Sliding mode-based adaptive learning in dynamical-filter-weights neurons
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A sliding mode control strategy is proposed for the synthesis of an adaptive learning algorithm in a neuron whose weights
are constituted by first-order dynamical filters with adjustable parameters, which in turn allows the representation of
dynamical processes in terms of a set of such neurons. The approach is shown to exhibit robustness characteristics and
fast convergence properties. A simulation example, dealing with an analog signal tracking task, is provided which

illustrates the feasibility of the approach.

1. Introduction

The discrete-time context has dominated all pro-
posed adaptive learning strategies in neuron-based
feedforward neural networks of the multilayer per-
ceptron type. The celebrated Widrow—Hoff delta rule
(Widrow and Lehr 1990) constitutes a least-mean-
square learning error minimization algorithm by
which, under certain conditions, an asymptotically
stable linear dynamics is imposed on the underlying
discrete-time error dynamics. Using quasi-sliding
mode control ideas (Sira-Ramfrez 1991), a
modification of the Delta Rule was proposed in
Sira-Ramirez and Zak (1991), whereby a switching
weight adaptation strategy is shown also to impose a
discrete time asymptotically stable - linear learning
error dynamics. This algorithm “is the basis of
recently proposed dynamical systems identification
and control schemes based on neural networks
(Colina-Morles and Mort 1993, Kuschewsky e al.
1993). An entirely different viewpoint in neuron-based
adaptive learning has been recently proposed by
considering a class of problems defined on analogue
(i.e., continuous time) adaptive neurons. In correspon-
dence with such a setting, continuous time—rather
than discrete time—adaptive weight adjustment needs
to be tackled. From such a continuous time viewpoint,
the design of learning strategies in adaptive analogue
neurons, using the perspective of sliding mode control,
has been addressed in the work by Sira-Ramfrez
and Colina-Morles (1995). The relevance of ordinary
differential equations with discontinuous right-hand
sides, or varable structure systems (Utkin 1978),
was analysed in Li et al. (1989), also in the context
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of analogue neural networks of the Hopfield type
with infinite gain non-linearities. In that work, it is
established under what circumstances sliding mode
trajectories do not appear in the behaviour of such a
class of neurons,

In this article the continuous time sliding mode
control approach for the adaptation of time-varying
neuron weights is briefly revisited, closely following the
exposition in Sira-Ramirez and Colina-Morles (1995).
Motivated by the dynamical character of the resulting
sliding mode control solution, we proceed to propose a
new type of neuron, referred to as the ‘dynamical filter-
weights neuron’, where all weights are substituted by
first-order, linear, time-varying dynamical systems. The
weight adjustment manoeuvres, from a sliding mode
perspective, are now to be carried upon the time-varying
‘gains’ and the time-varying ‘time constants’ of the pro-
posed ‘dynamical filter weights’, which in turn simplifies
the representation of dynamical processes in terms of a
set of dynamical-filter-weights neurons. On such a dyna-
mical structure for the neuron weights, the sliding mode
control strategy results in a versatile, simple, and easy
to implement adaptation algorithm. The basic features
of the proposed approach are not only fast convergence
but also robustness with respect to unknown external
perturbation inputs. Such advantageous features are,
in general, characteristic of sliding mode control
adaptive schemes.

Section 2 contains the fundamental definitions,
assumptions and derivations of the main characteristics
of a sliding mode control approach for adaptation in
dynamical-weights neurons. Section 3 includes a formu-
lation to show the robustness characteristics of the
adaptation algorithm with respect to bounded external
perturbation inputs. Section 4 contains an illustrative
example exploring the behaviour of the proposed dyna-
mical weight adjustment algorithm in an output signal
tracking problem. Section 5 contains the conclusions
and suggestions for further research.
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Figure 1. Neuron model.

2. Adaptation in dynamical-weights neuron
2.1. Background results

Consider the neuron model depicted in figure 1,
where x(t) = (x,(¢),...,x,(t)) represents a vector of
bounded time-varying inputs, assumed also to exhibit
bounded time derivatives, i.e.

Ix(ll = \od(e) +- - +x2() SV, 1
(@l = () +- - +2(1) < Ve Wt

where ¥, and V, are known positive constants.

We denote by #(t) the vector of augmented inputs,
which includes a constant input of value b # 0, affecting
the ‘bias’ or ‘threshold’ weight w,,; in the neuron
model, i.e.

#(0) = col (x; (1),...,x,(),b) = col (x(1),b) (2)

The vector w(t) = col (wi(1),...,wa(t)) represents a
set of dynamical weights. It will be assumed that, due to
physical constraints, the magnitude of the vector w(t) is
bounded, |lw(¢)] < W Vi, for some constant W.
We also define the vector of augmented weights o by
including the bias weight component

@(t) = col (w (1), - walt).wasr (1))
= col (w(t),wm (1)) ®)

Similarly, ¢(¢) is assumed to be bounded at each instant
of time ¢ by means of

B0 = yed(t) +- +uA() +uda () S H Ve ()

for some constant W.

The scalar signal y4(t) represents the time-varying
desired output of the neuron. It will be assumed that
ya(t) and y4(t) are also bounded signals, i.e.
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The neuron output signal yo(¢) is a scalar quantity
defined as:

7)) = 2 w0 +unn (0

=W (Ox(0) +wnn (b = 2" (2()  (6)

We define the ‘learning error’ e(t) as the scalar quantity
obtained from

e(t) = yo(t) - ya(0) )

Using the theory of ‘sliding mode control of variable
structure systems’ (Utkin 1992), we propose to consider
the zero value of the learning error coordinate e(t) as a
time-varying sliding surface, i.e.

sle()=e()=0 ®

Equation (8) is, therefore, deemed as a desired con-
dition for the learning error signal e(f) and one which
guarantees that the neuron output yo(¢) coincides with
the desired output signal y4(r) for all time ¢ > # where
t, is called the ‘hitting time’.

Definition 1: A sliding motion is said to exist on a
sliding surface s(e(¢)) =e(f) =0, after time 1, if the
condition s(t)i(1) = e(¢)e(t) < 0 is satisfied for all ¢ in
some non-trivial semi-open subinterval of time of the
form [t,0) € (—o0, )

It is desired to devise a dynamical feedback adapta-
tion mechanism, or adaptation law, for the augmented
vector of variable weights ((f) such that the sliding
mode condition of Definition 1 is enforced.

Let ‘sign e(r)’ stand for the signum function, defined
as

+1 fore(t)>0
for e(f) =0 )
-1 fore(t)<0

signe = 0

We then have the following result:

Theorem 1: If the adaptation law for the augmented
weight vector G(t) is chosen as

)= -(%)ksign ()

(B

-\ Eeime®  (10)



with k being a sufficiently large positive design constant
satisfying

k>Wve+v, (11)

then, given an arbitrary initial condition (0), the learning
error e(t) converges to zero in finite time, t,, estimated by

h<—OL (12)
k—WV,—V,

and a sliding motion is sustained on e(t) = 0 for all t > t,.
Proof: Sec Sira-Ramirez and Colina-Morles (1995). (J

Note that the proposed dynamical feedback adapta-
tion law for the vector of weights in equation (10) results
in a continuous regulated evolution of the vector of
dynamical weights o(t).

Note also that if the quantity #(¢) is measurable, one
can obtain a more relaxed variable structure feedback
control strategy than the one obtained in (10). Generally
speaking, such an adaptive fecdback strategy for the
dynamical weights requires smaller design gains k to,
obtain a corresponding sliding motion (see Sira-
Ramirez and Colina-Morles 1995).

The proposed solution for ¢(t) in (10) is, necessarily,
aligned with the augmented vector of inputs %(¢). The
total disregard for the effect of the scalar signal y4(¢) in
the above adaptation scheme arises from the implicit
assumption that such a signal is not, generally speaking,
measurable in practice, nor can it be estimated with
sufficient precision. The previous theorem indicates
that as long as y,(f) is bounded, the adaptation policy
always manages to bring the learning error to zero in
finite time.

2.2. Dynamical-filter-weights neuron

Consider a neuron in which the traditional adjust-
able weights have been substituted by first-order, linear,
time-varying, dynamical filters described by

yi=a(yi +K(Ox(t); i=1,....n (13)
where the time-varying scalar functions a(t); i=
1,...,nand K;(t);i =1,...,n play the role of adjustable
parameters. For lack of better names, we will im-
properly refer to such parameters as ‘time constants’
and ‘gains’, respectively, in parallel with the traditional
terms associated with time-invariant counterparts (see
figure 2).

As in traditional neurons, x(f) = (x;(s),...,%.(t))
represects a vector of bounded time-varying inputs,
also assumed to possess bounded time derivatives. We
define the vectors a(f) and K(¢) as n-dimensional vectors
constituted by the ‘time constants’ and ‘gains’, i.e.
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Figure 2. Dynamical-filter-weights neuron.

a(t) = col (g, (1), .. ,a.(1)) }

K(t) =col (K (1), .., Ka(t))

The vector y(t) is constituted by the outputs of the dyna-
mical filters acting as weights, p(t) = (»1(t),. .., »a(1)).
The scalar signal ys(¢) represents the desired output
of the neuron and constitutes the signal to be tracked
by the neuron scalar output yo(r). The output of the
neuron, yo{t), is given by

() =% () (15

(14)

It is assumed that the set of dynamical filter weights,
characterized by the vector y(¢), has an initial condition
vector given by y(f). The learning error, denoted by
e(t), is the scalar quantity defined by

e(t) = yo(t) — yalt) (16)

As in the traditional case, it is desired to derive a feed-
back adaptation law for the adjustable parameter
vectors a(t) and K(r), such that the learning error e(r)
reaches the value zero for any initial condition— repre-
sented by the vector y(fp)—of the dynamical flter
weights. Moreover, it is desired that once the learning
error reaches the value zero, such a value is sustained for
the remaining time horizon.

In the following theorem we assume that the external
signals y4(t) and y4(t) are bounded as in equation (5).

Theorem 2: If the adaptation laws for the adjustable
parameters of the dynamical filter weights are chosen as

[ a(t) ] __{( Wsige(t) y(t)] (1)
(1) PO +1Ix (> Ax()

with W being a sufficiently large positive design constant
satisfying W >V, then, given any arbitrary initial con-

dition yo(to), the learning error e(t) converges to zero in
finite time ty, estimated as
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Figure 3. Computer simulation results (W = 5): learning error (e()), neuron output (y.,(l)), desired output (yd(r)).
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and a sliding motion is sustained on e(t) = 0 for all t > t,.

Proof: Compute the time derivative of the learning
error as

) = z 71(0) = 74(0)

= 3 @) + K@) - 740

i=1

= )+ KO0 -3
OIS
) <01 | 5400

= —yy — Wsigne(r)

where the last equality is obtained after substitution of
the proposed parameter adaptation laws (17). Evidently,
for all e(r) #0,

e(t)e(r) = —e(t)ya(r) — Wle(0)l
<le()V, — Wie(o)l
=—le()I(W-V¥;) <0

The learning error e(f), thus satisfies a differential
equation with discontinuous right-hand side whose
solution exhibits a sliding regime in finite time 1,
(Utkin 1992). O

A relaxed version of Theorem 2 is obtained if one
assumes that the signal y,4(¢) is measurable.

Theorem 3: If the adaptation laws for the adjustable
parameters of the dynamical filter weights are chosen as

[ a(f) ] _ ffalt) — Wsign (1) y(f)]
K@ \yOr + 1= Ax¢)
with W being a sufficiently large positive design constant,

then, given an arbitrary initial condition yo(ty), the learn-
ing error e(t) converges 1o zero in finite time t,, given by

(18)
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Figure 4 Dynamic neuron parameters and filter output w=

gains (k;(t

= [vo(to) ;/}’d (10)! (19)

and a sliding motion is sustained on e(t) = 0 for all t > t.

Proof: The proof is immediate upon realizing that
the controlled learning error satisfies the following
differential equation with discontinuous right-hand

side 8(t) = —W sign e(s) @)

and hence a sliding regime exists on e(f) =0, since
e()e(t) = —Wle(t)) <0 for all non-zero e(t). The
sliding regime is reachable in finite time # given by
|e(0)l/W, as can be inferred from the time integration
of (20). o

3. Robustness features

Consider an unmeasurable norm-bounded perturba-
tion vector n(t)= (m(1),...,m(¢))" which additively
affects the neuron input vector x() (i.e., the neuron
input vector x(r) corresponds to the state vector of a

5;: filter outputs (;(1)), filter time constants (a,(¢)), filter

dynamical system). The magnitude of n(¢), is not larger
than the magnitude of x(¢), i.e.

lIn()l = 3 (@) +-- - +n3(e) SV, < Ve Ve (21)

Note that the ith component of the measurable input
vector may be represented as

&(0) = x;(e) +ni2) (2)
which is also a bounded signal. This is
@l = VEQ++80<ve @)

Under these circurstances, if equation (17) is rewritten

a(t)1_ _ [ Wsigne(t) ()
[K(t)] qy(!)ll2 +le@n? 18(1)
then Theorem 2 holds true.

On the other hand, note that equation (17) suggests
that both a(t) and K(¢) are bounded vectors (ie.

(24)
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Figure 5. Computer simulation results (W = 5) in the presence of additive white noise.

()l < Vg Ve and |la(t)ll < V, V1) and therefore, if
only the undisturbed input vector x(t) is available for
measurement, and the unmeasurable norm-bounded
perturbation vector n(¢) still affects the neuron input
in an additive manner, then Theorem 2 holds valid if
the design gain W satisfies

(25)

W>V,+ ViV,

In this case, the learning error e(t) converges to zero in
finite time #,, estimated as

< 'yo(l) - yd(l)l
W+ Vy - VKV,.’

(26)

th

4. An illustrative simulation example

Consider a neuron consisting of three first-order,
linear, time-varying filters acting as weights through
their adjustable time-varying parameters. Suppose,
furthermore, that the input signals x;, x, and x; to the
neuron are known constants. It is desired to track the
scalar signal

.Vd(l) = A sin wt cos 2wt

with 4 =04, w =10 [rad/s]} by means of the output,
7o(6) = »1() +y2() +73(t), of the neuron, specified
by the sum of the filter outputs y;, y,, y3 constituting
the dynamical-weights neuron. The adaptive algorithm
used to adjust the ‘gains’ and the ‘time constants’
was not fed with any information regarding the
time derivative of the signal y4(r). Figures 3 and 4
depict the computer simulation results for this
example when the design gain W was selected as
W = 5. The components y;, y, and y; of the neuron
are seen to be bounded signals as well as the
adaptation parameters constituting the three-dimen-
sional vectors a(¢) and K(f). The learning error e(t) is
seen to converge rapidly to zero in spite of lack of
knowledge of y4(¢).

Finally, figures 5 and 6 show the performance of
the dynamical-filter-weights neuron when its inputs
are corrupted by additive white noise sequences of
different amplitudes. In order to smooth out the
natural chattering generated by the discontinuity present



yi(t) y2(t) y3(t)
0.4 0.1 -=0.1
0.3 0.05 -0.12
0.2 0 -0.14
0.1 -0.05 -0.16
0 -0.1 -0.18
0 0.5 1 0 0.5 1 0 0.5 1
ai(t) a2(t) asd(t)
1 0.6 0.4
0.4 0.2
0.5
0.2 0
0
0 -0.2
-0.5 -=0.2 —0.4
0 0.5 1 0.5 1 0 0.5 1
k1(t) k2(t) k3(t)
2 2 1
0 0 0
-2 -2 -
-4 -4 -2
0 0.5 1 0 0.5 1 0 0.5 1
time(s) time(s) time(s)

Figure 6. Dynamic neuron parameters and filter output (W = 5) in the presence of additive white noise.

in the ‘sign’ function, we substituted such a function, as
is customarily done, in sliding mode control practice by
the approximating function

e(r)
Te()l +¢

with e taken to be a small constant of value ¢ = 0.01

5. Conclusions

In this article, a sliding mode feedback adaptive
learning algorithm has been proposed for a special
class of neurons with first-order, linear, time-varying,
dynamical filters acting as ‘weights’. The sliding mode
strategy was used here in the context of an output signal
tracking problem. Research is under way to test the
feasibility of implementing more complex tasks, such
as direct and inversc dynamics identification, using a
smoothed version of the parameters’ behaviour, when
the unknown process is subjected to external perturba-
tions which introduce chattering into the estimated time-

varying parameters of the filters. As in the traditional
analogue neurons case, the sliding mode learning algor-
ithm robustly drives the learning error to zero in finite
time. The approach is also highly insensitive to bounded
external perturbation inputs. The assumptions made
about the bounded nature of external input signals
and desired outputs, as well as of their time derivatives,
are quite standard in relation to adaptive neuron ele-
ments.

Extensions of the results to more general classes
of dynamical filters multilayer network arrangements
is being pursued at the present time, with highly
encouraging results.
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