recently, a textbook by Ortega
et al. [11], collects a number of specific applications,
which include actual laboratory implementation,
where the passivity based control design technique
has been successfully used. Passivity based control of
continuous chemical processes has been treated by
Alonso and Ydstie in [1] from a general thermo-
dynamics viewpoint. Recently, in an article by
Sira-Ramirez and Angulo-Nuiiez [17], a simplified
approach, based on projection operators, has been
developed for the passivity based control of nonlinear
systems with applications to the control of a variety
of continuous processes, including bio-reactors, flow
processes, and chemical reactors.

In this article, we compare the performances of a
passivity based controller and an exact linearization
controller in the stabilization, by means of trajectory
tracking, of a particularly troublesome nonlinear exo-
thermic chemical reactor that operates subject to hard
input constraints. The reactor model used in this arti-
cle has been thoroughly treated in a recent article by
Viel et al. [18). The problem consists in achieving an
equilibrium transfer, from a high temperature stable
operating point towards an intermediate temperature,
open loop unstable, equilibrium point which is deemed
desirable due to technological, and economic reasons.
In (18], it is shown, for the single-input reactor model,
that a controller based on straightforward partial
linearization of the temperature dynamics is incapable
of achieving the required equilibrium transfer due to
controller saturation. This is due to the fact that the
reactor cannot be sufficiently cooled off while the

H. Sira-Ramirez

control input remains clamped at the lower saturation
limit. As a consequence, an undesired stable equilib-
rium point is obtained if the partially linearizing con-
troller is directly implemented. In [18], an alternative
control input variable is then proposed which is cap-
able of regulating the reactant concentration at the
feed flow. A globally stabilizing discontinuous con-
troller is then proposed for the new control input in
combination with a “hybrid” type of controller for
the customary control input signal combining the feed
temperature and the coolant temperature.

By considering the exothermic reactor model as a
multivariable system with two control inputs, just as
proposed in [18], the resulting system is readily seen
to be differentially flat, a fact not exploited in [18].
The flat outputs are the product concentration and
the reactor temperature. We use the flatness property,
and its associated differential parametrization, in
order to exhibit the fundamental reactor system char-
acteristics, such as the passive character of the reactant
and product concentration variables, the equilibrium
state detectability, as well as a static parametrization
of the equilibria in terms of constant values of the flat
outputs.

Using the “energy shapping plus damping injection
controller design methodology”, widely used in the
regulation of Lagrangian mechanical and electro-
mechanical systems (see the article by Ortega et al.
[12]), we first propose a passivity based feedback con-
troller with reasonable passive outputs reference tra-
jectories smoothly achieving the desired equilibrium
transfer. We show that this controller does not accom-
plish the required transfer due to either control input
saturations or to unrealistic reactant concentration
and coolant temperature profiles. We then proceed
to show that an exact feedback linearization tracking
error controller, based on prescribed trajectories for
the flat outputs, does achieve the desired objective
without input saturations. This motivates the combi-
nation of the derived passivity based controller with
an indirect passive outputs reference trajectory plan-
ning in terms of the suitably planned trajectories for
the systems flat outputs. The resulting “passivity plus
flatness” (PF) based multivariable controller now
achieves the required equilibrium transfer without
inputs saturations. In fact, the PF based controller is
shown to be completely equivalent to the “lineariza-
tion plus flatness® (LF) controller inasmuch as the
ideal, perturbation-free, tracking behaviours are con-
cerned. However, the behaviour of both tracking
controllers to initial setting errors and unmodeiled
plant parameter variations is significantly different.
We show that the LF based controller is superior, in
several respects, to the PF controller.
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Section 2 briefly describes the exothermic reactor
model. Section 3 derives the passivity based controller
and shows the unfeasible closed loop behaviour
obtained with this controller. In Section 4, a stabilizing
feedback controller, based on flat outputs trajectory
tracking error linearization, is presented which suita-
bly achieves the required equilibrium transfer. In
Section 5, the passivity based controller is imple-
mented using planned passive outputs trajectories spe-
cified in terms of the flat outputs trajectories. Section 6
is devoted to some conclusions and suggestions for fur-
ther research. An appendix, at the end of the article,
collects the basic definitions related to flatness and
passivity.

2. Description of an Exothermic Reactor

2.1. Reactor Model with Controlled Reactant
Feed Concentration

Consider the following continuous multivariable reac-
tor model, proposed in {18], in which a first order and
exothermic reaction 4 — B occurs

X = —k(x3)x1 + B(w — x1),

X2 = k(x3)x1 — Bxz,

@1

X3 = ak(x3)x1 — gx3 + uy,

where x, is the concentration of the reactant 4 and x,
is the concentration of the product B. The variable x;
represents the reactor temperature. 8> 0 is a constant
associated with the dilution rate while a>0 is the
exothermicity of the reaction. The control input u,
represents the concentration of the reactant A in the
feed flow [18]. The control input u, corresponds to a
suitable, and well known, combination of the feed tem-
perature T and the coolant temperature T, In fact,
u;=BT™ +¢T, where e>0 is the heat transfer rate
constant. The constant g is defined as ¢g=8+ ¢>0.
The function k(x;) is given by

k(xs) = ko exp (— ’;;) (22)

with kg and k, assumed to be known constants.

Remark 2.1. Eventhough the control input variable,
u,, may take values on a discrete set of the form
{0, x{=d}, with 24 being the nominal value of the
input feed concentration, our results treat u; as a
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variable continuously taking values on the closed
restriction set, [0, ¥ ee"] The fundamental assumption,
and restriction, on u, is that the inlet concentration can
be continuously lowered, or enhanced, by increasing
or decreasing the addition of solvent. Nevertheless,
input feed concentration cannot be raised above its
maximum (nominal) value, denoted by %{*¢. An alter-
native justification to our approach lies in the fact
that the discontinuous character ascribed in [18] to
uy (i.e., uy is a switched control input) can be made com-
patible with our assumption by considering the treated
model (2.1) as an averaged pulse-width-modulated
(PWM) model of the reactor controlled dynamics.
The control input u;, under such an interpretation,
qualifies as a scaled duty ratio control input function.
In other words, u, is to be interpreted as the product:

feed 1, with u, being an actual duty ratio function, act-
ing now as a truly continuous control input taking
values on the closed subset [0, 1] of the real line. The
synthesized duty ratio may then be implemented on
a PWM feedback control scheme. Such an implemen-
tation does not necessarily demand an unrealistic,
bang bang behaviour on the input feed valve. The
reader is referred to [15,16), for details on dynamicaily
smoothed PWM controller design for nonlinear sys-
tems whose exposition would take us quite far from
our main purpose in this paper. O

2.2. Differential Flatness of the Multivariable
Reactor Model

The multivariable controlled system (2.1) and (2.2) is
easily seen to be differentially flat, with flat outputs
y=(F,M) given by F=x, and M =x,. Indeed, the
system state variables, x;, x2, x3 and the control inputs
uy, u, are expressible as differential functions of the two
differentially independent components of y

X|=i(+—ﬂf)F; xx=F x3=M,
_F+pF .
“ =Gy +(F+AF) 23)
(M)

5 i~ A ™)

u = M+ qM — o F + BF)

with
I} ki
k(M) =7 k(M). (2.4)
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2.3. Muitivariable Reactor System Analysis in
Terms of Flatoess

The differential parametrization (2.3) implies the fol-
lowing static parametrization for the equilibria of the
system in terms of the flat output equilibria. Let F
and M stand for given equilibrium values of the flat
outputs, then the corresponding equilibria for the state
variables and the control inputs is given by

ﬂ—’."; Xy = i‘; X3 = i{;

k(M) (2.5)
=, BF )
F+k(M) il = gM — afF.

>

Thus, given a desxrcd set of equilibrium values for the
flat outputs, 7 = (F, M) = (%, %), the equilibrium
values, %, il and iy are uniquely determined. The
manifold of equilibria in the state space is readily
obtained from (2.5) as the set (see Fig. 1)

{x =% € R 21k(%3) - %, =0}. (2.6)
Furthermore, eliminating the constant value F in

the last two expressions in (2.5) leads to the following
algebraic equation:

= o . k(M)
qM - it = aoffiy ki(i{) s (2.7

It is easy to show that the algebraic equation (2. 7)
always has at least one positive stable solution for M.
For this, notice that @, only magnifies, or shrinks, the
distance between the possible intersection points of
the positive sloped straight line, on the left-hand side
of (2.7), with the “sigmoid” shaped function on the
right-hand side of (2.7). However, it may be seen that
for a certain positive value of i;, two equilibrium solu-
tions may appear; a stable one, and an unstable one.
As i3 is varied beyond this critical point, the unstable

Fig. 1. Manifold of constant equilibria in the state space.
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solution bifurcates into a high temperature stable equi-
librium solution and a lower temperature unstable
equilibrium solution. The last equilibrium point repre-
sents the interesting case motivating the equilibrium
transfer problem to be dealt in the next section. For
the range of values of #; and i,, two stable equilibrium
solutions will exist; one representing a high tempera-
ture—high conversion rate equilibrium and the second
one representing a low temperature-low conversion
rate equilibrium. In the middle of these two stable
equilibria, there exists an intermediate temperature—
intermediate conversion rate, yet unstable, equilib-
rium which is deemed desirable for technical and
economic reasons (see Fig. 2 for details).

A similar analysis of the equilibria can be carried out
by eliminating the constant value, M, from the last two
expressions in (2.5).

It also follows from the differential parametrization
(2.3), that the flat outputs have a trivial zero dynamics
@i.e., they do not have a zero dynamics). Hence, an
equilibrium transfer problem, defined in terms of
suitable smooth trajectories for such variables, results
in a stable closed loop system devoid of such zero
dynamics. It is clear from (2.1) or (2.3), that the
variables x, and x; are vector relative degree (1, 1), with
x; and x3 also being minimum phase outputs (i.e., x;
and x3 are passive outputs). Indeed, letting x; = x
and x; = %3 = M to be constants, we obtain the fol-
lowing differential equation for the corresponding
zero dynamics for F, i.e., for x5

which clearly shows that F is asymptotically stable to
the corresponding equilibrium point F = k(M)z, /8.
Therefore, the variables x, and x; are minimum phase
outputs,

The differential parametrization also allows one to
establish the local, or global, detectability, as defined
in [3], of a given equilibrium state, X (see also the
Appendix). Consider the passive outputs (x,;,x;) as
the system outputs, z =h(x)=(x,,x3). According to
(2.6), the equilibrium state, corresponding to constant
values of the output components, is given by % =
(%1, %2y X3) = (%1, k(%3)%1/B, X3). Moreover, the con-
stant values of the inputs, corresponding to this
equilibrium state are given by (&, ik) = ((k(%3) +
B)%:/B,q%3 — ak(%3)%,).

Choose an arbitrary initial state vector x(#o) located
on the manifold Z = {x € R*|z =2 = (%, %)}, ic.,
x(to) is of the form x(to) = (%1, x2(t0), %3), With x2(fo)
being arbitrary. The motions of the system, restricted
to the manifold Z (i.e. the motions of x, =F), when

(2.8)
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Fig. 2. Parametrization of reactor temperature equilibria in terms of constant control input values.

such motions are started on Z, with the applied control
input vector given by the constant value @ = (i, @2),
are governed, according to the differential parametri-
zation (2.3), by the dynamics

F+ (k(%3) +28)F

+B(B+ k(%)) [F— k("—’)"'] =0 (29)

B

which represents an asymptotically stable second
order, time invariant, linear system, with constant
equilibrium point given by F = %, = %1k(%3)/8, which
is the expected equilibrium value of x;. Since this
behaviour is independent of the initial condition for
F(to) = x2(t0), the system is globally equilibrium state
detectable from the passive outputs.

It is also true, that the flat outputs (F, M) = (x3, x3),
taken as the system outputs z=(x,, x3) are trivially
globally equilibrium state observable, according to the
definition given in the Appendix.

In general, many important system properties may
be inferred from the differential parametrization pro-
vided by the differential flatness of a system.

3. A Passivity-Based Controller for the
Reactor Model

Consider the following positive definite storage
Sunction V(x) given by

V(x) = §(x} +x3 +x3). @3.1)

The time derivative of ¥(x) along the controlled tra-
jectories of the reactor system (2.1) are given by

V(x) = ~(k(x3) + B)x{ — Bx} —gx3
+ x3[ Buy + k(x3)x2]

+ x3[uz + ak(x3)x3). (3.2)
It is evident that the following input coordinate trans-
formation, or static state feedback

v = Bur +k(x3)xz;  v2 =z + ak(x3)x:

(33

renders the system state variables x|, x3, as passive
outputs. Indecd, letting zT =[x, x;] and v={v, vJ",
we have, from (3.2) and (3.3), that, for all x, the follow-
ing infinitesimal form of the basic passivity inequality
(see [3]) is satisfied

V< xivy + x3% = 2%,

In new input coordinates, v, v, the system, with
output vector z, may be rewritten in Hamiltonian form,
including the dissipation structure (see [17]) as

Xy 0 —kix3) 01[x
Xy | = | k(x3) 0 0| x
X3 0 0 0] Lx;
k(x3)+8 0 0] [x 10 "
- 0 B 0l|lx|+1]0 0 [Vz]
0 0 gllxs 01
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Let Ry, R, Ri3 be strictly positive design constants
representing suitable “damping injection” gains.
Consider then, the following auxiliary, linear, time
varying, controlled system

(3.4)

jla 0 —k(X;) 0 Xia
X2 | = | Kk(x3) 0 0] | x2
X3q 0 0 0 { x3
rk(X3) +8 0 0] [=xi
- 0 B 0| xa
L 0 0 gf[xxn
[Ra 0 0 7][xi—xa
+{0 R2 O X2 — X2
L0 0 R3] |xs—x3
1 0
41
+{0 0 [ ] 3.5)
V2
10 1

Define a state trajectory tracking error vector e as,
" =[e1, €2, €3)= [(x| — X;a), (X2 = X20), (x3 = X3)]. One
readily obtains from (3.4) and (3.5) that the error vec-
tor satisfies the following time-varying, linear system
of differential equations:

é 0 —k(x;) 0 4}
é| = | k(x3) 0 0f|ex
é 0 0 0 e3
[k(x3)+ B+ Ra 0 0
- 0 B+Rp 0
L 0 0 9+ Ry
Fey
x | e (3.6)
Le3

The modified, or shapped, storage function

Vie)=1(e} +ef +ed)
= }{(x1 = x10)* + (%2 = x2)°

+(x3 = x30)7] (3.7)
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exhibits a negative definite time derivative along the
controlled solutions of systems (3.4) and (3.5). Indeed

V(e) = —k(x3)e? = [(8 + Ru)e] + (B + Ra)e?
+ (¢ + Ra)e?]
< ~[(B +Ra)e} +(B + Ra)e}
+ (¢ + Ra)ej]

<-I¥e), (338)
A

where v and ) are strictly positive quantities given, by

virtue of the positive nature of ¢ and 3 by

7= max{l‘(ﬂ + Rn), (ﬁ +Rl1)’ (q +RB)};
A= mm{]'(ﬂ +R,1), (ﬂ + Rﬂ):(q +RB)}'

The error vector e asymptotically exponentially
converges to zero and the plant state variables xi, x;
and x; asymptotically exponentially converge towards
the auxiliary variables x4, X24, X34, independently of
the control inputs v.

The “energy shapping plus damping injection” con-
troller design method is based upon regarding the
auxiliary system (3.5) as an exogenous system which
is capable of “pulling” the plant trajectories towards
desired equilibria. Notice that the auxiliary variables
X14 and x3, are also relative degree (1, 1), minimum
phase, variables themselves and, hence, they are also
passive variables on which desired trajectories, x;'(f),
x3(f), can be imposed at will. The corresponding
feedback controller can be computed, in this case, by
straightforward system inversion, without any risks
of having a closed loop unstable system. Furthermore,
since the auxiliary system is created by the designer,
the auxiliary system state variables can be given any
set of convenient initial conditions in correspondence
with the prescribed trajectories. The resulting zero
dynamics of the controlled auxiliary system is repre-
sented by the closed loop evolution of the variable
X24, which for convenience we denote by £ from now
on. The required control inputs v; and v, are, there-
fore, obtained from (3.5) as

v = %7 (e) + k(x3)€ + (k(x3) + B)x1(r)
= Ra(x1 = x7 (1)),
vy = X5 (£) +¢x3(8) — Ra(x3 — x3(1)).
Wher: the feedback loop is closed around the auxil-
iary system with the control law (3.9), it is also closed
on the nonlinear plant, given that the auxiliary system

shares the control inputs with the plant. Since the ini-
tial conditions, x14(%0), X24(f0), X34(to) of the auxiliary

(39



Passivity Versus Flatness

system are chosen at will, those corresponding with the
passive outputs may be prescribed as xy,(f9) = x; (t0)
and x3q(t0) = x3(t9). Hence, the auxiliary variables
x14(t) and x3,(¢) identically follow the open loop pre-
scribed signals x; (¢), x5 (?), irrespectively of the evolu-
tion of the plant state x(¢) and the auxiliary system
remaining variable £(f). The initial condition for x5,
i.e., X24(to) =£(to) may be arbitrarily chosen and its
evolution, representing a minimum phase outputs
stable zero dynamics, is determined by

€ = k(x3)x; (1) — BE + Ra(x2 — £). (3.10)
Equation (3.10), in combination with (3.9), effectively
represent a dynamical feedback controller for the ori-
ginal plant.

The controlled motions of x, were seen to converge
towards those of ¢ and these, in turn, are seen to con-
verge, according to (3.10), towards, & = k(%;)%; /8,
with %} and X being the desired final equilibrium
values prescribed by the planned trajectories x;(f)
and x;3 (¢). This, however, is the same equilibrium point
for x,, as it can be deduced from (2.5).

Notice that, in the ideal case, when the initial states
of the plant precisely coincide with the initial states
of the auxiliary system and these, in turn, are set,
precisely, at the initial values of the passive outputs
prescribed trajectories and, of course, there are no
external perturbations and no plant parameter varia-
tions, then the controller state £ exactly coincides with
the ideal trajectory of the plant state x; = x3(¢) and,
naturally, the passive outputs x, and x; exactly coin-
cide with the prescribed trajectories, x'(r) and x;(¢).
Under these conditions, the nominal passivity based
controller satisfies the following expressions:

v () =% () + k(x3 ()% (1)

+ (=5 0) + B ), @)
50) = 550 + 45 )

with
G0 =500 -KEDHO:

up(r) = v3(¢) = ak(x3(8)x7 (1).

3.1. An Equilibrium Transfer Via Trajectory
Planning for the Passive Outputs

The control objective consist in regulating the states
from a given constant stable equilibrium point at

7

time 1, X(fl) = Xin = (2“,,,22;.,,23;,), towards a
second, unstable, equilibrium point x(r;) =% =
(®1f, Xy, X3y), in a prespecified amount of time A=
t — t; > 0. This objective may be achieved by means
of a corresponding transfer of the minimum phase out-
puts, x| and x;, from the initial equilibrium values, %;,
and X3, towards the final equilibrium values, % ,and
X3r. Dueto the minimum phase character of the passive
outputs, the regulation of the passive outputs indi-
rectly and stably regulates the remaining variable x,
from the initial equilibrium value x3, towards the
desired equilibrium value x,.

A set of open loop trajectories x; (¢) and x;(r) for
the passive auxiliary outputs x,, and x3,, achieving a
transfer between the two equilibrium points (%1in, X3in)
and (X, Xy), may be specified in terms of suitable
polynomials, as follows:

x{(1) = %iin + [252(' - ")5 - |oso(ﬂ)°

A y
+ 1800(';A")7- 1575(' ;")8
ool (5’

X (%if — Xtin)y

x3(1) = %3in + [252(' — ")5 - 1050(1 - t1)6

A A
+ 1800(‘%:)7— 1575(';A")s
#700( )" - 126( ") ]
X (Eay — E3in)-
(.13)

This particular choice of trajectories for the passive
auxiliary outputs x, and x,,, guarantees that at time
1), the first four time derivatives of x;(r) and x;(z)
are all zero, while at time ¢, the first five time deriva-
tives of the planned passive outputs are also zero, thus
avoiding noticeable discontinuities in the dynamically
generated control inputs u, and u,.

Notice that in the plane of coordinates (x4, X3,), the
above trajectory corresponds to a straight line starting
atthe point (%, £3i,) and ending at the point (%y7, %37).
Eliminating the time parameter ¢ in (3.13) one
obtains

- Xy — Riin -
X3g = X3in + [ilf" ilin] (xla xlm)-

One proceeds to use the dynamical controller (3.9)

and (3.10), with the planned trajectories (3.13),
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along with the inverse of the input coordinate
transformation (3.3).

3.2. Simulation Results

Using the multivariable state feedback control scheme
(3.3), (3.9) and (3.10), the previously described operat-
ing equilibrium transfer was attempted. The initial
stable equilibrium point was taken, after {18] as

£ = (0.002, 1.1,467.8)

while the unstable target equilibrium point was taken
to be

% = (0.7159,0.29,337.1).

The transfer was set to smoothly begin at ¢, = 6 min,
and it was prescribed to be completed at z; = 16 min.
The simulation results, shown in Fig. 3, correspond
to the following set of system parameter values, taken
from [18]

ko =72x 10" k =8700; B=1.1;
a=209.2; ¢=125.

H. Sira-Ramirez

The controller design parameters were chosen as
R,—l = 2; Ra = 2; R,j =2.

The simulations show that the unrestricted passivity
based controller (3.9), (3.10) and (3.13) manages to
achieve the desired equilibrium transfer for all three
plant state variables (x;, X2, x3), but at the expense of
a substantial increase of the feed concentration input
during the transfer maneuver and, also, of an unrealis-
tic feed plus coolant temperature profile. This behav-
iour is independent of the design values Ry, Rg, R
and of the time interval A =t —¢t,. The induced tra-
jectory on the product concentration state variable
X, presents an unacceptably high increase during the
transient phase of the planned equilibrium transfer.
Moreover, when the physically meaningful magnitude
restrictions on the inputs (see [18])

Uy € (U1 miny U1 max] = [0, %] = [0,1.102);
42 € [U2miny Y2max) = [300, 500]

are enforced, the passivity based controller leads the
state trajectories towards an undesired equilibrium
point.

The proposed passivity based controller, with the
prescribed reference trajectories for the passive
outputs, fails to directly achieve the required equilib-
rium transfer within physically meaningful values
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Fig. 3. Simulation results for exothermic reactor unfeasible equilibrium transfer by means of a passivity based controller
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for the control inputs and the product concentra-
tion, specially if the control input magnitudes are
unrestricted.

4. An Exact Linearization Based
Controller for the Multivariable
Reactor Model

4.1. An Equilibrium Transfer Via Trajectory
Plaoning for the Flat Outputs

The equilibrium transfer objective described in the
previous section will now be attempted by means of
a corresponding transfer of the flat outputs, instead
of the passive outputs. The initial equilibrium values,
F(f]) =Pin = X3 and M(f]) = Min = X3jp, Will be
transfered towards the final equilibrium values,
F(n) = i}- =Xy and M(1) = A?/= Xy. Thanks to
the absence of zero dynamics for the flat outputs,
and the static relationship (2.5), the regulation of the
flat outputs indirectly, and stably, regulates the
remaining variable x,, from the initial equilibrium
value, x,;,, towards the desired final equilibrium value,
xi7. Both values are uniquely determined from the
corresponding equilibrium values F, M, of the flat
outputs, as in (2.5).

A set of open loop trajectories F*(f) and M*(¢) for
the flat outputs Fand M, achieving a transfer between
the two equilibrium points (Fin, Min) and (Fy, M),
may be specified in terms of suitable polynomials as
before. The next step is to impose on the flat output
tracking errors, ep(t) =F— F°(t) and ey(f)=M—
M*(2), the following linear, time-invariant, asymptoti-
cally stable behaviours:

Er(t) + a1ép(r) + ager(r) =0,

@.1)
én(t) + boen(r) =0,

where the sets of coefficients {a;,ao} and {bo} are
chosen so that the corresponding polynomials in the
complex variable s,

Pr(s) =s*tais+ap; pu(s)=s+by (42)

are both Hurwirz polynomials, i.e., with all their roots
having strictly negative real parts.

The specification of the tracking errors dynamics
(4.1) and the use of the expressions for 4, and u,
in (2.3), results in the following feedback controller
explicitly based on the off-line specification of the flat

outputs reference trajectories:
_F () —ai(F —F'(9)) — ao(F = F*(1)) + BF
Bk(M )

. 11 k(M)
+(+0) | 5+ gy~ Ay

uy =M (£)— bo(M — M* (1)) + qM
—a(F+ BF).

u

(4.3)

4.2. Simulation Results

Using the multivariable state feedback control scheme
(4.3), the above described operating equilibrium
transfer was attempted between the same operating
equilibrium points as in the previous section, and using
the same system parameter values for the reactor
system.

For simplicity, we prescribed for the flat outputs
similar time polynomials, as those used in the previous
section. These were set to be

F(t)=Fa+ [252(' _")’_ 1050(‘ —n)‘

a A
+ 1800 (% _A")’— 1575(" Z")’
+700(* ;")9 ~126(° —An)"']
28 (F}_En),

M*(1) = Min + [252(%)5 - 1050(‘ 1r1)6
+1800(t_Atl)7—1575(t1“ s
+ 700(’ ;n)g = 126(‘ ;tl)w]
X (M/ —Mm).
(4.4)

The controller design parameters were chosen so
that the polynomial pg{(s) had, both, roots located at
the point, —2 + 0f, of the real axis in the complex plane,
while the only root of the polynomial py,(s) was set to
lie at the same point —2 + 0j of the complex plane i.c.

ay=4; ay=4; by=2.

The simulation results shown in Fig. 4, clearly show
that the linearizing controller based on flatness
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Fig. 4. Simulation results for exothermic reactor feasible equilibrium transfer by means of planned flat outputs trajectory

tracking errors linearization.

manages to suitably transfer the high-temperature
equilibrium point towards the intermediate témpera-
ture unstable equilibrium point. This maneuver is
achieved thanks to the fact that the control actions
result in a suitable “cooling off” of the reactor. This
is achieved without shutting off the reactant concen-
tration at the feed and, also, without saturation of
any of the two control inputs, nor obtaining unrealistic
state behaviour or unfeasible control manoeuvers.

5. A Passivity Based Controller with
Planned Flat Outputs Trajectories

In order to combine the physically oriented nature of
the passivity based controller with the demonstrated
effectiveness of the LF controller, the passivity based
controller (3.3), (3.9) and (3.10) was still implemented
but now making use of the relation existing between
the flat outputs F and M and the passive outputs x,
and x3, as given by (2.3)

_F+pF

x|—m; X3 =M.

(5.1)

Thus, instead of directly using the planned trajectories,
x7(¢) and x3(¢), in the passivity based controller (3.9)
and (3.10), these were substituted by

F' () +BF (1)

0= "m0

() =M'() (52)

with the planned flat outputs, F*(f) and M*(s), given
asin (4.4).

The proposed PF controller basically forces the
state variables x; and x; to follow the natural image
trajectories that correspond with the planned flat out-
puts trajectories, F*(f) and M°(s), via the differential
parameterization allowed by the flatness property of
the system. Therefore, in essence, a similar type of
behaviour, as obtained in the linearizing tracking error
controller of the previous section, is expected for the
product concentration variable x,, thus avoiding its
inconvenient increase during the operating point
transfer. The fundamental difference of the PF con-
troller with the LF controller, lies in the fact that the
trajectory tracking errors, while still being linear and
asymptotically exponentially stable to zero (see (3.6)),
they no longer obey independent (decoupled) dynam-
ics nor are they time-invariant as in (4.1). In fact, one
of the possible advantages accounting for the simplic-
ity of the passivity based controller is that no extra
effort is needed to decouple the tracking errors or to
make them evolve in a time-invariant fashion. The
PF tends to exploit the system structure by, first,
respecting the natural — usually beneficial — damping
and workless structure of the system, while eliminat-
ing, via partial feedback, only those nonlinear forces
which are locally destabilizing. Secondly, the enhance-
ment of the original damping structure of the system,
through linear, dissipative, tracking error injection, is
carried out only if deemed necessary.

5.1. Ideal Equivelence of the PF and the
LF Trajectory Tracking Controllers

The simulations depicting the performance of the PF
based controller accomplish the proposed operating
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equilibrium transfer, described in the previous section,
exactly in the same manner as the LF based controller
provided no initial setting errors are allowed and. of
course, the same planned trajectories are used for the
flat outputs in both cases. The explanation of this
coincidence in the ideal behaviours is quite simple if
one considers the linearizing controller expressions
(4.3) under the assumption of zero initial tracking
error and no parametric perturbations. Letting
M() = M*(0)=x{(1), F()=F'()=x() and
using the relations (2.3) and (2.4), one obtains from
(4.3), the following string of equalities:

() = F (1)+8F (1)

W‘(‘)) + (F‘(l') +ﬁF‘(!))

KM (0)
~ e )™M “]

1 1
X [E*kw'(:))
_5()+850)

ki) + 0 +0x3()

1 RE)
x [ﬂ+k(x3’(r)) B (0) ’(‘)]

_d (scs(r) +sz(:))
i\ Ak )

+5k(50) +8)570)

- % (1 (6) + (k(xs) + B)x; (1)
+ k(5 () %3 (1) = k(x5 (0) %3 ()
- %(v{(l) k(x3 ()23 (1))

= M"(0) +qM" (1) — o(F' (1) + BF" (1)
= X3(0) + g3 (1) — k(x5 ()X (1)
= v3(1) — ak(x3 ()% (1)

u3(0)

(5.3)

which are just the corresponding expressions for the
passivity based controller (3.3) and (3.9), under ideal
(nominal) tracking conditions, given in (3.11) and
(3.12). For this reason, we do not reproduce the corre-
sponding simulations here and refer to those already
presented in Fig. 4 for the LF controller ideal perfor-
mance. However, the tracking error behaviours of
both controllers is quite different when initial condi-
tions are not ideally set at the operating equilibrium
and the plant parameters vary in an unforseeable fash-
ion during the equilibrium transfer operation.

5.2. Performance Comparison, Under Initial
State Setting Erros and Parameter Variations,
of the LF and the PF Coantrollers

In order to compare the performance of both control-
lers when initial state perturbations are present, we
show in Figs. 5 and 6 the stabilizing features of both
controllers for the same perturbations of the initial
conditions around the initial stable equilibrium point.
We adopted, as a testing condition, a 10% discrepancy
of all the initial states with respect to the ideal initial
operating equilibrium point.

While the PF controller manages to stabilize the
controlled trajectories to the ideal initial conditions,
the response may unrealistically adopt negative tran-
sient values for the reactant concentration if no control
input limitations are enforced. This feature is also
shared by the exact linearization tracking controller,
but for substantially higher perturbations of the initial
conditions. When saturation limits are enforced over
the control input signals, the simulations shown in
Fig. 5 show that the PF controller initially exhibits a
“bang bang” behaviour in both control input signals
uy, 4. This is not the case of the LF controller which,
also after a very fast state transient (not noticeable in
the presented simulations), devoid of controller satu-
rations, proceeds to smoothly reach the nominal oper-
ating value of the control inputs, corresponding to the
initial equilibrium point.

The reasons behind this transient behaviour lies in
the fact that the time varying energy dissipation term
in the reactant concentration subsystem (i.e., the term
of the form: —k(x3)x) tends to be exceedingly large at
the initial operating point. The passivity based con-
troller, with planned flat outputs, does not compensate
this large quantity and rather tends to let the system
“overreact” to initial setting errors thus causing the
control inputs to rapidly reach their saturation limits.
This feature is not present in the LF based controller.
Its closed loop performance is devoid of control satu-
rations. In this respect, the PF controller, although
equally as effective as the LF controller in achieving
the desired transfer is not as well behaved regarding
transient behaviour and respecting saturations limits.
Larger initial state deviations tend to rapidly destabi-
lize the closed loop behaviour of the PF controlled sys-
tem, while that of the linearization based controller is
still well behaved and effective.

The effect of unmodelled, time-dependent, varia-
tions in all of the three constant parameters entering
the description of the reactor model (2.1) was also
investigated. In order to compare the closed loop
performances of the two controllers, we propose
the following “benign” (i.e. smooth and temporary)
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variations of the reactor constants, a, 3 and g, in the  following time functions:

form of gaussian shaped functions, centered, all of 2
them, around the midpoint ¢, of the equilibrium trans- &) =af 1- & _(t—tm)

fer interval, [t), 1), i.e. tm =0.5(¢; + 22), with pertur- alt) =al I~ Kaexp a2
bation durations covering totally, or partially, the

maneuvering interval, [f;,f. We prescribed the for t € [tia, t2a] C [01, 82,
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B(r) = ,3(1 + kgexp(—(t_%)z))
95

forte [ll,s, tzg] C [I;,tz],

2
i) = q(l —k..exp<—"—a§i))
q

for ¢ € [tig, 12q) C [0, 8],

where the constants k,, kg and k, represent the maxi-
mum, instantaneous, allowed percent variation of the
different parameters from their nominal values (these
percentage constants are preceeded by a positive sign,
if the variation is incremental, or by a negative sign, if
it is decremental). The constants, o,, 05 and o, repre-
sent the “spread” of the parameter deviation around its
maximum central value. The proposed parameter vari-
ations were only ascribed to the plant model but not
to the controllers expressions. These parameter varia-
tions, however benign, do cause large state deviations
from the prescribed nominal state trajectories.

The perturbed system responses to the LF controller
actions are shown in Fig. 7. For these simulations we
set: tm =11, [y, 1] =[6, 16] and k, =0.4 (i.e., a maxi-
mum of 40% variation of the exothermicity constant
a), with g, = V0.2 ; k3= 0.4 (i.e., a maximum of 40%
variation of the dilution rate constant f), with o5 =
V0.4 and, finally, k, =0.4 with ¢, = v/0.2. The time
intervals of validity of these perturbations were set
10 be [f14, 22] =8, 14}, [115,225] =[6, 16] and [t1g, £20] =
[6, 16). In spite of the large state deviations caused by
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the parameter perturbations, and the fact that one of
the control input u, saturates for a significant amount
of time, during the transfer maneuver, the closed loop
response manages to recover the desired control objec-
tive without deviating towards undesirable equilibria.

The PF controller is not capable of sustaining the
same extent of plant parameter deviations proposed
for the LF controller. In fact, the computer simula-
tions corresponding to the above specified perturba-
tions brake down during the perturbed transfer, due
to an exceedingly large instability of the closed loop
response. A closed loop response, which still achieves
the desired equilibrium transfer, is shown in Fig. 8.
The parameters defining the plant parameter pertur-
bations were set to be, in this case, as tn,=11,
[t1, 2} =6, 16] and k, =0.06 (i.e., a maximum instan-
taneous deviation of only 6% of the exothermicity
constant a), with ¢, = v0.2; k3 =0.06 (i.e., a maxi-
mum of 6% variation of the dilution rate constant
B), with o5 =+0.4 and, finally, k,=0.05 with
o, = V0.2. The time intervals of validity of these per-
turbations were set to be the same as in the previous
case. Notice that in spite of the small values of the
parameter deviations, the control inputs behaviours
nearly match those corresponding to the linearizing
controller (which sustains a perturbation nearly seven
times larger!).

The LF controller exhibits superior recovery
features and robustness, with respect to the pro-
posed parameter perturbations, than the PF based
controller.
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Fig. 7. Closed loop performance of linearization plus flatness controller with reactor model subject to unmodelled
parameter variations (40% maximum instantaneous variation in all parameters).
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6. Conclusions

In this article two “stabilization by tracking” control
schemes have been presented which achieve a desir-
able, but otherwise troublesome, equilibrium transfer
in an exothermic chemical reactor subject to control
input saturations. The differential flatness of the non-
linear multivariable reactor model is suitably exploited
for establishing the main properties of the nonlinear
plant and, also, to obtain a suitable static equilib-
rium parameterization which is helpful in the trajec-
tory planning aspects of the proposed regulation
approaches. Within this viewpoint of stabilization by
tracking, three feedback controllers were tested. A
passivity based controller with directly planned trajec-
tories for the passive outputs, an exact feedback linear-
ization tracking error controller, based on off-line
trajectory planning for the flat outputs, and, finally,
a passivity based controller using passive outputs
reference trajectories which are images, under the dif-
ferential parametrization map implied by flatness, of
the suitable planned trajectories previously prescribed
for the flat outputs; The directly designed passivity
based controller was shown to fail in the realistic regu-
lation of the system, while, both, the proposed linear-
izing controller and passivity based controller
performed quite well. However, superior behaviour,
regarding robustness to initial state setting errors
and plant parameter perturbations, was exhibited by

the exact linearization controller, based on flatness,
over the passivity controller, based also on flatness.

The treated example has been recently examined
from the perspective of “discontinuous plus hybrid”
control schemes, with very interesting global asymp-
totic stabilization results. While the globality of our
results is not discussed, controller saturations may be
present for equilibrium transfers between distant
operating equilibrium points. In this context, however,
the stabilization by tracking approach can still be ren-
dered valid by exploiting the off-line trajectory plan-
ning alternative combined with flatness. Flatness
represents a valuable asset in such off-line planning
tasks, thanks to the complete information provided
by the underlying differential parametrization map.
This readily allows to check for saturation conditions
of nominal control inputs and the possible compliance
with restrictions of the corresponding nominal state
trajectories. In this same respect, a recently developed
technique, known as “control of the clock”, imposed on
the tracking error dynamics may also be of great help
in off-line trajectory planning tasks based on flatness
(see Fliess et al. [6], and also Bitauld et al. [2] for inter-
esting theoretical details and illustrative examples).

The approaches here presented may be extended to
the class of multi-input, or muiti-reactant, chemical
reactor systems treated in [18), since it can be shown
that these models are also differentially flat and
passive.
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Appendix

The definitions presented in this appendix are
taken from some published articles and books.
Those referred to differential flatness are taken, most
notably, from the articles by Prof. M. Fliess and his
coworkers [4, 5], where the reader is referred for fur-
ther details. The concept of passivity and feedback
passivation is found in Byrnes et al. [3] and also in
Ortega et al. [11] (see also [17].

The term “variables” is taken to mean arbitrary
functions of time. Differential equations are under-
stood to be defined with respect to time differentiation.

Definition A.1. A finite set of variables, collected in a
vector £, are said to be differential functions of a second
set of variables, represented by the vector y, if each
component of £ is expressed in terms of the compo-
nents of y and of a finite number of their time deriva-
tives. We express this fact, with some abuse of
notation, by writing

= E(y!j'r'-"y(a)) (A’)

with a being a certain integer. a

Definition A.2. Let y be a set of m variables. We say
that the components of y constitute a set of differen-
tially independent variables if there is no differential
equation relating the components of y. O

Consider a nonlinear system of the form x = f(x, ),
x€R", ucR™. Suppose a set of variables y are
known to be differential functions of the state, i.e.,
y =n(x, %,...,x#+) for some integer 5. Then, in
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accordance with the prescribed system dynamics, such
a differential function may be, generally speaking,
written as

y =12, %0, XY = p(x,u, i, ulP).
(A2)
Definition A.3. A nonlinear system, with output vec-
tor z, given by

x = f(x,u);
x€ER,

z = h(x),
zER, ucR" (A.3)
is said to be differentially flat if there exists a set of m
differentially independent functions of the state, called
the flat outputs, denoted by the vector y (i.e., y =
W(x, 4t ...,u#)), such that all system variables
(i.e., states x, outputs z, and inputs u) are, in turn, ex-
pressible as differential functions of y. In other words

x=A(3: 50, ¥ u=B(y, ...,y
z= C(y,j....,y“')).
(A4)

a

Such a collection of differential maps is called a
differential parameterization of the system variables,
x,z,u, in terms of the components of y. Note that the
number of flat outputs, m, coincides with the number
of control inputs.

It should be remarked that, except for a certain col-
lection of cases, no general criterion is known to exist
which systematically may characterize a given system
as a flat system. Flat outputs, however, usually enjoy
a physically clear meaning (see [5] for details). Flatness
represents an extension of the notion of linear control-
lability into the realm of nonlinear systems.

A given differential parametrization, such as (A.4)
also allows for a static parametrization of the systems
equilibria of the form

A(ﬁv 0, vee ’0) = j(y.))

B(y.o,...,O) = E(f)t
c(7,9,...,0) = C(5).

(A.5)

[~ ]
Il

Definition A.4. Let a component z; of the output vec-
tor z of a differentially flat system be differentially
parametrized by z; = Ci(»,7,...,5) with equilib-
rium value Z; = Ci(7). The output z is said to be a
(weak) minimum phase output around a given equilib-
rium value ; if, at least locally, the implicit differential
equation

5= C,-(y,j',...,y(“)) (A6)

H. Sira-Ramirez

is (stable) asymptotically stable, around the constant
solution y = 7.

If an output is not locally minimum phase or weakly
minimum phase, then it is called a nonminimum phase
output. The dynamics Ci(, 7, ...,y®) = 2 is usually
addressed as the zero dynamics associated with the
output z,. (m|

It should be clear that the flat outputs do not exhibit
a zero dynamics, this is addressed by saying that the
flat outputs have a trivial zero dynamics. This fact is
exploited in the indirect regulation, and trajectory
tracking tasks, for non-minimum phase outputs
(see [8)).

Let ¥(x) be a smooth positive definite scalar func-
tion, which satisfies ¥(0) =0. Consider the nonlinear
system with output vector z

% =f(x,u);
x€ R,

z = h(x),

ueR" zeR" (A7)

i.c., the system is a square system.

Definition A.S The square system (A.7) is said to be
passive from the inputs u towards the outputs z, if,
irrespectively of the initial state value x(t), the net
increase of V(x), for any input vector u(¢) defined on
{to, T), is shown to satisfy, on any finite time interval
{t0, T'], the inequality constraint

T
V(x(T)) = V(x(ts)) < /h 2T ((u(r) dr.

a

Equivalently, the system is said to be passive if the
following “inifinitesimal version” of passivity is satis-
fied along controlled trajectories of the system (A.7)

V(x) <z'u Vu.

In such a case, the output vector z is said to be con-
stituted by a set of passive outputs. Roughly speaking,
it has been shown in [3], for the case of nonlinear sys-
tems which are linear in the control inputs, that a
necessary and sufficient condition for a set of outputs
variables, z, to qualify as passive outputs, they must be
vector relative degree equal to {1, 1,...,1} and weakly
minimum phase. In other words, the first order time
derivative of the vector z is related to the set of inputs,
u, via a square and invertible matrix and the corre-
sponding zero dynamics is stable. For further details
and implications of the notion of vector relative degree,
the reader is refered to Isidori [9].



Passivity Versus Flatness

Definition A.6. A system of the form X = f(x,u);
z = h(x), with equilibrium state %, and corresponding
equilibrium input and output values, given by
(x,u,2) = (%,i,2), is said to be locally equilibrium state
detectable if there exists a neighbourhood, x, of %, such
that for all initial states x € x, the motions of the sys-
tem £ = f(€, ), with £(to) = x, which are restricted to
the manifold Z = {&: h(¢) = 2}, for all +>0, locally
converge to the equilibrium point, %. If the neighbour-
hood x is all of the state space, then the system is said
to be globally equilibrium state detectable. Similarly,
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a system is said to be locally equilibrium state observa-
ble if there exists a neighbourhood x of %, such that for
all xe x, the motions of the system £ = f(£, &), with
£(t) = x, which are restricted to the manifold Z =
{& h(§) = 2} are the trivial motions, £ = %, for all
t>0. If xis the whole state space then the system is
said to be globally equilibrium state observable.

The equilibrium state detectability property is inti-
mately connected with the possibilities of regulation
by means of output feedback, in place of state feedback

(see [3D.



