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1 Introduction

Differential flamess is a vsetul structural property exhibited by
many nonlinear systems of practical. or realistic. significance. The
theoretical background of “*flatness™™ has been established in sev-
eral articles by Prot. M. Fliess und his colleagues (see Fliess et al.
{1.2]) from the viewpoints of differential algebra and Lie-
Bicklund transtormations. A system is flar if it can be completely
differentially parameterized by a set of state functions (called the
flat outputs) which are ditferentially independent and equal. in
number. to the control inputs. This property not only greatly fa-
cilitates the teedback controller design task. from any particularly
desired synthesis methodology (passivity. back-stepping. feed-
back linearization, etch. but it is also an interesting analysis tool
(see Sira-Ramirez (3]). Sliding mode control. on the other hand.
represents a quite robust and simple approach which has enjoyed
well gained respect and popularity over the years (see the book by
Utkin [4]). In this article. we use. in the context of a nontrivial
nonlinear multivariable example. the sliding mode feedback con-
troller design option in suitable combination with the differential
flatness property.

We deal with a nonlincar vibration mechanical system which is
differential flat. This system has been studied in an article by
Astolfi and Meini [5] and its linear version represents a frequently
chosen example for the classical, frequency domain, analysis of
mechanical systems and. also. for the active vibration control de-
sign in mechanical systems (see for instance the books by Thom-
son (6] and by Inman [7]). Our motivation stems from an exposi-
tion hy Lévine, (8] in which active vibration damping is proposed
as a fruitful application arca of control theory and tlatness. We
proceed to design a feedback controller based on the advanta-
geous combination of the intrinsic robustness properties of sliding
mode control and the several conceptual advantages of ditferential
flatness. We specifically propose a trajectory planning approach.
which is natural for flat systems. for the active stabilization of the
highly oscillatory. underactuated. nonlinear mechanical vibration
system variables. The system may also be subject to persistent and
significant unmodeled external perturbations. The proposed
scheme suitably combines: 1) the flatness property of the nonlin-
ear multivariable system allowing a useful differential parameter-
ization of all system variables and control inputs. directly leading
to specifications of feasible equilibria and nominai control inputs:
2) an off-line trajectory planning for position stabilization. using
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Sliding Mode Control of Nonlinear
Mechanical Vibrations’

In this article we illustrate how the property of differential flumess can be advantageously
Jjoined 1o the sliding mode controller design methodology for the active stabilization of
nonlinear mechanical vibration systems. The proposed scheme suitably combines off-line
trajectory planning and an on-line *‘smoothed’" sliding mode feedback trajectory tracking
scheme for regulating the evolution of the flat output variables toward the desired equi-
libria. [SO022-0434(00)00404-4]

an intermediate resting equilibrium which effectively introduces
damping to all free, uncontrolled. system vibrations: 3) an on-line
**smoothed-switch™ sliding mode feedback trajectory tracking
controller for regulating the evolution of the flat output variables
from the achieved intermediate equilibria toward the tinal desired
resting equilibria located at the origin of coordinates.

Section 2 presents the model of the nonlinear mechanical vibra-
tion system and demonstrates the flatness of the system. Section 3
develops the exact linearization based feedback controller and ar-
gues its robustness. A sliding mode feedback control scheme is
then proposed which is based on the differential Hatness of the
system. We carry out an off-line trajectory planning which solves
the stabilization problem in two stages: An initial. clutched. inter-
mediate stabilization and a smooth transition toward the resting
desired equilibrium. Thanks to the flatness property. we show that
the proposed sliding mode controller is robust with respect to
external additive perturbations even if they directly act on the
non-actuated mass. Section 4 presents some simulation results
testing the performance of the designed controller with respect to
the control objective and proving the robustness of the feedback
scheme to unmodeled sustained oscillatory perturbations. The last
section is devoted to conclusions and suggestions for further
research.

2 The Noniinear Mechanical Vibration System

2.1 A Nonlinear Mass-Spring System. Consider the me-
chanical system, shown in Fig. 1. constituted by three identical
blocks. of mass m. and three identical nonlinear springs. The sys-
tem is acted upon by two independent forces. denoted by u, and
u, . directly pushing the first and the second blocks. We assume.,
following Astoifi and Menini [5] from where the example is
taken. that the coupling springs are nonlinear springs. character-
ized by the following noniinear **deformation to applied tension’
static relationship:

T(.\:)=L'.t+k v
with k and k, being known constants.
The klncm and potential energies of the system are given by,

1 o
Tg)=5mdi+d:+43)

- L
V(q)=Ek[qﬁ‘(qz—q|)2+(qs—q:)']+ Thlaitta—an?

+(q3—¢2)"]
Application of the Euler-Lagrange formalism. leads to the fol-
lowing multivariable nonlinear controiled system.

mg = k{ _241+‘l:)+kp[_‘l:+(¢lz_¢ln)"]+“|
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Fig. 1 Nonlinear mechanical vibration system

mir=kiqy=2q:+¢)+k,[(¢3=q2) = (927 g ) 1 +uy
2.h

miy=k(g:=g3)Fk,(qg2—qy’

2.2 Flatness of the Underactuated Mechanical System.
The system (2.1) is differentially tlat with Hat outputs given by the
displacement coordinates of the first and the third mass: (¢.¢3).
which we express, respectively, as (F, L). In general. flatness
means that all system variables (i.c.. states and control inputs) can
be differentially parameterized in terms ot the independent set of
tlat outputs and a finite number of their time derivatives. The
number of flat outputs is equal to the number of inputs.

Indeed. under the assumption of perfect knowledge of. gy=L.
the last equation in (2.1) actually represents a reduced cubic alge-
braic equation from where the second mass position coordinate ¢4
cin be obtained. The only real root of such a cubic equation is
readily obtained as

b, . ‘4/.-7-1-#2“7.,,%,;[‘)? "
gr=L+—1k;| 108 mL+12 1("—

6k, 5

, ) a2\ T
k,‘, 108 mL+12\/3 I —

r

-2k

(2.2)

Notice that the differentially parameterized expression for ¢,
in (2.2), implies that its second time derivative, ¢,, can be ex-
pressed as a function denuted by: &(L.L'M.L'"). The control
inputs. u, and w,, can thus be also parameterized in terms of
difterential tunctions of F and L as

uy=mF—k(=2F+q.(L.LN+ k,,[F“—(q;(L.l:)—F)“](z 3

wr=ml+mo(L.L'V, LY —k(F-gq(L.LY) —L',,(F'—q:(l..l:))J

Therefore. all system variables are expressible as differential
Sfunctions of the flat outputs. Some system properties may be ob-
tained from the analysis of such a differential parameterization.

2.2.1 Puarameterization of Equilibria. Let F=F and L=L
be constant equilibrium values for the flat outputs F and L. respec-
tively. The expressions for the corresponding equilibrium values
for the second mass displacement, g,=4q5. and the control input
forces. uy=u,. u=u,. can be directly found from (2.2) und
(2.3). One obtains

2.4
Ty=—k(F-L) =k (F-L)'
Notice that for the particular equilibria: F=0, L=0. we have

¢1=4¢>=4,=0. and also ir;=u,=0.
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3 Sliding Mode Feedback Controller Based on
Flatness

3.1 Flatness and Exact Feedback Linearization. Differen-
tial flatness is naturally related to exact feedback linearization and
it also allows for a rather direct means of trajectory planning in
nonlinear control problems. We illustrate this point by first deriv-
ing the exact linearization controller.

Let s*+y,5'+ 935  + 25+ 7, and s*+aqs+a, be two Hur-
witz polynomials i.c.. they have all its roots in the open left haif of
the complex plane. Given a set of desired trajectories F*(¢) and
L*(r) for the Hat outputs. a multivariable nonlinear feedback con-
troller, based on exact tracking error linearization. may be synthe-
sized as

wy=m(F*— a:(F— F*)—a,(F= F*)] =k(—2F+q.(L.L))
+k[F =g L. = FY]
wy=mLAmd L) —k(F= gy L.L)) =k (F—qa(L.L})
with
O= (L) =y L' = (L)) =y (L= L*) =y L= L*)
—y(L=L")

The use of this controller yields the following set of globally
asymptotically stable closed-loop dynamics for the trajectory
tracking errors, e, =L —L* and ¢, =F— F*,

éptaréptayes=0
ety yaé +yaé e, =0

The above controller. although quite natural and of simple con-
ception, is, nevertheless. quite sensitive to plant parameter varia-
tions and unmodelled external perturbation inputs. For these rea-
sons, we resort to a sliding mode controller which is known to be
quite robust with respect 1o these two classes of perturbations.

3.2 Sliding Mode Controller Design.
surtaces as follows

Detine two sliding

sp=F=FYOFNME-FHO)=érthey o

s =L = (LN D+ B L= L)+ BAL—L*(1))
+ B, (L=L*1))
=el4 B+ Baé +Bie,

where A and the set of real coefficients, {81.8,.8,}. constitute a
set of design parameters to be suitably chosen.
By forcing the two sliding surface coordinates functions, s ¢ and
5. to satisfy the discontinuous closed loop dynamics:
§p=—Wesign(sy), We>0 32)
$ == Wpsign(s,), W, >0

where **sign’" stands for the signum function. one then obtains the
following sliding mode multivariable feedback controller:

uy=m®p—k(=2F+q{L.LY) +k,[F* - (¢a(L.LY - F)*}

3
uy=mL+m(L.LY.0) —k(F=gqy(L.L)) —k,(F— g5(L.L})
with.

Op=F*(1) =N F—F*(1))— W sign(sg) 34
O =(L*)'= BUL N = (L)) = By(L - L*)

=B L-L*—W, sign(s,)
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e e sy posdive constant, and let the
set of real constant coefficients: {B+.81.8,}. constitute u set of
Hurwitz coefficiemts. Then, the nonlinear system (2.1) regulated
by the feedback controller. (3.3), (3.4), with sp and. 5, . given by
(3.1). vields a elobally asymprotically stable closed loop tracking
error dvnumics.

him e (1)=0,

[

lim e, (1)=0

1—x

Proof.

The proof of this proposition is immediate upon realizing that
the trajectories of the imposed closed loop sliding surtace dynam-
ics (3.2), reach the origin of the sliding surface space: s =0 and
s+=0. in a finite umount of time, which, incidentally. only de-
pends upon the design parameters. W,. W, and the initial condi-
tions for s, and 5, . Moreover, the closed-loop motions of s, and
s, stay. indefinitely. at the value zero. This implies that the ideal
sliding motions of the tracking errors. e, =F—F* and ¢, =L
— L*. are governed by the globally asymptotically stable lincar.
time-invariant. set of decoupled dynamics:

épFhe,=0

e+ Baé F Baé +Bre, =0

The result follows.
a
The previous proposition is also valid when in the previously
specified sliding mode controller, the following “*high gain™ ap-
proximation is used in place of the involved signon function:

sy

I (3.5)
[sil+e.

. ) S . )
signlyp)— ————. sign(s,)—

g F |~"I~’l+el~' & 3
with €, and €, heing arbitrary but small positive constants and the
notation **{-|"* denoting absolure value.

The substitution (3.5) is known to yield a closed loop response
with rapid convergence to zero of the sliding surface coordinates
sg and s, . However, it is also known that the corresponding
controller is not as robust as the original sliding mode controller,

with respect to unmodeled input and parameter perturbations.

3.3 Robustness With Respect to Unmodeled External Per-
turbations. Consider the following perturbed model of the non-
lincar mass-spring system

mij=k(=2q,+q2 )k [— gt +Hg—q) 1+u + &0

mé,=klq,— 2"2+‘I.')+kp[(q.‘_‘ll)3_(ql_ql)3]+”2+§1;”)
3.6

mi\=k(q2—q1)Fkp(g—g) &0

where £,(1). (1), and £;(r) represent uncertain external pertur-
bations which are known to be absolutely bounded by known
constants.

supl&(n]=X,, i=123. 3.7

An interesting feature of the flatness-based sliding mode ap-
proach lies in the fact that. in general. the effect of the additive
uncertainties affecting the system will be **matched™ with respect
to the control input channels (i.e.. they will belong to the range
space of the control input matrix). The effect of the uncertain
signals may be traced all the way to the closed-loop system equa-
tions for the tracking errors. These are given by

épthép =€ (1) +Wpesignlsg) (3.8)

eL ' Brel Nt Baé +Bré = E(D)+E I+ W, signis,)
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Itis well known in sliding mode control theory that. by choosing
W,>X, . and W,>X,+X,. a sliding motion is guaranteed 10
exist on the sliding surfaces 5,=0 and s, =0 for any realization
of the perturbation inputs (see Utkin [4]).

We have then the following proposition:

Proposition 3.2. Under the assumptions (3.7} on the perturbu-
tion signals affecting the nonlinear perturbed sysiem. (3.6). The
Jeedback controller. (3.3), (3.4), with sy and s, . given by (3.1),
vields a globally asymptotically stable closed loop tracking error
dynamics.

tim e 1 1)=0.

1=

lim e,(1)=0

e
provided the sliding mode controller gains Wy and W satisfv,

Wo>X,. W, >X+X,.

4 Simulation Results

Simulations were performed on a noniinear vibration mechani-
cal system characterized by the following set of realistic param-
eters identified from an ECP 21072 10a Rectilinear Control System
workbench.

m=050[Kg]. k=217.0(N/m]. k,=63.5[N/m"]

4.1 Control Objectives and Trajectory Planning. The
controlled mancuvers were specified as follows: We let the system
freely oscillate before a certain time. T(,. At this moment. we
engage the feedback control actions. uy and «;. by means of a
“*clutch.”” smoothly increasing the controls amplitudes from zero
1o its maximum value during a (small) time interval, [Ty, T¢/).
The fat outputs references trajectories are planned so that they
have constant nonzero reference equilibrium values. F and L, for
all times prior to a certain time 7T, i.e. in the interval,
(—x.T,]. The control engaging interval is necessarily contained
in the infinite interval. i.e.. [T¢; . T JC(—>.T]. The clutched
controllers are thus engaged to achieve, right after time T/,
asymptotic stabilization of the flat outputs towards the set of
specified constant nonzero equilibrium values, F and L. The first
stage of the stabilization process. started at T, should not last
beyond the time instant T, > T, (see Fig. 2).

At time 7, the final stabilization mancuver of the flat outputs
toward zero is started. The controfler proceeds to drive the flat
outputs £ and L to follow a sufticiently smooth. time-polynomial.
trajectory connecting the achieved constant equilibria. F and L.
with the final rest value of zero for both (lat output displacements.
This last maneuver is specitied to take place in the closed time

Nat ovipul F Snal .
rajectory — "
0.00 . s
Q011 wcorvetea S FI()
-0.024 stage 2000 ppcn . - Tammecen
-0:031 e e ) o
O tmefs] 5 Ta Tor 0uumemsvesm 15
T, 2
" C atrin
8l outout
.00-1 vravectory N »
-g.oﬂ uncantrolied  wan MW L (t)
oozj stage e RE
0.03 0= G e M - e
2 0 2 4 6 8 10 12 14 16
time (s] 1 pryeterimal o
“chach” tunction
1.0 - )
0‘51 *noMINg
0.0! — I
2 0 2 4 6 8 10 12 14 16
time (s]

Fig. 2 A two stage stabilization process, via trajectory track-
ing with clutched control actions
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Fig. 3 Responses of sliding mode controlled mechanical vi-
bration system

interval [T, .7 ]. Evidently. the specificd control objectives result
in u final steady state equilibrium at zero of all the system
displacements,

Figure 3 shows the closed-loop responses of the system'’s posi-
tion variables ¢ . ¢,. and ¢;. to the designed controller mecting
the specified objectives. The figure also shows the applied input
lorces, uy(1), ua(r), and the corresponding sliding surfaces evo-
lutions. s (7). s.(1).

For the simulations shown in Fig. 3. we have chosen a Hurwitz
polynomial r(p). for the closed-loop characteristic pnlynumi.xl of
e, (1) given by the product: r(p)_(p+h)(p’+"§w,,p+w ) with
b, & w,>0. The controller design parameters were set to be.

=08, b=18 w,=20. A=5. W,=5 W,=20.

&=¢,=0.05

According to the described control objectives we specitied the
flat output trajectories as follows:

F for =T,
F*={ F{1—¢pr.T,.T)] for T\<t<T,

0 for t=T,

F for 1<T,

for T\<1<T,
T

with t (+.T.T2) and ¢p(1.T,.T>) being sufficiently differen-
tiable time functions  satistying &, (T,.7,.T)=0 and
W (T>.T, .Tyy=1. For the simulations we used potynomial
splines of the Bezier type in order to have a suttficiently smooth
transter maneuver between the imposed temporary equilibrium

L*(/)=1 Fll—ur.T,.T]
0

for 1=
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Valug uf (Ae COITEsponUIng Mal Output and Zero. FOr SIMpLCILY. e
polynomial splines. ¢, (1. T,.T2) and (1.T,.T;). may be cho-
sen to be identical.

The “‘clutches’’ engaging the designed controllers into full ac-
tion were modeled as time varying factors. K(1) and Ky(¢). mul-
tiplying the expressions of the teedback control inputs as K,u,
and K,us. The clutches were also specitied using polynomial
splines of the Bézier type. which smoothly interpolated between
the values of O and 1.

0 for 1=<T,
(1T Tey)  for Te<t<Te.
| for t=Ty

with i, (T Tei Tep)=0 and & (Tep T Te)=1. for i
=1.2. For simplicity, the time functions. w,(+.T¢;.Tep), i
=1.2. were set to be identical for the two control inputs, and
given by the tollowing polynomial spline interpolating between 0
and 1.

i=172

K=

WnTe. T L] [ ' T“)
S e R
¢ . T(/—I',, T(/’_T(:
=T ): ( =T )}
+r -r
! rc/ Tu ! T('/_TL'i
The constants ry, .. .. ry were suitably chosen to guarantee

smooth departures and arrivals i.e.. with enough time derivatives
being equal to zero at the instants. T, and T

In the simulations shown in Fig. 3. we set: T;=6[s], T,
=75[s]. T\=10[s). T,=14[s]. The intermediate equilibrium

values ul the flat vutputs were chosen to be F=L= —0.03[m].

4.2 Robustness Test. In order to test the robustness of the
control scheme with respect to sustained unmodeled oscillatory
perturbations (such as those obtained from an eccentric actuator)
we used the developed sliding mode controller on the following
perturbed version ot the nonlincar mechanical system:

3;35.%% i ql‘) oos wily gt §
%}%3 ‘M“" oos ||'Ein'(f“‘
0 5 10 15 20 5 0 5 1015 2 &
time 5] time [s]
12y o8 G g
00 il e 2 ;
3% Ml $
0 5 10 15 2 5 ¢ 5 0 15 2 5
time (5] time [s)
% uft ¢
0 ul( H-W\M\ SRAWWAWAY |r si(t)
2 0 W,___
4 X
0 510‘152'625 005 10015 A B
time [5) ﬁm[s]
1500
t) uz i
0 il &Y UL
T . .n.df‘ ‘an”?nffﬂ. .A
0 5 10 15 20 2 0 0 15 0 %
time [s] time [s]

Fig. 4 Responses of sliding mode controlled perturbed me-
chanical vibration system
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m§r=kigqy =24y +q3) +k[1g3=¢2) = (g1~ ¢ ) T+ uy+ vt1)
.1
mq_‘=k(q3—q_1)+k,,(q:—q‘)"+()‘.’.v(l)
with #(7) being an unmodeled sinusoidal perturbation, of signifi-
cant amplitude and a reasonable high frequency. affecting the dy-
namies of the flat vutput. F. and the dynamics of the unactuated
(third) mass. This perturbation was set to be:

v(1)=0.2sin( wt)

whose amplitude is approximately 3.2 percent of the maximum
obtained amplitude value of the two acting forces and w was set to
be 10 [rad/s].

Figure 4 shows the performance of the designed controiler to
the signiticant unmaodeled perturbations.

S Conclusions

In this article. we have developed a multivariable sliding mode
feedback control scheme for the regulation of a realistic un-
damped. underactuated. nonlinear mechanical vibration system.
The sliding mode controller is designed on the basis of the flatness
property exhibited by the nonlincar sysiem. The teedback stabili-
zation problem was approached by solving a trajectory tracking
problem which proposes a two stage tracking process for achiev-
ing the final stabilization. First, the controller accomplishes an on
line regulation of the freely oscillating system toward an’ interme-
diate. and rather convenient. set of constant equilibrium values for
the system’s fat output. Second. the initial stabilization stage is
followed by a smooth planned transfer to the final rest equilibrium
position, located at zero, of the flat outputs. In order to avoid
excessive values. or amplitude saturations, of the applied control
input forces, a “‘clutch mechanism™ was also provided for the
smooth engaging of the designed feedback control actions during
the first stabilization stage.

The main advantage of the approach lies in the suitable combi-
nation of the flatness property and sliding inode control. Flatness
allows for the identification of a special set of physically mean-
ingful output variables. capable of parameterizing all system vari-
ables, including the inputs. The flat outputs are completely con-
trolluble in the sense that their dynamics leave no room for
undesirable transient or permanent effects of the zero dynamics.
The flatness property greatly facilitates the design task and natu-
rally allows for a trajectory tracking approach to solve the stabi-

678 / Vol. 122, DECEMBER 2000

ccunun PIOUICHE. AN Al Juded DOAUS. the fatness ot the system
reduces the problem to controiling the two flat outputs under an
external perturbation matching property. This guards all possible
effects of ummodeled input perturbations through the non-
actuated channel in the system. Sliding mode control. on the other
hand. is a paradigmatic robust and simple feedback control
scheme which provides a centain degree of robustness with respect
to external signals and system parameter perturbations. A disad-
vantage of the approach. which can certainly be circumvented.
lies in the use of state dependent expressions for the higher order
derivatives of the flat outputs.

The demonstrated robustness property was also subject to a
performance tests which included unmodeled persistent oscilla-
tory perturbations. The designed controller managed to satisfacto-
rily vorrect for the effects of these perturbations on the desired
mass positions.

Even though the full feedback controller expression is rather
complex. the simulated performance of the system is rather en-
couraging as to attempt actual experimental implementation.
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