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Static and dynamic sliding mode control schemes for a permanent magnet stepper motor

MOHAMED ZRIBIt*, HERBERTT SIRA-RAMIREZ{ and ANDY NGAI§

In this paper, the sliding mode control of a permanent magnet (PM) stepper motor is addressed from the perspective of
differentially flat systems. Flat systems naturally allow for de-coupled linearization directly leading to static and dynamic
discontinuous feedback control alternatives. Implementation results of the proposed sliding mode control schemes on an
experimental set-up are given to illustrate the developments.

1. Introduction

Due to their inherent robustness properties and
conceptual simplicity, discontinuous feedback control
schemes of the sliding mode type have enjoyed deserved
attention from researchers and practitioners. The funda-
mental results of sliding mode control are found in the
many books already available on the subject. The inter-
ested reader is referred to the books by Emelyanov
(1967), Itkis (1978), Utkin (1978, 1992), Slotine and Li
(1991) and Zinober (1994). In the following paragraph,
we provide a brief review of some of the contributions to
the design of sliding mode controllers for non-linear
multivariable systems.

Sliding mode control of non-linear multivariable
systems has been addressed from different viewpoints.
The method of the Hierarchy of Controls, introduced in
Utkin (1978) addressed the design problem from a
single-input single-output viewpoint by concentrating,
at each stage of the design process, in the creation of a
sliding regime on a particular sliding surface related to
the scalar input under consideration. Sliding mode exist-
ence on such a particular surface was guaranteed by
considering the rest of the control inputs in accordance
with their relative position within an arbitrarily estab-
lished hierarchy. They were regarded either as bounded
perturbations, in their pursuit of their individual sliding
mode creation attempts, or as equivalent (average) con-
trol inputs already causing partial sliding modes. This
method was successfully applied to the control of
robotic manipulators in the work of Young (1978).
Utkin and Young (1978) proposed another method for
multivariable sliding mode control design, constrained
to the case of linear time-invariant systems. This method
is applicable to systems in regular canonical form and it
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is based on utilizing a subset of the state vector com-
ponents as pseudo-control inputs in a linear optimal
regulator control problem. The solution to the optimal
control problem actually represents the desired sliding
surface with prescribed optimality features. A rather
complete solution to the design problem for linear
time-invariant systems was given, from a geometric
viewpoint, by El Ghezawi et al. (1983). The case of reg-
ulation of robotic manipulators renewed the interest in
multivariable non-linear sliding mode controller design.
In this context important coritributions were given in the
works by Slotine and Sastry (1983). The differential geo-
metric approach to the design problem received the
attention of Bartolini and Zolezzi (1986) and Sira-
Ramirez (1988). A rather informative tutorial on sliding
mode control in which the multivariable aspects of slid-
ing mode control were clearly treated was given by
DeCarlo et al. (1988). The work of Kwatny and Kim
(1990) has provided a rather complete picture of the
geometry of the multivariable sliding mode control
problem. A different approach to the multivariable slid-
ing mode control problem for linear systems was given
by Fliess and Sira-Ramirez (1993). In this approach,
module theory is used in a special manner to formulate
and uncover the fundamental differential algebraic nat-
ure of the problem. Sira-Ramirez (1996) addressed the
problem of sliding mode control of multivariable non-
linear systems, from the perspective of linear differential
algebra, for a special class of linearizable systems.
Recently, Young et al. (1999) offered an assessment of
the chattering phenomenon and provided a frame of
reference for future sliding mode control research.

On another front of research, flat systems were first
introduced by Fliess et al. (1922 a, b) and further devel-
oped and characterized in Fliess et al. (1995). Practical
examples of some mechanical systems, such as the truck
and the trailer, the jumping robot, and the crane were
presented in Fliess et al. (1995). In Pomet et al. (1992),
connections of flat systems with non-exact Brunovsky
canonical forms were established. Levine er al. (1996)
used the flatness property of the magnetic levitation
model of a beam to design a non-linear control scheme
for its positioning. Martin and Rouchon (1996) and
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Chelouah et al (1996) proposed a sampling control
strategy for flat systems: this strategy was applied to
induction motors. Rothfuss et al. (1996) exploited the
flatness of a chemical reactor model to design a lineariz-
ing quasi-static feedback controller for it.

Flat systems enjoy the property of possessing a finite
set of differentially independent outputs called lineariz-
ing outputs. The fundamental characteristics which
identify such linearizing outputs are three:

(1) the number of linearizing outputs is identical to
the number of inputs of the system;

(2) all variables in the system, including the control
input variables, can be written, exclusively, in
terms of differential functions of such linearizing
outputs; and

(3) the linearizing outputs can be expressed as differ-
ential functions of the system state vector com-
ponents. This includes the possibility of having
explicit dependence of the linearizing outputs on
the control inputs and a finite number of their
time derivatives.

Flat systems are thus control systems which are
linearizable to controllable linear systems by means of
endogenous feedback, i.e. one that does not require
external variables to the system to be completely
defined.

In this article we propose the design of sliding mode
controllers for a permanent magnet stepper motor. The
design approach is based on the developed theory of
differentially flat systems. An advantageous combina-
tion of sliding mode control strategies and the natural
de-coupled linearization properties, exhibited by differ-
entially flat systems, may be conveniently exploited for
stabilization and tracking problems. As a consequence,
a multivariable robust feedback regulator design tech-
nique arises for non-linear controllable systems. The
possibilities of designing static or dynamic sliding
mode controllers largely becomes a matter of choice
dictated by the physical attributes inherent to the nature
of each control input variable to the system.

The paper is organized as follows. Section 2
contains a brief overview of stepper motors as well as
the non-linear model of the PM stepper motor; in addi-
tion the stepper motor is shown to be a flat system.
Section 3 deals with the design of a static sliding mode
controller for a permanent magnet stepper motor.
Section 4 deals with the design of a dynamic sliding
mode controller for the stepper motor. Section 3
discusses the implementation results of the proposed
control schemes; a brief comparison of the two control
schemes is also provided. Section 6 contains the
conclusion.

2. The stepper motor system
2.1. A brief overview of stepper motors

In recent years, the rapid growth of digital elec-
tronics has indirectly influenced the development of
the stepper motor technology. This is the case because
the ‘digital machine properties’ of the stepper motor
allow it to be easily interfaced with any digital control-
ler. Stepper motors are now widely used in numerous
motion-control applications such as: robots, printers,
process control systems, index table for automatic
assembly machines, etc.

Compared to the conventional methods of using dc
motors for motion control, stepper motors offer the fol-
lowing advantages (Kenjo and Sugawara 1994)

e Stepper motors are highly reliable. This is the case
because stepper motors do not use brushes which
are susceptible to mechanical failure.

e In a stepper motor, there is reduced need to dis-
sipate heat from the rotor because there are no
rotor windings.

e Stepper motors have high torque to inertia ratios.

e Since the rotor of the stepper motor is only sup-

ported by two bearings at the end of the housing,
friction is low in a stepper motor.

Stepper motors can be easily interfaced with digi-
tal systems.

Some disadvantages of stepper motor are:

o Generally, when operating in open loop mode, the
response of a stepper motor has high overshoot
and long settling time, especially when driving
high inertia loads.

e Fixed angle of motion when the stepper motor is
operated in open loop mode (i.e. micro-stepping is
not possible when the stepper is operating in open
loop mode).

Over the years, many control algorithms that can be
used to improve the performance of stepper motors have
been examined. Zribi and Chiasson (1991) developed an
exact feedback linearization control method for control-
ling a permanent magnet stepper motor. In this method,
the exact knowledge of the dynamics of the stepper
motor system is required. Experiments using the exact
linearization controller were carried out in Aieilo et al.
(1991). Since the dynamics of the stepper motor system
may not be fully known, other methods of designing
controllers were developed. Bodson and Chiasson
(1989) and Bodson et al (1993) presented a control
scheme based on feedback linearization with adaptive
rules that can be used to estimate the parameters of
the system. Speagle and Dawson (1993) developed an
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adaptive tracking controller for stepper motors; the
proposed controller yields global uniform asymptotic
stability results for the motor position tracking error
and compensates for parametric uncertainties in the
motor/load model. Most of the above mentioned
schemes require full state feedback. However. in actual
applications, this may not be possible or economical.
Few controllers were therefore developed using partial
state feedback. Speagle er al. (1993) developed a robust
tracking control that does not require current measure-
ment. When this controller is used, the system is able to
achieve global uniform ultimate bounded stability
results for the motor position tracking error. Burg et
al. (1994) developed a global exponential position track-
ing controller using output feedback. However, this
method requires the knowledge of the exact dynamics
of the stepper motor.

2.2. Model of the PM stepper motor

Consider the following model of a permanent
magnet stepper motor (see Zribi and Chiasson 1991)

di, 1 ) .

Q@ _Z(V“ — Ri, + K,wsin (N,6))

diy 1 ,

le= b {(vy — Riy — K, wcos (N,6))

dw 1 o ]

== 7(—K,,,zu sin (N,0) + K,,i, cos (N,8) — Bw— 1)
do

ar ¢

M
where i, is the current in winding A, i, is the current in
winding B, @ is the angular displacement of the shaft of
the motor, w is the angular velocity of the shaft of the
motor, v, is the voltage across the windings of phase A,
and v, is the voltage across the windings of phase B.
Also, N, is the number of rotor teeth, J is the rotor
and load inertia, B is the viscous friction coefficient, L
and R are the inductance and the resistance of each
phase winding, K|, is the motor torque (back-emf) con-
stant, and 7 is the load torque.

Remark 1: The design of the sliding mode controllers
will be performed without taking the load torque into
account. However, it should be mentioned that it is a
straightforward matter to design an observer to
estimate the load torque of the motor; the interested
reader is referred to the work of Zribi and Chiasson
(1991).

Equations (1) which are used to described the step-
per motor model, are highly non-linear. A non-linear
transformation, known as the Direct-Quadrature (DQ)

transformation (see Zribi and Chiasson 1991) can be
used to transform these equations into a form which is
more suitable for designing non-linear controllers. This
transformation changes the frame of reference from the
fixed phase axes to axes which are moving with the
rotor. The DQ transformation is defined as

iy cos(N,8) sin(N,8) 0 0] /i,
iy - sin(N,8) cos{N,8) 0 0|1} )
w 0 0 1 0|jw
0 0 0 0 1]19
In addition, we define the new inputs as
vy cos(N,8) sin(N,9) | |v,
{v‘,] - {— sin (N,8) cos(N,9) VJ )

where v, is the direct voltage, v, is the quadrature volt-
age, iy is the direct current, and i, is the quadrature
current. In terms of these new inputs and new state
variables, the transformed model of the PM stepper
motor, without taking the load torque into account,
can be written as

diy 1

-ﬁ:z@pﬂm+Mu@

di, 1 . .

Tl f(v‘l — Riy = Nwiy — K,w)

o 1 4)
W .

E :7(Kn114 - Bw)

a0 _

dr ¢

One obvious advantage of using the DQ transformation
is that the cosine and sine functions in (1) have been
eliminated. Let

Xy =g, Xp=iy X3=w, X=[x X X3 X4
R K K, B
=2, =2m —2m g
=T k= k=2 k=3
vy v,
ke=N )
5 no W T’ g 13

Then, equations {4) can be written as

X = —k)x) +ksxaxy +uy = f1 +uy
Xy = —ki Xy — ksx X3 — koxs +uy = f +uy
()
Xy = kyxy — kg3
X4= X3
where
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Si =—kx) + ksxyx, (6)
fr=—kyxy = ksxx3 — kyx; (7

and, x) is the direct current, x;, is the quadrature current,
x3 is the angular velocity of the shaft of the motor, and
x, is the angular position of the shaft of the motor. It
should be noted that the model of the stepper motor,
after the change of variables, can be written only with
differential polynomials.

It is desired that the rotor angular position tracks a
given constant reference position ,. It is also desired
that the direct current tracks a given constant reference
direct current, /. Therefore, the linearizing as well as
the controlled outputs of the system are such that

==[l-El .

In the following, we consider the design of a multivari-
able sliding mode controller for a permanent magnet
stepper motor. The system is first shown to be differen-
tially flat with linearizing outputs given by physically
meaningful variables constituted by a combination of
the currents in phases A and B of the motor, and the
rotor angular position of the shaft of the motor. Static
and dynamic sliding mode controllers which stabilize the
system to the required equilibrium point are then
designed.

2.3. Flatness of the PM stepper motor

Within the differential algebraic approach to non-
linear control systems, extensively developed by Fliess
et al. (1992 a, b, 1995) a control system is defined in the
following manner.

Definition 1: A system is a finitely generated differen-
tial field extension D/k, where k is the ground field,
here taken to be the field of real numbers. An input is
a finite set u = {u,...,u,} of D such that the differen-
tial field extension D/k(u) is differentially algebraic.
The control thus qualifies to be a transcendence basis
of D/k.

The following definition gives a formal definition of
differentially flat systems.

Definition 2: Consider a system D/k. This system is
said to be differentially flat if there exists a differential
transcendence basis y ={y,...,y,} of a finitely
generated differential field extension D/k such that the
field extensions D/k(y) and D/D are non-differentially
algebraic.

The differential transcendence basis y = {y,,..., v, }
constitutes a set of linearizing outputs of the system.
These output variables depend on the state of the system

and, possibly, on the control inputs « and a finite num-
ber of their time derivatives.

It is found that the stepper motor system is a differ-
entially flat system with linearizing output coordinates
given by y; = x; and y, = x,. This is the case because all
variables in the system can be written as differential
functions of the linearizing outputs such that,

X1 =0

IS 1. .
X3 =E(-\’3 + kyx3) =7}(}’2 + ko))

(9)

X3= )
X4 =)2

In addition, the control actions can be expressed using
the linearizing output coordinates such that

. ks . N
u =y +ky —k—z(}’z + k4ya) (10)

1 . ky . . ) )
U = k—}(yé '+ ksja) + k—;()’z + ko) + ksy o + koyy

(11)

Since the control inputs to the system u; and u, are
differential functions of the linearizing outputs y;, = x,
and y, = x4, then one may impose on the highest
derivatives of such linearizing output components a
particular linear relation involving only smaller order
derivatives of the same output component. One immedi-
ately obtains the required linearizing controller expres-
sion in terms of the involved linearizing outputs. This
process may implicitly entitle either dynamic or static
feedback control. However, the fact remains that the
definition of the control inputs does not require any
variable which is external to the system.

From the expressions of u; and u, of the stepper
motor system, it follows that the linearized equations
for the system are simply given by

. 3
n=v W=y (12)

In the following section, a multivariable sliding
mode controller which asymptotically regulates the out-

put variables towards their desired equilibrium positions
is proposed.

3. A static sliding mode controller for the stepper
motor

The static sliding mode control design entitles the
specification of the auxiliary, endogenous, control
input variables v; and v, in (12) as sliding mode feed-
back control laws, such that the forced evolution of the
linearized variables asymptotically converge towards
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their desired positions. Due to the physical nature of the
actual control input variables u; and u,, representing
voltage signals for which a switching strategy is entirely
feasible, we will proceed to specify a static sliding mode
controller.

A sliding surface for the tracking of the linearizing
output coordinate y, towards its equilibrium point 7, is
constituted by the direct current stabilization error
given by

1=V —dag =X — g (13)

For the regulation of the second linearizing coordinate,
ya = Xy, a sliding surface expression is proposed which
depicts a desired second order dynamic response for the
controlled angular position y, = x,, towards its desired
equilibrium point §,. We propose that

5= Ja + a1y — 84)
= kyXy — kX3 4+ a1 Xy + (X — 6y) (14)

wherg o) and a; are positive design parameters.

We impose the following sliding mode controlled
dynamics on the evolution of the sliding surface coordi-
nate functions s; and s,

§y=—Wsgn(s) (13)
$; = — Wysgn(s,) (16)
where W, and W, are positive design parameters, and
‘sgn’ denotes the signum function. Using (13) and (14),
the sliding mode dynamics in (15) and (16) yield the

following required dynamics of the linearizing output
coordinates y; and y,,

yi=—Wsgn(s) (17)

3 . .
W+ s + aody = —Wysgn(sy) (18)

Note that these equations guarantee sufficient regularity
for y) and y,. Using (12)~(18), one immediately obtains
the auxiliary control inputs v, and v, as

vy =—Wsgn(s)) (19)
v = —ay i, = aapr — Wasgn(s) (20)

Using (10), (11), (17) and (18) and because of the flatness
of the system, one can immediately compute the
required actual control inputs 4, and u,

ks . . .
uy =—Wisgn(sy) +ky, “k—j}’z(}’: +hay)  (21)

1 . }
Uy = E[(kl + ks — ay)jr + (kiks — )y,

— Wysgn ()] + ksy 1 v2 + ko (22)

The obtained static sliding mode control inputs can be
expressed in terms of the original state variables of the
system (5) by simply substituting the linearizing coordi-
nates ¥, and y,, and their time derivatives, in terms of
the original state variables. After some straightforward
algebraic manipulations. we obtain the following expres-
sions for the static discontinuous feedback controllers

u==Wysgn (s;) +kxy — ksxoxs (23)

Uy = Kk xq + ks X3 + kyxy + kyXy —ax,
1
_k_3[k§x3 —ajkyxs + 0oXy + Wasen (5)] (24)

The previous analysis allows us to state the following
theorem. Let

=X = dg

2 = k3.\'2 - k4,\'3 + apxy + 02(_\'4 - 9{/)

Theorem 1: The following discontinuous static feed-
back controller when applied 10 the stepper motor
system (5)

up= —Wysgn (s)) + kyx; — ksxaxs

Uy = kyxp + ksx X3 + kaxs + kgxy —a)x,

1
- E[kih — aykyXy + anxy + Wysgn (s;)]
asympiotically stabilizes the outputs of the system to their
desired values.

Proof: Taking the derivative of (13) and (14) with
respect to time and using (5), (7), (23) and (24), one
would obtain

s=—Wsen(s) (i=12) (25)

The trajectories associated with the unforced discontin-
uous dynamics (25) exhibit a finite time reachability to
zero from any given initial condition s,y (i = 1,2) pro-
vided that the constant gains W, (i= 1,2) are chosen to
be strictly positive. Thus, the closed loop dynamics in
(25) corresponding to i = 1, guarantees finite time reach-
ability of the desired motor current equilibrium value
14 The closed loop dynamics in (25) corresponding to
i = 2, implies a second order controlled response for the
angular position x4. Since s; is driven to zero in finite
time, the linearizing output y, = x4 is governed, after
such a finite amount of time, by the second order
dynamics j, + ay; + aa(y2 — 84) = 0. The output y,
will then converge to its desired value 6, because a,
and o« are positive. Hence the static sliding mode con-
troller guarantees the asymptotic convergence of the
outputs to their desired values. O
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The next section illustrates the design of a
dynamic sliding mode controller for the PM stepper
motor.

4. A dynamic sliding mode controller for the stepper
motor

From simulation results, chattering is observed when
the sliding mode controller designed in the previous
section is used. The chattering is due to the basic
assumption in variable structure control that control
can be switched from one value to another at any
moment and with almost zero time delay. However, in
practical systems, it is not easy to achieve such switching
control (Young et al. 1999). This is the case because of
two reasons. Firstly, there are time delays due to com-
putations of the control actions. Secondly, there are
physical limitations on the actuators used in the plants.
It should also be mentioned that at steady state, chatter-
ing might cause oscillations about the desired equilib-
rium point of the system; these high frequency
oscillations may excite the unmodelled high frequency
dynamics of the system. In order to reduce the chatter-
ing induced on the linearizing coordinates y, and y, by
the bang-bang nature of the proposed static sliding
mode control signals u, and u,, we propose a dynamic
sliding mode control scheme. It should be noted that
dynamic sliding mode controllers have been used pre-
viously to attenuate chattering; for example see the work
by Sira-Ramirez et al. (1994).

Using (5)—(8), we can write

Jr=—ki(fi +u) + ks(fo + up)x3

+k5(k3.\'2 - k4.\'3).\'2 + l}|

= fi+iy (26)
where
Sy ==k + ) + ks(fy + ug)xy + ks(kyx, — kgx3)x,
(27)
Similarly

A = —(iky + kyka) (fo + ) — ksks(fy + )3
= (ksksxy + koky — k3)(kyxa — kgx3) + kyitn

= fo+ ksyity (28)
where
Ja=—(kyky + ksky) (o + up) — kaks(f; +up)x;

= (kksx) + kaky — k§)(k3xy — koXy) (29)

A sliding surface for the tracking of the linearizing out-
put coordinate y, towards its equilibrium point I, is
chosen as

o =+ N0 =Ly
= —k\x; + ksxaxy 4+ up+ N (xy = Ty)  (30)

where I, is the desired value of I, and X\’ is a positive
design parameter.

For the regulation of the second linearizing coordi-
nate, y, = x4, a sliding surface expression is proposed
which depicts a desired third order dynamic response for
the controlled angular position y, = x4, towards its
desired equilibrium point x, = §,. We choose
(3)

oy = )"23 +aij; + azpr + a3(yy — 8y)

= —k|k3.\‘2 - k3k5.\'|X3 - k2k3X3 + k;uz
+ (af = k) (ksxz — kqx3) + agxy + a3(xg —6,)

(31

where 6, is the desired value of 9 = x,; the constants
al, a; and o} are chosen such that the polynomial
s +ais’+ajs+aj is Hurwitz. We impose the
following sliding mode controlled dynamics on the
evolution of the sliding surface coordinate functions o,
and o,

6 =—Wsgn (o)) (32)
G, = — Wy sgn (03) (33)

where W/ and W, are positive design parameters.
Using (26)—(33) and after some manipulations, we
obtain

by = —f; = N(fy +u,) — W/ sgn (o)) (34)
o
i = k—)[—fex = af(ks fy = kykgxs + kixy + ksuy)

— ag(kyxy —kex3) —asxy; — Wisgn(o;)]  (35)

The equations in (34) and (35) constitute the
equations for a dynamic sliding mode feedback
controller. Such a controller is then characterized by
the solutions of the underlying differential equations
for the control inputs u; and u,. Indeed, the previous
equations may be immediately rewritten as time-varying
non-linear ordinary differential equations, with discon-
tinuous right-hand side, for the original control inputs
uy; and u,.

The above analysis allows us to state the following
theorem. Let
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Figure 1.

oy = —kix; +hsxpxg+ uy + M (= Iy)
0y = —kykyXy = ksksx\x3 — kykyxy + kyu,
+ (a1 = kg)(kyxg = kax3) + azx; + ad(xe — 8)
Si = —kix) +ksxoxg
Ja=—kixy — ksx x5 — ko
Si= =R+ w) + ks(fy + ug)xs + ks(kyx — kaxs)x,
Ja= —(kiky + kakg)(f2 + ug) = ksks(fy +uy)x;
= (ksksxy + koky — k3)(kyxy — kyxy)
Theorem 2:  The following dynamic feedback controller
when applied to the stepper motor system (5)

=== N1 +u)— W sgn(o)

U =

1
k_l[_f‘t —aj(ksfy — kskexy + kixy + kau)

— aj(kyx, —kgxy) — a3x; — Wi sgn (oy)]

asymptotically stabilizes the outputs of the system to their
desired values.

Proof: Taking the derivative of (30) and (31) with
respect to time and using (5), (7), (34) and (35), one
would obtain

6;i=-W/sen(a)) (i=12) (36)

The trajectories associated with the unforced discontin-
uous dynamics (36) exhibit a finite time reachability to
zero from any given initial condition ¢;(0) (i = 1, 2) pro-
vided that the constant gains W/ (i = 1,2) are chosen to
be strictly positive. Since o, and o, converge to zero in

Overall system.

finite time, we will obtain after such a finite time
n==No—Iy) and P =—alj, —aby, - a3
(¥2 — 6,). Because of the choice of \', af, a4, a), we
are guaranteed that y; =1, will converge to I, and
y2 =8 will converge to 8§, in finite time. Hence the
dynamic sliding mode controller guarantees the asymp-
totic convergence of the outputs to their desired values.

O

5. TImplementation results of the sliding mode
controllers

The designed static and dynamic sliding mode con-
trollers are implemented using an experimental set-up
depicted in figure 1. The system consists of a PM stepper
motor, different loads to be attached to the shaft of the
motor, drive circuitry, two current sensors, an optical
encoder and a controller board. The two controllers
are implemented using a digital signal processor
(DSP). The algorithms for the two controllers are
written as C programs and then compiled into assembly
codes. These codes are then downloaded into the DSP
(which resides on a controller board) from the
computer.

The block diagram representation of the overall
system is shown in figure 2.

The motor used in the implementation is a unipolar
hybrid permanent magnet stepper motor (Vexta, model
PH268-22B). The motor has a shaft at both of its ends.
Therefore, the attachment of different loads and an opti-
cal encoder to the shaft is simple. A driver circuit is
required to interface between the controller board and
the PM stepper motor. This is the case because the per-
ipheral sub-systems of the controller board have very
low current capabilities. An optical encoder is used to



110 M. Zribi et al.

‘f“t—-u Controller = Pn\te
L Circuitry

Stepper Optical Encoder
Motor Current Sensors

Figure 2. Block diagram of the overall system.

measure the position of the PM stepper motor shaft.
Two current sensors are also used to measure the cur-
rents supplied to the two coils of the PM stepper motor.
The measured data is then fed back to the controller
board for processing. An observer is used to estimate
the angular velocity of the shaft of the motor; see the
work of Chiasson and Novotnal (1993). The brain of the
system is a digital signal processor (the DS1102 floating
point processor board which is based on Texas
Instrument TMS320C31 floating point Digital Signal
Processor).

The parameters of the system are needed for imple-
mentation purposes. The least square estimation tech-
nique (see Blauch er al. 1993) was used to estimate the
motor torque constant, the inertia constant and the
coefficient of viscous friction. The other parameters
are either measurable or are supplied by the manufac-
turer. It is found that these parameters are such:

R=19.1388Q, L=40mH, K, =0.1349Nm/A,
J =41295 x 10"*kgm?, B =0.0013Nm/rad/s and
N, = 50.

The objective of the implementation is for the shaft
of the motor to rotate by one step (one
step = 1.8° = 0.031 42 radians) as fast as possible and
with the least amount of overshoot (critically damped
response). Such a behaviour is a typical representation
of fast and accurate positioning for robotic applications.

To simulate the different loads experienced by the
stepper motor, different weights are attached to the
shaft of the motor by an extension arm of about 6 cm.
It is found that the maximum load the motor can drive is
1060 g. For this implementation, several loads are used
to simulate different loads on the motor. The results
shown in this paper correspond to loads of 105g and
880 g.

The design parameters for the static controller are
chosen such that W, = 1000, W, =7 x 10°, & =550
and a; =7.5x 10*. The design parameters for the
dynamic controller are chosen such that W, = 2000,
Wj=55%x10", A'=480 and of =1250, o=
47 x 10%, a} = 5.2 x 107. Obviously the choice of these
parameters is not unique. However, because of the hard-
ware limitations and the required specifications the
parameters have been chosen as given above.

The implementation results are given in figures 3-6.
It can be seen from the figures that the state variables

converge towards their corresponding equilibrium
points when the static and the dynamic sliding mode
control schemes are used. Figures 3 and 5 depict the
implementation results when the static sliding mode
controller is used with loads of 105g and 880 g. It can
been seen from these two figures that the angular posi-
tion of the shaft of the motor converges towards its
desired value (1.8° = 0.03142 radians) in less than 0.1s
when the load is 105 g and in less than 0.2s when the
load is 880 g. As expected, the settling time is longer for
heavier loads. In addition, the response of the angular
position of the shaft of the motor is critically damped in
both cases. The currents in coils A and B, the voltages
v, vy, as well as the sliding surfaces are also shown in
figures 3 and 5. It should be noted that because of the
hardware constraints, the input voltages v, and v, are
restricted to the range of 0-12 V. The control inputs v,
and v, are seen to exhibit a discontinuous behaviour of
the bang-bang type caused by the existence, in finite
time, of a sliding regime on the intersection of the pro-
posed stabilizing sliding surfaces s; = 0 and 5, = 0. The
controlled angular position trajectory x4, is seen to be
quite smooth, due to the fact that a third order integra-
tion separates the bang-bang control input u, from the
angular position x4. However, chattering is quite strong
on the regulated motor currents, since only one order of
integration separates the bang-bang control input u;
from the regulated variable x,. Figures 4 and 6 depict
the implementation results when the dynamic sliding
mode controller is used with loads of 105 g and 880 g.
It can be seen from these two figures that the angular
position of the shaft of the motor converges towards its
desired value (1.8° = 0.031 42 radians) in less than 0.15s
when the load is 105 g and in less than 0.2s when the
load is 880 g. In addition, the response of the angular
position of the shaft of the motor is critically damped in
both cases. The currents in coils A and B, the voltages
Vs Vp, as well as the sliding surfaces are shown in figures
4 and 6. The control inputs v, and v,, the currents and
the sliding surfaces are seen to exhibit substantially less
chattering than in the static sliding mode control case.
Note that all the state variables asymptotically converge
to the desired equilibrium points.

The responses of the angular position of the shaft of
the motor when the static and dynamic sliding mode
controllers are used are depicted in the same plot; the
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Figure 4. (a) Actual responses of the motor when the dynamic sliding mode controller is used (with a load of 105 g). (b) Actual
switching surfaces and actual dynamic sliding mode controllers (with a load of 105 g).
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(a) Actual responses of the motor when the static sliding mode controller is used (with a load of 880 g). (6) Actual
switching surfaces and actual static sliding mode controllers (with a load of 880 g).
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open loop response is also shown in that plot. Figure 7
shows the plots when the load is 105 g; figure 8 shows
the plots when the load is 880 g. From these two figures,
it can been seen that closed loop plots are far superior to
the open loop plots. In addition, the response of the
shaft of the motor, when the dynamic sliding mode con-
troller is used, is slightly better than the one when the
static sliding mode controller is used. In summary, it can
be.concluded that the closed loop operation of the PM
stepper motor system with the static and the dynamic
sliding mode controllers is found to be working very well
under different loading conditions.

6. Conclusion

In this article we have used multivariable sliding
mode controllers to control a PM stepper motor.
Sliding mode controller design is shown to be greatly
facilitated by resorting to the differential flatness of the
system. The method presented constitutes a systematic
means of sliding mode controller design, which largely
solves the problem of obtaining de-coupled linearizing
sliding modes. At the same time the approach is quite
permeable to dynamic extensions of the system. This
fact and the flatness of the system naturally results in
the possibilities of proposing dynamic multivariable
sliding mode controllers for non-linear controllable
systems. An added bonus of resorting to the flatness of
the system is the fact that the obtained sliding mode
controllers are entirely endogenous. Implementation
results of the developed controllers on an experimental
setup illustrate the developed theory.
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