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DC-to-AC power conversion on a ‘boost’ converter

Hebertt Sira-Ramirez* 4

Departamento de Ingenieria Eléctrica, Seccion de Mecatrénica, Centro de Investigucion y de Estudios Avanzados del IPN,
Avenida IPN, #2508, A.P. 14740, 07300 México D.F., México

SUMMARY

In this article, we provide an approximate sliding mode control-based solution to the DC-AC power
conversion problem on a ‘boost’ converter. The approach uses the flatness property of the system as a pivot
for generating a sequence of minimum phase output reference trajectory candidates. The generated
candidates are obtained as differential parameterizations of the minimum phase inductor current variable in
terms of the non-minimum phase desired output capacitor voltage. The associated residual dynamics of the
ideal sliding motions is shown to reasonably approximate the desired biased sinusoidal output capacitor
voltage signal. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

DC-to-AC power conversion using the traditional switched DC-to-DC power converter
topologies constitutes a relatively recent sub-area of the Power Electronics field and it has
proven to constitute a challenging area from the nonlinear feedback controller design view-
point. This is specially so for DC-to-AC conversion schemes using converters other than the
step down ‘buck’ converter where both state variables constitute minimum phase out-
puts. For the ‘boost’, the ‘buck-boost’ and the ‘Cuk’ converters, the output capacitor
voltage variables turn out to be non-minimum phase outputs, while the input inductor
current variables are, indeed, minimum phase outputs. Tracking of a biased sinusoidal signal
on the part of the capacitor voltage is, in spite of the systems simplicity, a surprisingly non-
trivial problem. Our work is motivated by that of Caceres and Barbi [1] where a sliding mode
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590 H. SIRA-RAMIREZ

controller is proposed for a set of coupled boost converters viewing each converters AC
output capacitor voltage as a bounded, unknown, perturbation for the other converters AC
signal tracking task. Recently, an article was published by Zinober et al. [2] dealing with the
one-stage problem. In Reference [2] two solution approaches are proposed. The first one reduces
the AC generation problem to the tracking of a Fourier series solution of an Abel type of
differential equation. The second approach proposes a backstepping controller for the tracking
task.

In this article, we propose a procedure for devising an approximate sliding mode control based
solution to the DC-to-AC power conversion problem using a ‘boost’ converter. Part of our
considerations are based on the differential flatness property of the system (see the work of Fliess
et al. [3]). We propose a functional iterative, off-line, computational scheme which pivots on the
flat output definition. The iterations are shown to yield finite differential parameterizations of the
minimum phase inductor current reference trajectory in terms of the desired non-minimum phase
output capacitor voitage AC reference signal. The ofl-line computed candidates for the inductor
current reference signal are then used to devise time-varying sliding surfaces on which the sliding
mode existence conditions are readily inspected while the ideal output signal tracking errors are
also assessed in an exact fashion. The frequency and amplitude limitations for the desired AC
output voltage signal naturally emerge as a consequence of the well-known sliding mode
existence conditions (see Utkin [4] and Sira-Ramirez [5]) and the nature of the approximating
scheme.

Our indirect sliding mode control approach is in the same spirit of the general procedure
proposed by Benvenuti et al. [6] for the solution of output tracking and output stabilization
problems is non-minimum phase systems through minimum phase output stabilization and
tracking. An alternative general solution method, proposed by Fliess et al. in Reference [71,
resorts to the differential parameterization provided by the flat outputs, which are devoid of any
zero dynamics, and translates the non-minimum phase output stabilization or tracking problem
into an equivalent flat output stabilization or tracking problem. However, the previous approach
cannot be applied to our particuiar output trajectory trakcing problem. A well-founded interest-
ing procedure has been recently proposed in the work of Devasia and Paden [8] for the
approximate solution of a fairly large class of non-minimum phase output trajectory tracking
problems. Under some mild technical restrictions, their approach also entitles an iterative
approximation scheme, based on locally induced contractions, performed on a bounded nonlin-
ear operator. The procedure, nevertheless, includes finding stable solutions of (potentially
unstable) perturbed linear time-varying differential equations related to the ideal closed-loop
residual dynamics.

Section 2 revisits the feasibility of an indirect sliding mode control scheme based on
current signal tracking as opposed to voltage signal tracking. In this section we also
revisit the differential flatness of the ‘boost’ converter and proceed to develop a scheme
for the generation of a suitable inductor current reference signal based on a sequential flat
output elimination from the differential parameterization provided by flatness. A sliding
mode feedback tracking strategy can then be proposed for the generation of AC signals at
the DC converter’s output voltage. Section 3 presents various simulation results which
depict the feasibility of the proposed scheme and assesses the precision with which a desired
AC output voltage signal is tracked, or generated, by the proposed indirect sliding mode

control scheme. Section 4 is devoted to present the conclusions and suggestions for further
research.
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2. DC-TO-AC POWER CONVERSION USING A BOOST CONVERTER

The switched model of a ‘boost’ DC-to-DC power converter is given by

d
Laxl= —ux, + E
d X
C o X =uxy _EZ 1)

where x, represents the (input) inductor current and x, is the (output) capacitor voltage. The
switch position is represented by the control variable u and it takes values on the discrete set
= {0, 1}. The circuit parameters L, C and R are assumed to be perfectly known.

Following Reference [2], we will be using throughout a ‘normalized’ model of the ‘boost’
converter, written in terms of a base voltage value 1, a base current value, I,, and a time basis ty.
The base voltage value is taken as, ¥, = E; the base current is given by I, = E C/L and the

normalized time scale is set to be 1 = t/t, with t, = ./LC. This normalization yields the following
simplified model for the ‘boost’ converter (see Figure 1)

i1= —uZ2+l (2)
. z
Zz=“2x—§2 @)

where z, is the normalized inductor current, z, is the normalized capacitor voltage and Q repre-
sents the circuit ‘quality’ given by Q = R,/C/L. Time derivation, represented by the ‘dot’
notation, is understood to be carried with respect to the normalized time variable 1. With the
adopted normalization, the basis value for the total energy &, turns out to be &, = CE2. This
means that the normalized total stored energy, here denoted by F, is given by

F=13(t+123) (4)
2.1. Problem formulation

It is desired to devise a discontinuous feedback control law for u, such that the normalized
capacitor voltage, z,, tracks a given desired voltage signal z3(z). This desired signal is assumed to
be bounded, smooth and bounded away from zero (biased). Specifically, we are interested in

Figure 1. Normalized ‘boost’ converter circuit.
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generating a normalized output voltage of the form z,(¢f)= A4, + (B./2)sinw,t with
A, > Bo/2, > 0, w, > 0 with A, B, being constants. The actual desired capacitor voltage, x,(t), is

obtained as x3(t) = A + (B/2) sin wt, with A = EA, B= EB, and v = w,/./LC.

2.2. Some of the difficulties

The normalized ‘boost’ converter state variable are known to exhibit the following properties (see
Reference [9]).

1. The normalized capacitor voltage z, is a non-minimum phase output variable. This means
that if a particular value for z,, say z3(7) is imposed on the system behaviour, the resulting
inductor current is characterized by an unstable ‘residual dynamics’.

2. The normalized inductor current z, is a minimum phase output variable. Then, if a particular
value for z,, say z¥(z) is perfectly tracked, the resulting capacitor voltage is represented as
the trajectory of a globally stable ‘residual dynamics’. The difficulty associated with the
indirect AC signal generation problem is that it is not clear how to generate the suitable
inductor current reference signal which has as a ‘residual dynamics’ solution, precisely, the
desired output capacitor reference signal z3(z).

3. The ‘boost’ converter is known to be differentially flat, (see Reference [10]), which in the
single input case at hand means that the converter dynamics are exactly linearizable by
means of static state feedback. The flat output, which is, by definition, a variable devoid of
zero dynamics, represents the total stored energy of the circuit. However, due to the discrete
nature of the control input values, such an exact linearization is not feasible except in an
average sense and certainly, not achievable by means of static sliding mode control.
Furthermore, in order to determine a suitable reference signal for the flat output which
solves the AC conversion problem, it is required to have a previous knowledge of the
inductor current reference trajectory which exactly corresponds with the desired output AC
capacitor voltage signal. Unfortunately, this reference trajectory is unknown. The hopeless
circular argument is clear.

The above properties joined to the control acquisition structure of the converter equations and
the discrete valued nature of the control input make it especially difficult for the synthesis of
a switching feedback control law which results in a stable AC capacitor voltage reference signal
tracking scheme.

2.3. A feasible indirect tracking approach

An approach which resorts to indirectly generate a desired capacitor voltage signal, z3(), on the
basis of tracking a suitable corresponding inductor current signal z}(t) clearly avoids the
underlying non-minimum phase internal stability problems. As demonstrated below, this is an
entirely feasible option. The difficulty, however, still resides in finding such a suitable inductor

current reference signal z}(z). An approximate scheme to resolve this task will be presented in
Section 2.5.

2.3.1. A sliding mode controller
Assume that a suitable smooth inductor current reference signal is given as z¥(t) > 0, whose time
derivative is also bounded. A discontinuous sliding mode feedback controller which reaches, and

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:589-600



DC-TO-AC POWER CONVERSION 593

sustains, a sliding motion on the time-varying sliding surface, o(t) =z, — z¥(r) =0, is
given by

{1 for a(t)>0
- {0 for a(t) <0 ©)

2.3.2. Reachability of the sliding surface

Starting from zero initial conditions for z, and z,, we have that since, initially, z,(zo) < z¥(z) (i.e.
6(10) < 0). The switching strategy (5) sets u = 0 and, as it can be seen from (2), the normalized
inductor current z, grows with slope equals to 1, while z, remains stationary at zero. The sliding
surface reaching condition is thus satisfied from ‘below’, provided the reference signal z¥(z) is
designed with a time derivative which is bounded above by 1. Clearly, under such assumptions,
the quantity o4 is negative and given by o(1 — 7} ()) < 0. When the sliding surface is reached and
slightly overshot, the controller (5) starts to inject large positive current pulses to the output RC
filter by intermittently letting u = 1. As a consequence, z, immediately starts to grow from zero,
rapidly reaching the converters ‘amplifying mode’, z, > 1. Thus, while ¢ is positive, its time
derivative, &§ = —z, + 1, becomes negative. Hence, the sliding surface reaching condition 66 < 0
is also satisfied from ‘above’ after the circuit is found in its amplifying mode.

2.3.3. The equivalent control, the ideal sliding dynamics and existence of a sliding motion

The ‘equivalent control’, corresponding to the ideal invariance conditions ¢ = 6 = 0 (see [4]) is
obtained as

1-73(1)

Ugg = 2, (6)

The necessary and sufficient conditions for the existence of a sliding regime on ¢ = 0 are given,
according to the results in Reference [5], by

0<uEQ<1 (7)

These conditions imply that, at each instant, the following set of inequalities must be satisfied for
all 7 after the sliding mode behaviour is reached:

0 <1 —:2¥1) < z5(7) ®)

The restrictions z¥(r) < 1 and 7¥(t) > 1 — z,(t) imply, roughly speaking, limitations on the
amplitude and frequency of the desired reference signal. Specific tracking limitations of the sliding

mode control approach have to be worked out, in detail, for each particular given inductor
current reference signal waveform, z}(t).

The ideal sliding dynamics corresponding to the sliding surface ¢ = z; — z¥(1) is then given by
the following stable time-varying nonlinear dynamics:

o= ()10 - 2 0

In order to establish the stability of (9) we define the Lyapunov function candidate, p = (1/2)z3
which is easily seen to satisfy the following stable linear differential equation subject to bounded
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perturbations input signals:

p= - lp - 00 - (1) =

The ideal sliding dynamics is thus stable for each bounded signal z§ (z) with a first-order bounded
time derivative. Note that, using the method of separation of variables in (9), the exact solution for
z,, provided that z; = z¥(z), is obtained as

23(1) = /Qz1(1)(1 — £,(x)) — e~ [0z, (0)(1 — £1(10)) — 23(70)] (11)

Thus, the steady-state solution for z,(t), is given by
25(1) = /Qz¥(9)(1 — 1(x)) (12)

2.4. Differential flatness of the ‘boost’ converter

As already demonstrated in Reference [10], the boost converter is differentially flat. This implies
the existence of a differential function of the state, termed the flat output, which completely
parameterizes, all system variables (i.e. states, outputs, as well as the input). In other words, all
system variables are expressible as functions of the flat output and a finite number of its time
derivatives. The flat output for the ‘boost’ converter is the total stored energy of the circuit. For the
normalized circuit considered here, the flat output is the normalized stored energy F, given by (4),

F=14(z3+23) (13)

We remark that we are not particularly interested in the feedback linearization aspects provided
by the differential flatness of the ‘boost’ converter circuit. In fact, this aspect is of little or no help
in the sinusoidal signal generation task for the given converter, as it can be verified.

1t should be clear that in order to obtain a suitable reference trajectory z¥ () for z,, given that z,

is of a particular form z%(t), one should proceed to eliminate the flat output F* from the set of
relations

* 2
“=%WWW+%mﬁ,W=ﬂm—mg) (14)

However, such an elimination yields, as expected, an unstable differential equation relating

z,= z}(r) and z3(1),
h=1- zi(:) (z‘é‘(r) + %)

We shall still exploit the flat output elimination idea, in a different manner, in order to generate
an approximating sequence of static differential algebraic relationships yielding normalized input
inductor current reference signals z¥, exclusively in terms of the output capacitor voltage
reference trajectory z% and a finite number of its time derivatives. The finite differential para-
meterizations of z, in terms of z, will allow for the indirect sliding mode control-based generation

of a large class of bounded AC output capacitor voltage profiles which are sufficiently differenti-
able.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:589-600
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2.5. An iterative procedure for generating a suitable inductor current reference

In order to simplify the notation we will temporarily suppress the asterisks and the time argument
in the developments of this subsection. Consider then the set of relations (14). Those relations can
be alternatively viewed as an unbounded nonlinear differential operator, defined on a Banach space,

of the form z, = H(z,, z,) with z, = z%(z) being available data. For this, we rewrite (14) in the
following manner:

2
z1=z—Qz+ F, F=1(2+2) (15)
A traditional method to study, and approximately solve, differential operator equations of the
above type is constituted by the well established method of ‘functional iterations’ or ‘approximate
functional iterative solutions’. This method has been the subject of sustained work by mathema-
ticians, starting with the work of Liouville around 1836. The method of functional iterations was
brilliantly formalized by Banach in Reference [11] and, later extensively used for the solution of
integro-differential equations by Chaplygin [12]. The extension to deal with unbounded differen-
tial operators is due to Baluev [13]. Rather complete introductory references are constituted by
the books by Kurpel’ [14], that by Den Heijer [15] and the recent work by Chen et al.Chen [16],
where the reader is referred for further details.
In our problem setting, the functional iterative process producing approximations of the
underlying implicit relation between z, and the given z, is simply devised as

3 .
Z],k =—+ Fk

Q (16)
Fio1 =30 s +23)

The described functional iteration sequentially yields static relationships between z,; and z, which
only involve polynomial expression of z, and of its time derivatives. The algorithm, of course,
should be ‘initialized’ by an arbitrary, but reasonable, trajectory Fq(t) for the flat output F.

It is easy to see that initializing the above calculations from the natural equilibrium condition,
Fo(t) = constant, one immediately obtains the actual static relationship between the equilibria of
z, and z, for constant equivalent controls. Proceedings with the iterations, one obtains the
following sequence of differential parameterizations for the normalized inductor current reference
trajectory z;,

zlo—z—§=>Fl=%z—;2+%z§ (17
Zy =Z—Q% + zzz'2<1 + éz%) =F,= % I:Z_Q% + zzz'2<1 + éz%)}z +%z§ (18)
ZI= Z—Q§+ <2—Q%+ 2,2, +2Q—z§z'z) (é 28,4+ ()% + 225, + GQif(z'z)2 +2Q—z§zz> + 2,7, (19)
21,0 = ¥(22, 22, 22, ...,29, ..)) (20)
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Rather than studying the convergence of these iterations, we are interested in assessing the
approximating features and the performance of the ideal sliding mode controlled feedback
scheme which takes the first few generated differentially parameterized reference trajectory
candidates, say z; o(t) and z, ,(1), to constitute the minimum phase time-varying sliding surface,
6=2z, —z*(t) = z; — 2z, 4(1) = 0, k =0, 1. This assessment, under steady-state conditions, can be
carried out in an exact manner thanks to (12).

Off-line generated differential parameterizations of the form (20) have been successfully used in
the trajectory planning aspects of some non-minimum phase output trajectory tracking prob-
lems. They have been shown to provide efficient approximating reference trajectories for non-
affine, non-feedback linearizable systems, such as the ‘variable length pendulum’ (see Reference [17])
and also for multivariable, non-minimum phase, nonlinear systems such as the PVTOL system

[18]. In all these examples, the proper normalization of the system dynamics seems to be an
advisable procedure.

2.5.1. Output tracking error assessment under ideal sliding conditions
Under ideal sliding conditions, ¢ = ¢ = 0, the steady-state solution for z,{(1) is given by expression
(12) provided z}(z) is given. We can then compare the steady-state trajectory for z,(t) and the
desired z%(1), for the reference trajectory candidates arising from (20).

For z}(1) = z, ,(t) one obtains directly from (12), and using (16), the exact steady-state relation
between z,(t) and z3(z) (recall z%(z) is bounded away from zero)

20 = /O Al — 210 = r)\/(l+QF“><1—3z;(r)z':(r)—E) 1)
o)\ "o

We define as a measure of the tracking error, e(t), the quantity [z,(1)/z3(r)]* — 1, evaluated for
each z; ;. For instance, for k = 0, expression (21) and the tracking error take the form

ZZZZ’; 1 ——Z:Z.;, €9 = —éz’fz’{ (22)

while for k = 1, the steady-state relation is readily computed as

z,=12% \/[1 + 7% <%+ éz}‘)}[l -3 (é 23+ 75 + %(z’f)%}) - i}‘z’}‘(l + é 3‘)] (23)

Thus, as long as the time derivative of z(z) is small in magnitude, the normalized voltage
response, z,(t), and the desired voltage trajectory, z3(1), are close to each other. For periodical
time functions this can, evidently, be achieved with a sufficiently small normalized frequency and
reasonable amplitudes.

Note that it is quite difficult to establish the convergence of the above sequence of steady-state
relations existing between the actual converter normalized response z,(1) and its desired value
z%(7). In the simulations presented below, we show, for a typical converter, how the previously
defined tracking error measures uniformly approach zero.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:589-600
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3. SIMULATION RESULTS

A typical ‘boost’ converter was chosen, with circuit parameters L = 20mH, C =1 pF, R=50Q
and E = 15 V. For the normalized boost converter dynamics, the dimensionless circuit quality
turned out to be Q = 0.3535. We took as sliding surfaces the candidates ¢ =z, — z¥ ,(7) for
k =0, 1, with z¥ o(t) and z¥ (t) as given by (17) and (18), respectively. As a desired normalized
output capacitor voltage signal, we chose, z5(1) = 4, + B,/2 sin w,t. The constants 4, B, and o,
were adjusted so that the sliding mode existence conditions (7) were satisfied. These were set to be
An =15, B, = 0.8, w, = 0.02, which correspond with an actual sinusoidal voltage of the form
x3(t) =225+ 6.0sin(141.42t) V. Figure 2 shows the ideal steady-state defined errors,
[z2/23]* — 1, for k =0,1,2. Clearly these errors become smaller as k grows. To also obtain
a small error, due to chattering, the underlying sampling period was set to be of 0.1 normalized
time units, which corresponds to an actual sampling frequency of about 70.71 kHz.

Figures 3 and 4 show the closed-loop actual output voltage and actual input current responses
of the proposed sliding mode tracking controller corresponding, respectively, with the first, and
second, sliding surface candidates. The simulated output voltage responses are shown along with
the output capacitor voltage tracking error signal x,(t) — x¥(t). As it can be seen, we have, in each
case, an good agreement between the generated sinusoidal signal x,(t} and the desired reference
signal x3(t). The equivalent control trajectories, also shown in these figures, are bounded signals
which, after sliding starts, uniformly remain bounded by the closed interval [0, 1]. This fact
indicates that sliding motions exist throughout the entire closed-loop tracking process.

If a 100 per cent increase in the normalized frequency, w,, is demanded for the desired
normalized reference signal, z3(z), (say, w, = 0.04), then, in the first iteration approximation
(k = 0), the resulting output voltage trajectory x,(t) is still very close to the desired normalized
reference voltage x3(t), as it is depicted in Figure 5. The sliding mode existence conditions (7), are
also clearly satisfied. The normalized inductor current reference trajectory obtained for the

second iteration approximation (k = 1) also yields quite good tracking characteristics. The
closed-loop behaviour is shown in Figure 6.

O.DBJ

0.06+
0.04+
0.02-
0.00-
-0.02-
-0.044
-0.06-
-0.08+

-0.02 0,00 0.02 0.04 0.06 0.08 010 0.12 014 0.16
time [s]

Figure 2. A measure of the steady-state output trajectory tracking errors.
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Figure 3. Closed-loop sliding mode controlled response of the ‘boost’ converter for AC output signal
generation using an inductor current reference trajectory (k =0, A =225V, B=12V, w = 141.42 rad/s).
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Figure 4. Closed-loop sliding mode controlled response of the ‘boost’ converter for AC output signal
generation using an inductor current reference trajectory (k=1, A= 225V, B=12V, & = 141.42 rad/s).

4. CONCLUSIONS

In tuis article we have proposed a new approach for the approximate generation of biased
sinusoidal AC voltage signals in the output of a DC-to-DC power converter circuit of the ‘boost’
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Figure 5. Closed-loop sliding mode controlied response of the ‘boost’ converter for AC output signal
generation using an inductor current reference trajectory (k =0, A= 225V, B=12V, w = 282.84 rad/s).
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Figure 6. Closed-loop sliding mode controlled response of the ‘boost’ converter for AC output signal
generation using an inductor current reference trajectory (k=1, A= 225V, B=12V, w= 282.84 rad/s).

type. The proposed approach is based on an indirect sliding mode reference inductor current
trajectory tracking task. The reference inductor current signal is obtained in an off-line fashion
from a simple iterative recursive algorithm which yields finite differential parameterizations of the
inductor current in terms of the capacitor voltage. Such an off-line procedure is facilitated thanks
to the differential flatness property of the circuit. Only a few iterations (1 or 2) are needed in order
to obtain a suitable inductor current reference signal. The control scheme has been extended

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2001; 11:589-600



600 H. SIRA-RAMIREZ

without any particular difficulties to generate biased sinusoidal signals for the ‘buck-boost’ and
the ‘Cuk’ converter circuits. These developments will be reported elsewhere along with recently
obtained real-time experimental results.
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