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A reapproach to chaotic systems synchronization is presented from the perspective of passivity-
based state observer design in the context of Generalized Hamiltonian systems including dis-
sipation and destabilizing vector fields. The synchronization and lack of synchronization of
several well-studied chaotic systems is reexplained in these terms.

1. Introduction

Synchronization of chaotic systems has received a
lot of attention from mathematicians, physicists
and control engineers in the last decade. Three
special issues [1997a, 1993, 1997b] of major jour-
nals have been devoted to the problem of chaos, in
general, and synchronization and control of chaotic
systems, in particular. Aside from several edited
books on the subject (see e.g. [Ott et al, 1994;
Fradkov & Pogromsky, 1998]), a staggering collec-
tion of references has been collected by Chen [1997).
The enormous interest in the topic of synchroniza-

tion arises from the possibilities of encoding, or
masking, messages using as analog “carriers” the
chaotic signal generated as a state, or as an out-
put, of a chaotic system, called the “transmit-
ter”. The effectively random nature of the carrier
signal, additively, or multiplicatively modulated by
the masked message signal, makes it, to say the
least, “dis-encouraging” to attempt the decoding
of the message from the intercepted signal (see
[Cuomo et al., 1993]).

For the decoding or unmasking process to
be reliable, a second chaotic system, called the
“receiver”, is proposed which is (1) “synchronized”
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with the transmitter chaotic behavior. Synchro-
nization means that, under the assumption of
no masked signal transmission, the receiver state
trajectory asymptotically tracks that of the trans-
mitter. The receiver has as an external input signal
either a particular state variable or, in general, an
output function, of the transmitter system and (2)
the receiver is designed in such a way that, when
it is externally excited by the transmitter’s chaotic
emitted signal, containing the masked message, the
zero synchronization error condition is not lost, at
least for the corresponding synchronized state used
as the carrier. In other words, certain “robust-
ness” is exhibited by the receiver in its generation
of the synchronized signal when excited by inputs
which do not entirely coincide with the original ex-
ternal exciting carrier signal. The final detection
stage simply consists in subtracting, or filtering out,
the transmitted signal (comprising the synchronized
state signal and the masked message) from the
locally generated synchronized state. In the under-
standing that the generated receiver state is still
synchronized with the transmitted carrier (i.e. they
robustly coincide), the message is immediately
recovered by the elementary detection process.

The synchronization problem is of a rather sim-
ilar nature to that of designing a nonlinear observer
for the transmitter system, as already remarked in
[Nijmeijer & Mareels, 1997]. However, saddle but
important limitations must be taken into account
for designing a meaningful receiver system which is
capable of tracking the transmitter’s state and ro-
bustly sustaining the addition of a masked signal
input after synchronization has taken place. For a
passivity-based adaptive approach to synchroniza-
tion the reader is referred to the interesting articles
by Fradkov and Markov [1997] and by Pogromsky
[1998].

In this article, we are only concerned with
the synchronization issue from the perspective of
Generalized Hamiltonian systems including noncon-
servative terms. It turns out that the great majority
of chaotic systems can be placed in such a Gen-
eralized Hamiltonian canonical form, from where
the reconstructibility of the state vector, from a
defined output signal, may be assessed from the ob-
servability or, in its absence, the detectability of a
pair of constant matrices. The Generalized Hamil-
tonian structure of most known chaotic systems
allows one to clearly decide on the nature of the
synchronizing (output) signal on the basis of the
system dissipation and conservative energy man-

aging structure and a need for elimination, at the
receiver end, of the locally, or globally, destabilizing
vector field.

Section 2 contains a brief introduction to
Generalized Hamiltonian Systems, and gives two
familiar examples of chaotic systems. Section 3
is devoted to the observer construction for a spe-
cial class of Generalized Hamiltonian systems. The
proposed class comprises nearly all of the best
known chaotic systems addressed in the literature.
Section 4 analyses the synchronization problem,
from the perspective of the obtained results, for
a collection of standard chaotic system examples.
The last section is devoted to some conclusions and
suggestions for further work.

2. Generalized Hamiltonian Systems

Consider a smooth nonlinear system, given in
the following “Generalized Hamiltonian” canonical
form,

oH oH )
E-FS(I)%, z€R (1)

where H(z) denotes a smooth energy function
which is globally positive definite in R™ The col-
umn gradient vector of H, denoted by 0H/dz, is
assumed to exist everywhere. We frequently use
quadratic energy functions of the form

z=J(z)

H(z) = %zTM:r (2)

with M begin a symmetric, positive definite,
constant matrix. In such a case, 8H/dx = Mz.
The square matrices, J(z) and S(z), entering the
expression in (1) satisfy, for all z € R", the
following properties, which clearly depict the
energy managing structure of the system,

J@)+I7(x) =0, S@)=8T(x) (3)

The vector field J(z)0H/dz exhibits the conserve-
tive part of the system and it is also referred to as
the workless part, or work-less forces of the system.
The matrix S(z) is, in general, a symmetric ma-
trix depicting the working or nonconservative part
of the system. For certain systems, the symmetric
matrix S(z) is negative definite or negative semi-
definite. In such cases, the vector field is addressed
to as the dissipative part of the system. If, on the
other hand, S(z) is positive definite, positive semi-
definite, or indefinite, it clearly represents, respec-
tively, the global, semi-global and local destabilizing



part of the system. In the last case, we can always
(although nonuniquely) decompose such an indefi-
nite symmetric matrix into the sum of a symmetric
negative semi-definite matrix R(z) and a symmet-
ric positive semi-definite matrix A'(z). If we denote
by LoH (x) the directional (Lie) derivative of H(zx)
with respect to a vector field ¢(z), then the pre-
viously identified vector fields satisfy the following
pioperties, from where the adopted terminology is
fully justified:

0H 0H
LynoguH(e) = 57T (2) 5-=0
0H 0H

>0inall of R™ or

8H 0H
Lymogu H(z) = 57 N(2) 5- = { indefinite

(4)

Sometimes, specially in the context of observer
design, we will write a system’s set of equations in
the special form

o0H
oz

where F(z) represents a locally destabilizing vector
field and S(z) is a symmetric matrix, not necessar-
ily of definite sign. Evidently, the form (5) can be
reduced, under mild assumptions, to the form (1)
for any given vector field F(z).

However, many physical systems are already
in Generalized Hamiltonian canonical form, as the
following examples illustrate.

z = J(z) +S(z)%—z+f(m) (5)

Example 1. Consider the Duffing system, exten-
sively treated in the literature (see e.g. [Fradkov &
Markov, 1997])

F+pit+qz+28=0, pg >0 (6)

G
X3 +Jf; ] F(x,)
X -

R

Fig. 1.

Chua’s circuit.
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Let z; = z and zo = z. We associate the
following Hamiltonian energy function H(z, ) =
1/2(z? + (1/9)2?) = 1/2(z? + (1/q)z2) with the
system. The gradient vector of the energy func-
tion is clearly given by dH/8z = [z1 (1/q)z2]T
with M = diag[l, 1/g]. The Duffing system is
rewritten in Generalized Hamiltonian form as

1,
[ fbl} B 0 qg+ 5:01 B_H
i2 1 2 oz
—g-= 0
q 231
1,
—12‘22 _ Bz
701 Pq
Example 2. Consider Chua’s circuit [Chua & Wu,

1993] shown in Fig. 1. This circuit is described by
the following set of differential equations

Cit1 =G (22— 21) — F(z1)
Cotg = G(xl - 282) + 3 (8)

Lig=—x9

where F(z,) is a voltage-dependent nonlinear resis-
tance of the form

F(z)) = any +%(b—a)([1 +z3]—|1-21]), @, b< 0

clearly playing the role of a negative resistor.
Consider, as a Hamiltonian energy function, the
total stored energy in the circuit, given by

1
H(z) = 5[clz§ + Cozk + Lzl (9)

Fig. 2. The Mitscke-Fliiggen optical bistable chaotic
system.
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whose gradient vector is readily obtained as

Cl 0 0 Ty Cla:l
0H
- = 0 Cz 0 T | = C2.’L‘2 (10)
Oz
0 0 L||zs Lz

The system may be written in Generalized
Hamiltonian Canonical form, with a destabilizing
vector field, as

. 0 0 0
Ty
| = |0 |28
z2 LCy | 52
s _L
LC,
6 G
T GG |
+1 C _SE ol
CiC, C? *
| o 0 0
- —=F(z1)
+ 0 (11)
L 0

where the dissipation structure matrix R is seen
to be only negative semi-definite and the nonlinear
negative resistance element, characterized by, the
nonlinear function —F(z;), is clearly seen to play
the role of a globally destabilizing vector field.

3. Nonlinear Observer Design
for a Class of Systems in
Generalized Hamiltonian Form

We consider a special class of Generalized Hamil-
tonian systems with destabilizing vector fields and
linear output map, vy, given by

. 0H 8H n

= J(y)¥+ (I+S)§+.7-'(y), z€R
0H -

Y= CE, yER (12)

where § is a constant symmetric matrix, not nec-
essarily of definite sign. The matrix Z is a constant
skew symmetric matrix. The vector variable y is
referred to as the system output. The matrix C is a
constant matrix.

We denote the estimate of the state vector =
by &, and consider the Hamiltonian energy function
H(£) to be the particularization of H in terms of
. Similarly, we denote by 7 the estimated output,
computed in terms of the estimated state {. The
gradient vector 0H(£)/0€ is, naturally, of the form
M¢E with M being a, constant, symmetric positive
definite matrix.

A dynamic nonlinear state observer for the
system (12) is readily obtained as

{= TG+ T+ 5+ F W)+ Ky =)
O0H
n= CW (13)

where K is a constant vector, known as the observer
gain.

The state estimation error, defined ase = 2 —¢
and the output estimation error, defined as e, =
y — 1, are governed by

é= J(y)%+ Z+S- KC]%—I:, ec R"

OH
ey =C Oe’
where the vector, 8H/0e actually stands, with some
abuse of notation, for the gradient vector of the
modified energy function, 0H(e)/0e = O0H/0z —
OH/¢ = M(z — &) = Me. Below, we set, when
needed, T+ S = W.
We recall the basic definitions of detectability
and observability in linear systems.

e, € R™ (14)

Definition 1. Given a pair of constant matrices
(C, A), respectively of dimensions m x n and n X n.
The pair is said to be detectable if the matrix

c
[sI - A} (19)

has full rank n for all values of s in the open right
half of the complex plane. The system is said to
be observable if the above matrix is full rank for all
values of s in the complex plane.

If the pair of matrices (C, W) (resp. (C,S)) is
either observable, or detectable, it is well known,
from linear systems theory, that there exists a con-
stant vector X such that all, or at least the observ-
able, eigenvalues of the matrix W—KC (resp. (C, S))



are placeable, modulo symmetry with respect to the
real line, at prespecified locations of the open left
half of the complex plane. The distinction made
above regarding observable eigenvalues means that
some eigenvalues of (C,W) (resp. (C,S)) may be
fized and cannot be influenced by any value of K.
In the case of a detectable pair, those fixed unob-
servable eigenvalues already exhibit negative real
parts. If the pair of matrices (C, W), (resp. (C,S))
is observable it means that, modulo the mentioned
symmetry, all eigenvalues of W — KC (resp. (C,S))
can be placed at will in the left half of the com-
plex plane by suitable choice of the matrix K. As a
consequence, the matrix (W — KC)T also exhibits
eigenvalues with negative real parts. This also
implies that the sum

W-Kc)+WwW-keT =[S -KC| +[S—-KC|T

—a2ls— %(zcc +CTKT)

is a symmetric matrix with negative (real) eigen-
values.

Notice that the matrix W — KC is a square ma-
trix, with no particular structure. We can always
trivially replace such a matrix by the following sum

W —KC = {5 - %[zcc + cTch]}

+ {I— Se - cT;cT]} (16)

The first two summands clearly conform a symmet-
ric negative definite matrix while the second two
summands conform a skew-symmetric matrix.

The state estimation error system may then be
written in the following form

6= [j(y) +I- %(icc - cTch)] %—IZ

0H

e

Then, taking as a modified Hamiltonian energy
function the positive definite function H(e), it is
readily found that the time derivative of this func-
tion, along the trajectories of the observation error
system, satisfies

+ [s - %()cc + cT/cT)]

: O0H
H(e)= ae(;)é
_ B8H(e) 1 7,7| 0H(€)
= 2 |s - Ste +€TrT) | 2 <o
(17)

Synchronization of Chaotic Systems 1385

with H(e) = 0 if and only if e = 0. In fact, it
is not difficult to show that the stability of the
error space origin e = 0 is ezponentially asymp-
totically stable for an energy function of the form
H(e) = (1/2)eT Me. In this case we have

He)=eTMT|S - %()cc +CTKT)| Me

<- %aeTMe = —aH(e) (18)

with o being a suitable scalar constant. We have
then proven the following result.

Theorem 3.1. The state z of the nonlinear
system (12) can be globally, exponentially, asymp-
totically estimated by the state £ of an observer
of the form (13), if the pair of matrices (C, W),
or the pair (C, §), is either observable or, at least,
detectable.

An observability condition on either of the pairs
(C, W), or (C, S), is clearly a sufficient but not
necessary condition for asymptotic state reconstruc-
tion. The following simple example readily demon-
strates this issue.

Example 3. The pair of matrices

-1 0
s:[ } c=0 1
0 -1

constitutes a nonobservable, although it is a de-
tectable pair. Nevertheless, setting K = 0 already
renders the sum, 2[S — (1/2)(KC +CTKT)] = 28, as
a negative definite matrix.

A necessary and sufficient condition for global
asymptotic stability to zero of the state estimation
error is given by the following theorem.

Theorem 3.2. The state z of the nonlinear system
(12) can be globally, ezponentially, asymptotically
estimated, by the state £ of the observer (13) if and
only if there ezxists a constant matriz K such that
the symmetric matriz

W —iC+ W -kC)T = 8 — KC] + [S — KT
]
=2 S——;(ICC+C7IC])

is negative definite.
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4. Applications to Synchronization
of Chaotic Circuits

In the context of synchronization, a key observation,
provided by the special form (12) of the Generalized
Hamiltonian canonical form, is that the destabiliz-
ing vector field F(y) already fixes the output signal
y that needs to be transmitted towards the receiver
(observer). Thus we propose:

1. Given a nonlinear chaotic system, we write it
in Generalized Canonical form and proceed to
identify the destabilizing, or locally destabilizing
vector field F(z), by ascribing, as much as it is
possible, the nonlinear state dependent terms in
S(z) and J(z) to the destabilizing vector field.
If the destabilizing vector field is actually a non-
linear injection into R™ of a single nonlinear map
of the state, say y = h(z), then this output vec-
tor should be taken as the set of signals to be
transmitted towards the receiver. One should
also try to obtain a linear function of the state
for h in the form COH/8z. If this is not possible,
one must resort to state coordinate transforma-
tions and possibly to output coordinate trans-
formations. This topic is not pursued in this
article.

2. Once the output y of the system has been de-
cided, and the system is placed in the form (12),
then one should proceed to check the observ-
ability, or the detectability, of the obtained pair
(S, C). If at least one of the properties is ver-
ified, then the receiver is readily designed as in
(13). If the pair (S, C) is not detectable, one
should add the skew symmetric matrix Z to S,
to form W = § + 7 and proceed to check if the
pair of matrices (W, C) is either detectable or ob-
servable. In such a case the receiver is the same
as in (13). If still we do not have detectability
or observability of the mentioned constant pairs,
then, before resorting to nonlinear observer the-
ory results, one should check whether or not a
constant matrix K exists such that the symmet-
ric matrix [S — (KC+CTKT)] is negative definite
or semi-definite.

3. Sometimes, the matrix S is already negative
definite and the error system is sufficiently dissi-
pative without addition of an output reconstruc-
tion error injection term using the matrix K.
However, if the negative real part of the observ-
able eigenvalues of the matrix S need enhance-
ment, to guarantee a faster synchronization, then
an output error injection term should be consid-

ered through the constant matrix K, as specified
by (13).

4.1. The Lorenz system

Consider the Lorenz system [Lorenz, 1963

Iy = (T(:CQ = .Tl)
Ty =T1T] — Ty — T123 (19)
1:3 =219 — b:tg

The system can be easily written in General-

ized Hamiltonian form, taking as the Hamiltonian
energy function the scalar function

1

H(z)= - le% + 75+ m%}

; (20)

This yields, according to the previous procedure,

1
il 0 50’ 0 aH
215 -20 0 -z1|z
T3
0 Ty 0
—-0? =0 0 0
0H
1 fdalel
+ 20 -1 0| % + |rzy | (21)
0 -b

The output signal to be transmitted should be the

state y = z; = [0 0 0]0H/8z. The matrices C, §
and Z, are given by

—o? %o 0
C=[c 00], §= Lo 21 ol
0 0 -b
(22)
1
0 50 0
I=1_1 0o o
0 0 0

The pair of matrices (C, S) already constitutes a
pair of detectable, but nonobservable, matrices.
Even though the addition of the matrix Z to S
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Fig. 3. Lorenz system trajectories and synchronized receiver trajectories.

does not improve the lack of observability, the pair (C, W) = (C, S + Z) remains, nevertheless,
detectable. In this case, the dissipative structure of the system is fully “damped” due to the negative
definiteness of the matrix S. Then, there is no need for an output estimation error injection for comple-
menting, or enhancing, the system’s natural dissipative structure. The receptor is designed as

é 0 %o— 0 —o? %a 0 0
&l =1 1 9H 1 SH 1, (23)
; - -5 0 —y| o¢ 50 -1 0| o¢ é’/
3
0 y O 0 0 -

and the synchronization error is therefore governed by the globally asymptotically stable system

é 0 —-o O —-0? =6 0
. 6H 0H
eyl = —10 0 —y E + lo_ -1 0 g (24)
é3 2 2
0 y 0 0 0 —b

If the negative real part of the observable eigenvalues, related to the constant dissipation structure matrix
of the error dynamics, must be enhanced, one can still use the above observer but now including an output
reconstruction error injection term. The resulting observer is given by

1 1
él 0 =0 0 —02 50 0 Kl
=1 1 _6H+ 1 —8H+ ry|+ | Kale
5,2 T l-z0 0 —y| 5¢ -0 -1 0] 3¢ b 2 A
€3 ) 0 K3

y 0 0 0 -b

The asymptotically stable reconstruction error dynamics is then governed by
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1 1
Zo(l +Ko) —
’ 0 20( + K>) 20‘K3
1
bl = |-t +Ky) ok
.2 = 20 2 20 3 -y
€3 1
—EJK:; Y 0

One may now specify the values of Kj, K2 and K3
in order to guarantee a faster asymptotic stability
to zero of the state reconstruction error trajecto-
ries. Figure 3 shows the simulations of the Lorenz
system and the receiver’s state tracking abilities
for large initial deviations. The system parameters
were set to be

o =10, r=28, bzg, Ki=Ky,=K3=0

42. Chen’s chaotic attractor

Consider now Chen’s chaotic attractor. This sys-
tem is described by the following set of differential

—o(oc+ K1) —o(1-Kj3) —-=0K3
0H |1 ki
E A A de
—Z0K; 0 -b
(25)
|
equations
£ = a(z2 — 1)
&2 = (¢ — a)z) — T123 + cT9 (26)

I3 = T122 — bT3
Taking as a Hamiltonian energy function the scalar
function

H(z) = %[rf + x% + x%] (27)

we write the system in Generalized Hamiltonian
Canonical form as

c c
i1 0 a— 5 —a 5 0
| . O0H . 6H o
I2| = —a+ 5 0 - az + 5 c 0 8z ( )
T3
0 T 0 0 0 -=b
20 - X,(t) =
0 &)
-20- - B
-1 0 1 2 3 4 5
time
204 X {t)
0-i t
20- &M
‘40 “ T - ~ et et i i e A D lanant}
-1 0 1 2 3 4 5
time
40 -
] fe = X))
* - © gD
0 o T T T T T T
-1 0 1 2 3 4 5
time

Fig. 4. Chen’s chaotic system trajectories and synchronized receiver trajectories.



Choosing the output as y = z; one obtains,

—a

-7 oY

c=[00, S=

o
[}

c
2
0

o
|
o
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C
0 -= 0
73
v I= —a+§ 0 0 (29)
0 0 0

The pair of matrices (C, S) already constitute a detectable, but not observable, pair. The addition to S
of the matrix Z does not improve the lack of observability. In this case, clearly, the unstable nature of the
observable eigenvalues of S requires the introduction of damping through the output error injection map
and proceed to place the eigenvalues of the observable part of the dissipative structure of the reconstruction
error in suitable (asymptotically) stable locations in the complex plane. This results in the receiver,

[
él 0 a—E 0 aH
. c
22 = |—a +§ 0 -1 6§ +
3 0 & 0

The synchronization error, corresponding to this receiver, is found to be

0 C—KQ K3
é 2 2
. - K
€2 = —a+c 5 2 0 1
€3 K
3
-— 0
2 -

We may now prescribe K;, Ky and K3 in or-
der to ensure asymptotic stability to zero of the
synchronization error. This is achieved by setting
Ky >c—a, Ko > ¢/2+ 2(a + K1). We may set
K3 = 0 since it has no influence on the observable
eigenvalues of the nonconservative structure of the
system.

Figure 4 shows the performance of the designed
receiver with the following parameter values for the

¢
—-a 5 0 aH Kl
S ¢ 0 2e T | K2 | (m1—&) (30)
2 3
K;
0 0 -b
C—K2 K3
—Ki—e —5 2
6H C—K2 BH
T2 ¢ 0| G
Kj
e

T
system and for the constant gains.

a=35 b=3, c=28 K;=2 K, =100, K3=0

4.3. Chua’s circuit

The set of differential equations describing Chua's
circuit were placed in Hamiltonian Canonical Form
with a destabilizing field in the previous section.
These are reproduced here, just for convenience.

i C C1Cs ——F(zx
M le o Llew | o o |odm orF @)
Ty | = ch a"' - 0 %4' 0 (32)
i:3 _L ClCQ CZ 0
LC, 0 0 0
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X, (t) —
24 N & ()
0- N Sl
25 S o — TN
0 2 4 6 8 10
time
X,(t)
]
0.4 ~ &(
0.01 \ //\\ /’/\\ NN N
-0.4 N ~
0 2 4 6 8 10
time
t) ——
4 ~ ~ P X
= I AN AN NN
-~ . N \ =Y
5~ 2N
-4 . . —_—
0 2 4 6 8 10
time

Fig: 5. Chua's chaotic circuit state trajectories and synchronized receiver trajectories.

The destabilizing vector field evidently calls for z; to be used as the output, y, of the transmitter. The
matrices C, S and T are found to be

_& G 0 0 0
1 a2 TG X
c=lg oo s=| 6 _a | =" ° Ig (33)
0102 022 1
0 0 0 0 -15, °

The pair (C, S) is neither observable nor detectable. However, the pair (C, W) is observable. The system
lacks damping in the 3 variable, and either in the z; or the z variable as inferred from the negative
semi-definite nature of the dissipation structure matrix, S. If z; is used as an output, then the output
error injection term can enhance the dissipation in the error state dynamics. The receiver is designed as

0 0 0 e CGC 0 Lo
3 C 1Co ——F(y K
oy 0 Ll |ewm o o |eH | O !
&L= LC, 6_5 + —= 0 8_5 + 0 + | Kol ey (34)
& . 1 o GG G " K3
T LCy 0 0 0

The choice of K, K3 and K3 as arbitrary strictly positive constants suffices to guarantee the asymptotic
exponential stability to zero of the synchronization error.
The synchronization error dynamics is governed by

K K _G+OiK G-K, _ K
o 2C.C, 2LC, C? 2C,C 2LC,
1 K 1 |em 1 -k, G oH
=176 0 I6 | 7| 100 2 0 15 9
€ K3 1 K

-3 9 _
2LCy LCy 2LC, . L




Figure 5 depicts the simulations of Chua's
chaotic circuit state trajectories with the corre-
sponding receiver responses. To ease the sim-
ulations we resorted to the following normalized
version of the circuit (see [Huijberts et al., 1998])

1 = B(—z1 + 22 — B(y))
i:z =T}y — Iy + I3 (36)

I3 = —7YT2

with $(3) = ey + (b~ )| +y| - |1 - y| and

- 5 8

ST 7

The parameter gains for the receiver were chosen
to be

B=15.6 =27

K =2 K;=3, K3y=3

4.4. The hysteretic circuit

Consider the following nonlinear circuit equations
treated by Carroll and Pecora [1991]

T, =Ty + Y21 + T3
Iy = —wz] — 0T2 (37)
et3 = (1 — z3)(s71 + 73) — B3

The system can be written in Generalized Hamilto-

nian canonical form with the energy function given
by

H(z) = %[zf + 22 + ex?] (38)
Indeed,
1 1
. 0 5(1+w) 2—€(c—s)
Iy | = 1 0 0 a—H
%2 =|—z0+) Oz
Z3 1
—z(c—s) 0 0
[ 1 1
T 30-0) e+
1 5 8H
+ | =(1—-w) - e
1 1
LE(C +s) 0 _5_2(’6_1)
[ 0
+ 0 (39)
L—mg(w3+sz1)
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The destabilizing vector field requires two signals
for complete cancellation at the receiver. Namely,
the variables, z; and z3. The output is then chosen
as the vector y = [y1, y2]T = (1, ex3]T. The C and
S matrices are given by

(o) 1 0 0
e=lallo o 3]

5 %(1 - w) i(c +s) (40)
S= %(1-@5 5 0
1 1
Z(c+s) 0 _6_2(ﬁ_1)

The pair (C, S) is observable, and hence detectable.
In order to achieve chaotic behavior, 8 is, in general,
a small number, and the § matrix is therefore of in-
definite sign. This means that the required receiver
needs to add “multivariable” damping, through
an output reconstruction error vector injection.
However, one can easily avoid the multivariable pole
placement problem by observing that the pair of
matrices (C;, S) is also an observable pair. An in-
jection of the synchronization error e; = z; — §;
suffices to have an asymptotically stable trajectory
convergence. The receiver would then be designed,
exploiting this last observation, as follows.

1 1
A 0 5(1 + w) ﬂ(c —3)
. OH
Ll =|—-=14w) 0 6_§
& 1
—o(e=9) 0 0
r 1 1
v 5(1 —w) Z(C +3)
1 8H
+ E(l—w)e —é e
_—(c+ s) 0 —é(ﬂ—l)
[ 0
0 Ky
+ . ) + | Ko | [z0 — &)
~ (;ya + syu) Ky
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Fig. 6. Hysteretic system state trajectories and synchronized receiver trajectories.
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Fig. 7. Réossler chaotic system state trajectories and synchronized receiver trajectories.

Figure 6 shows the performance of the proposed ~ with receiver parameter gains: K; = 7.198, K3 =
synchronization scheme. The chosen parameters —17.988 and K3 = 13.927.
were set, following [Pecora & Carroll, 1991}, as

4.5. The Rdssler system

y=02, ¢=2, w=1.0, §=0.001, s=1.667, . .
Consider the following chaotic system, known
B=0.001, ¢e=0.3 as the Rossler system {Pecora & Carroll, 1991]



)= —IT2— I3
Ig = I +azy (42)
3 = b+ z3(x; —¢)

With the energy function H = (1/2)(z? + z% + 23)

we immediately obtain the system equations in the
form

. 0 -1 -+
“ 2| om
s =11 0 0] —
3,22 ) Oz
z3
3 0 0
1
0 0 -3 - 0
+ 0 a 0| —+ 0
Oz
1 b+ 1123

(43)

The destabilizing field is a function of z; and z3.
Thus, the outputs should be taken as y; = z; and
y2 = z3. Notice, however, that the pair of matrices

0 -1 -1
c=[1 0 0], W=1{1 a 0] (44
0 0 —c

is detectable and observable. This allows us to per-
form an eigenvalue placement using only injections
of the synchronization error e; = y; —¢; and, thus
the multivariable pole placement is evaded.

The receiver may then be designed as

: 0 1 !
& T2
. 6H
3 p—
7 0 0
[0 o -1
2 OH
+ 0 a 0 3_€+ 0
1 b+y192
-2 0 —c¢
t 2
e
+ | K2 ly1 =&l
_I{3
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Figure 7 shows the state trajectories of the
Rossler system along with those of the synchroniz-
ing system. The parameters for the system, and
for the observer gains, used in the simulation were
taken as,

a=04, b=2, c=-4, K =24,

Ky =-2.1418, K3=—1.8182.

4.6. The Mitschke—Fliiggen hybrid
optical bistable chaotic system

In [Mitschke & Fliggen, 1984] the circuit shown in
Fig. 2 is proposed as an analog electronic model
of an hybrid optical bistable system. The circuit
equations are given as

L WS YR T
Cdt _R[ $1+V(1§3 l‘l‘)]

d

Lm_;: = —Rmz2 — 23 + 21 (45)
dzs

Cm_dt =T2

where z; is the voltage across the capacitor C, z5 is
the current through the inductor and z3 is the volt-
age in the second capacitor Cp,. The total stored
energy in the system can be taken as the positive
definite Hamiltonian function

H(z) = %[Cz% + Load+ Cnzl]  (46)

This leads to the following system in Generalized
Hamiltonian canonical form

_ 1
. 2C L,
Z1
|| 1L_|oH
2| = | 3CLn, I | 0z
T3 1
0 T 0
__1 1
RCZ 2CLn
oH
+l_L _Ex o, 7
2CL,  Lm? 3
|0 0 0
[ —12(z3 - p)?
+ 0 (47)
i 0
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The destabilizing presence of z3 suggests that the
output of the transmitter should be the voltage vari-
able y = z3. This implies that the matrices C, S
and T are given by

o &)

Cm
..t _1
RC® 2CL,n
S=|_1  _BRa |,
2CLm Lm?
| o 0 0 (48)
r 1
0 0L
1 1
1= \2¢L. 0 " LCom
1
—_— 0
L T

The pair of matrices (C, S) is not observable but
it is detectable. However, the pair of matrices,
(C, W), with W given by

1
= O 0
] R, )
W=\ Gl “Im® "T.Cn. (49)
1
0 .o 0

is found to be observable. In order to add suitable
damping to the synchronization error dynamics an
ouput reconstruction error injection is needed. A
receiver can then be designed as

1
a | R
; 1 R 1 | oH
©|=| CLn "Im? LnCm| O
& 1

0 o O

1
}—2'/2(?!— #)2 K
+ 0 + KZ (y - 53)
0 Ks
(50)

To guarantee asymptotic stability of the error dy-
namics, it suffices to choose K, K3, K3 as arbitrary
strictly positive constants.

The synchronization error evolves according to

1
. “ree e
NN Rn (1 ., \|oH
©\ =\ CLn TIm " Tmlm 0 7) | B
€g 1

O T —Kg

(51)
5. Conclusions

In this article, we have approached the problem
of synchronization of chaotic- systems from the
perspective of Generalized Hamiltonian systems
including dissipation and destabilizing terms. The
approach allows to give a simple design procedure
for the receiver system and clarifies the issue of
deciding on the nature of the output signal to be
transmitted. This may be accomplished on the
basis of a simple linear detectability or observabil-
ity test. Several chaotic systems were analyzed
from this new perspective and their possibilities
for synchronization were either confirmed, in the
case of already obtained positive results, or it was
explained in those cases where there is a known lack
of synchronization.

The Generalized Hamiltonian nature of many
chaotic systems definitely helps in the study of ro-
bust synchronization, under the addition of masked
transmitted signals seen as perturbations of the
state reconstruction error dynamics. More impor-
tantly, given the clear energy managing structure
of Generalized Hamiltonian systems, the approach
definitely helps in the study, via passivity-based
techniques, of linear and nonlinear feedback con-
trol strategies for chaotic systems. These will be
the issues of a forthcoming publication.
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