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Abstract. A simplified model of the hovercraft system, used in the literature to illustrate nonlinear control options
in underactuated systems, is shown to be differentially flat. The flat outputs are given by the position coordinates
with respect to the fixed earth frame. This fact is here exploited for the design of a dynamic feedback controller
for the global asymptotic stabilization of the system's trajectory tracking error with respect to off-line planned
position trajectories.
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1. Introduction

The control of a ship having two independent thrusters, located at the aft, has received
sustained attention in the last few years. The interest in devising feedback control strategies
for the underactuated ship model stems from the fact that the system does not satisfy
Brockett’s necessary condition for stabilization to the origin by means of time-invariant
state feedback (see Brockett, [1]). Reyhanoglu [13] proposes a discontinuous feedback
control which locally achieves exponential decay towards a desired equilibrium. A feedback
linearization approach was proposed by Godhavn [6] for the regulation of the position
variables without orientation control. In an article by Pettersen and Egeland [8), a time-
varying feedback control law is proposed which exponentially stzbilizes the state towards
a given equilibrium point. Time-varying quasi-periodic feedback control, as in Pettersen
and Egeland [10}, has been proposed exploiting the homogeneity properties of a suitably
transformed model achieving simultaneous exponential stabilization of the position and
orientation variables. A remarkable experimental set-up has been built which is described
in the work of Pettersen and Fossen {11]. In that work, the time-varying feedback control,
found in [8], is extended to include integral control actions, with excellent experimental
results. High frequency feedback control signals, in combination with averaging theory and
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Figure 1. The simplified hovercraft system.

coordinates. The vector T = [1y, T3, 73] denotes the control forces in surge and sway
and the control torque in yaw. The matrix C(v) is the matrix of Coriolis and centripetal
forces.

Consider the simplified version of the underactuated hovercraft, shown in Figure 1. A
mathematical model for such a vessel can be directly derived, as already done in Fan-
toni et al. [9], from equations (2.1)~+2.3) by enforcing the following simplifying assump-
tions

dy
my=my, p=myt, =0, n=mus, dy=d3=0 = — 24
2
The assumption, my; = my, implies that the vessel is assumed to be symmetric with respect

to the axes u and v. We have also assumed that the hydrodynamic damping coefficients,
d\y and ds3, are both zero. This latter assumption does not affect the flatness property.of the
system, on which we base our feedback control design. Secondly, if these damping terms
were actually present, they can be readily compensated by partial state feedback through
the matched control input forces, 7 and 3.

We thus obtain the following model of the underactuated hovercraft vessel system,

X = ucosg —vsing

y = using+ vcosy
o =7
u=vr+r7,

v = —ur— v

r = T, (2.5)
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We have the following proposition

PROPOSITION 2.1 The model (2.5) is differentially flat, with flat outputs given by x and y
i.e., all system variables in (2.5) can be differentially parametrized solely in terms of x and
y, as

¢ = arctan (i—%ﬁ—)
L o FG4BN) 450 +87)
VGE+ B0+ (5 + By)?
. yE - 1§
VE+ B0+ G + By’
L= YOG+ B0 — 1D + By) + (55 — 4)
(% + B + (G + By)?
X = (X 4 Bx) + §(j + By)

VE+ B + (G + By
YO E + 1) — x9G + By) + B (yV£ — xP5) - B2 (xPy — yP4)
(F + )2 + (5 + By)?
[Y®E + B1) - xDG + By) — BAEy — ji5)]
_, X [E+BHGED + 85 + G+ N0 + 5]

PR (2.6)
[G+ 852+ (5 + 83)?]
Proof: From the first two equations in (2.5) we readily obtain
v = ycosg —xsing
u = xcosg + ysing Q.7

Differentiating now the first two equations in (2.5) with respect to time. This yields, after
use of (2.5) and (2.7)

X = ucose —ugsing — vsing — vpcosp
= t,cos¢ + Busing

¥ = using +upcosp 4+ vcosp —vgsing

T, sing — Bvcosgy (2.8)

Multiplying the first equation in (2.8) by sin ¢ and the second equation by cos ¢ and then
subtracting the obtained expressions we obtain, after use of (2.5),

ising — jcosp = Bu 2.9

Similarly, multiplying the first equation in (2.8) by cos ¢ and the second by sin ¢ and adding,
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we obtain
T, = Xcos¢ + ysing (2.10)

Substituting now the first of (2.7) into (2.9) one obtains, after some algebraic manipula-
tions

tang = % —> ¢ = arctan (i—:t%) 2.11)

Using (2.11) in (2.7) we obtain,
s JEHBH -G +BY) _ yi = iy
VE+ B2+ G +B9)?  JE+B)+ (G +By)?

(2.12)

and
= x(x + Bx) + y(i + BY)
VGE+ B+ (G + By
Substituting in (2.10) the value of ¢, obtained in (2.11), leads to the expression for the force

input, t,, given in the proposition. Finally, we make use of the fact thatr = ¢ and 7, = ¢.
]

(2.13)

Remark 2.2. Notice that once ¢ and v are obtained as differential functions of x and y, the
rest of the hovercraft system variables can also be expressed as differential functions of ¢
and v. Indeed, from (2.5) we obtain,

r=g¢
v
u = —=

(7
i — v .
T, = —( ‘p.z ¢)+v¢
®

Itis clear that all system variables are expressible as differential functions of the flat outputs.

The differential parametrization of the input torque 7, depends up to the fourth order
time derivatives of, both, the flat outputs, x and y. Notice, however, that the corresponding
parametrization of the control input t, only depends up to the second order time derivatives
of x and y. This simple fact clearly reveals an “obstacle” to achieve static feedback
linearization and points to the need for a second order dynamic extension of the control
input 7, in order to exactly linearize the system.

Remark 2.3. Use of (2.5) allows the following (simpler) expressions for the control inputs
7, and f,, in terms of the system's state variables, the highest order derivatives of the flat
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outputs x and y, and first order extensions of the control input t,.
. - y@® cosg — x# sing — Brr, — 2rt, — 28r2v — Bur + Bv 2.15)
T Bu + 1, ’

x® cosp + y¥ sing + 28ur? + 28%rv - Bur, +rlt, (2.16)

T,

3. Trajectory Tracking for the Hovercraft System

Suppose a desired trajectory is given for the position coordinates x and y in the form
x*(t) and y*(t), respectively. The following proposition gives a dynamic feedback solution
to the trajectory tracking problem based on flatness and exact tracking error lineariza-
tion.

PROPOSITION 3.1 Letthe set of constant real coefficients {«, a3, a3, s} and {y1, 2, ¥3, ¥a}
represent independent sets of Hurwitz coefficients. Then, given a set of desired trajecto-
ries x*(t) and y*(t), for the position coordinates, the following dynamic feedback con-
troller

. = ¢cosp —Esing — prr, — 2ri, — 28riv — Blur + gv

r But 1 3.1H
t, —rir, = tcosg + dsing + 2Bur® + 28%rv - Bur, (3.2)
= "0 — ez = x*@(0) - a3(F - £ (1)) — ez — £*(1))
—ap(x = x*(1) 3.3)
¢ = ¥y 0 - n0o® -y P0) - nG -5 0) - rnG -y )
-nly—=-y"@) (34)

with
X =ucosep —vsing
y=using +vcosg
X = Busing 4 r,cos¢
¥ =1,8inp — Bvcose
x® = —[r(Bu+ 1) + p*v]sinp + (Brv + t,) cos g
y® = [r (Bu + 1) + Bv]cos g + (Brv + &) sing G5

globally exponentially asymptotically stabilizes the tracking errors e, = x — x*(t) and
e, =y —y*(t) to zero.
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Proof: Subtracting the controller expression, for #, in (3.1), from the open loop expression
in the Remark 2.3 we obtain, after some simple algebra,

[ + el +asé; + ez + a,e,] cosg + [e§‘) + y4e‘y3’ + v3éy + 1aéy
+ yle,] sing =0 (3.6)

Proceeding in a similar fashion with respect to the corresponding closed and open loop
expressions for 7., one finds:

- [ei" + me?’ + a3é; + a8y + a,e,] sing + [e§,4’ + y4e§3) + y3éy + V2éy
+n e,] cosp =0 3.7

Then, clearly, the tracking errors satisfy the exponentially asymptotically stable fourth order
dynamics
eid) + 0489) + o3, +azé; +ajey = 0

e + 7ae® + y3éy + 12éy + 11y =0 3-8

4. Simulation Results

Simulations were carried out to evaluate the performance of the proposed feedback controller
for two common trajectory tracking tasks: The first trajectory consisted of a straight line
passing through the origin of earth fixed coordinates. A second trajectory was proposed
as a circular trajectory, defined in the earth fixed coordinate frame, of radius p, centered
around the origin.

4.1. Tracking of a Straight Line

We particularized the developed dynamic feedback controller for the case of tracking a
straight line passing through the origin of the fixed earth frame. The hovercraft must follow
this line at constant surge speed while moving away from the origin of coordinates. The
path is given by the following parametric equations,

x*(t) =at, y'(t)=bt 4.1

For this particular choice of x and y, the nominal hovercraft orientation angle ¢*(¢) is given
by the constant value,

@*(t) = ¢* = arctan (g) 4.2)
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Figure 2. Feedback tracking of a straight line trajectory.

The nominal surge, sway velocities and the nominal yaw angular velocity are given, by

u* = a2+ b2cos(p* —0) = va* + b,
v () = Val + blsin(p* —0) =0 r*(t) =0 4.3)

with @ = ¢* = arctan(b/a).
The nominal applied inputs are found to be given by the following constant values

(1) =0, (1) =0 44

We have chosen the following parameters for the reference trajectory, the system, and the
feedback controller

a=1, b=l, ﬂ=1.2, a4=b4=4. d3=b3=6, dz=b2 =4, ay =b|=1

which result in 8 = 7/4 rad. Figure 2 shows the closed loop trajectories for the state
and control input variables of the hovercraft system. We set the initial conditions for the
system significantly off the initial point, (0, 0), of the desired trajectory. We used, x(0) =5,
y(0) = 2. The initial hovercraft orientation angle was taken to be ¢(0) = m/2 Notice that
along the prescribed trajectory, fu*(t) + t(t) = Bv/a? + b7 £0.
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Figure 3. Feedback controlled position coordinates for circular path tracking.

4.2. Tracking a Circular Trajectory

A circular trajectory, or radius p, is to be followed in a clockwise sense in the plane (x, y),
with a given constant angular velocity of value w. In other words, the flat outputs are
nominally specified as,

x*(t) = p coswt, y'(t) =p sinwt 4.5)
For this particular choice of x and y, the nominal orientation angle ¢*(t) is given by

wsinwt — fcoswt
wcoswt + Bsinwt

" (1) = arctan ( ) = arctan(tan(wt — 6)) = wt — @ (4.6)

with # = arctan(8/w).
The nominal surge and sway velocities and the nominal yaw angular velocity are given,
according to (2.7) and the fact that r = @, by the following constant values

u'(t) = —pwsing, v*(t) =pwcosh, r*(t) = w 4.7

Similarly, using (2.10) and the fact that r, = ¢ we obtain that the nominal applied inputs
are given by the following constant values

1)(t) = —polcosh, 17 (1) =0 4.8)

Notice that for the chosen trajectory, the nominal value of the quantity Bu + t,, appearing
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Figure 4. Feedback controlled velocity variables for circular path tracking.

in the denominator of the controller expression for t,, is given by

Bu+ 1, =—pw(wcosf + Bsinf) = —pwvp? +w? #£0

We have chosen the following parameters for the reference trajectory, the system (with the
same parameters previously used for the tracking error feedback controller)

p=5 0=01 =12

which result in 8 = 1.487 rad, r, = —4.18 x 10~3?

Figure 3 depicts the controlled evolution of the hovercraft position coordinates when the
vessel motions are started significantly far away from the desired trajectory. In this case we
set; x(0) = 0.7, y(0) =0, ¢(0) = 1.3 [rad). Figure 4 shows the corresponding surge, and
sway velocities as well as the yaw angular velocity. Figure 5 contains the angular position
evolution and the applied external inputs.

4.2.1. Robustness with Respect to Unmodeled Perturbations

In order to test the robustness of the proposed controller, used for the circular path maneuver,
we introduced in the non-actuated dynamics (i.e., in the sway acceleration equation) an
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Figure 5. Feedback controlled angular orientation and applied inputs for circular path tracking.

unmodeled external perturbation force, simulating a “wave field” effect, of the form
1 .
Alx) = A[sin(fx)+§cos(zrfx)]. (v=—ur — v+ A(x))

with A = 0.6 and f = 10. The results of the simulation are shown in Figure 6.

5. Conclusions

In this article, we have shown that the underactuated hovercraft system model, derived
through some simplifying assumptions from the general surface vessel model, is differen-
tially flat. This property immediately allows to establish the equivalence of the model, by
means of dynamic state feedback, to a set of two decoupled controllable linear systems. A
trajectory planning, combined with trajectory tracking error dynamic feedback lineariza-
tion, allows to obtain a direct feedback controller synthesis for arbitrary position trajectory
following. The design was shown to be robust with respect to significant perturbation forces
affecting the non actuated dynamics.

The hovercraft system model is specially suitable for passivity based feedback control, as
already remarked by Fossen (5] and, indirectly, carried out in [9], from a Lyapunov stability
theory based control strategy. A fact that can be suitably exploited is that the hovercraft
model can be placed in Generalized Hamiltonian form. The combination of differential
flatness and total energy managing strategies may conveniently resuit in a simple and
efficient feedback control option.
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Figure 6. Circular path tracking performance under unmodeled sustained perturbations.
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