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In this article we propose the use of nonlinear exact chaotic system state reconstructors for the
fast and efficient decoding of multiple discrete-time chaotic encrypted digital messages. Exact
state reconstruction features a state estimation error which settles to zero in a finite number of
steps. This makes the method specially suitable for chaotic encrypted transmission of digitized
files over “noise-free” environments such as the Internet. The method was tested in an actual
transmission involving the simultaneous decoding of digitized color images and text files.

1. Introduction

The last decade has witnessed sustained research
efforts in the area of chaotic systems synchro-
nization from the work of mathematicians, physi-
cists, computer scientists and control engineers.
Many special issues of major scientific journals (see
[Special Issues, 1993, 1997a, 1997b, 1999, 2000,
2001]) have been devoted to the problem of chaos,
in general, and to synchronization and control of
chaotic systems, in particular. Several books exist
on the subject (see e.g. [Holden, 1986; Mira, 1987;

Afraimovitch et al., 1994; Ott et al., 1994; Chen &
Dong, 1998; Fradkov & Pogromsky, 1998; Chen,
1999]). An amazing collection of references on
chaotic systems has been gathered by Professor
G. Chen in [Chen, 1997] over the years. The interest
in the topic of synchronization arises from the pos-
sibilities of encoding, or masking, messages using
as an analog “carrier” a signal generated as a state,
or as an output, of a given chaotic system, called
the “transmitter”. The effectively random nature
of the carrier signal additively, or multiplicatively,
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nonlinear system with k € {0, 1, 2,...},
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wER

Tes1 = f(zk),
Yk = h(zk) 3

2.1. Basic assumptions

(1) We assume that the strings of obtained outputs,
prior to k = 0, are known from the time (1 —n)
on. In other words, the output values, yj for
1—mn < k <0 are known, or available for use.

(2) The system (1) is assumed to be locally observ-
able around a certain equilibrium point (z., ye).
This means that the Jacobian matrix

6{yk7 Yk41r-- 1, yk+(n—l)k}‘
al‘k

(2)

evaluated at the constant equilibrium point
(Ze, Ye) has a full column rank n, for all k.

(3) It is assumed that, given a particular equilib-
rium value, ¥, of the output vector, there exists
a unique state vector z. such that the relations,
Te = f(Ze), Ye = h(ze) are satisfied.

2.2. Notation

We use the delay operator § to express the fact
that d¢r = ¢k-1, and, correspondingly, the
advance operator is denoted by §=!. The expres-
sion, 0™#¢g, for any positive u, stands for the
identity 0™#¢y = ¢r4y and, similarly, dH¢y =
¢k-yu- The underlined symbol §, as in, ¢,
stands for the collection: {¢x_1, dr-2,..., de-p},
ie. o#dr = {6¢k,..., 6%¢r}. Evidently, §° =
6° = Id and §' = §. On the other hand, §™#¢
stands for the collection, {dx, Pr+1,. ., Pksp} =
{¢k: 6_1¢ka CELT 6_#¢k}~

Note that the system equation (1) is equivalent
to: zx = 0f(zx) = f(dzk) = f(zk_1). Since, in
turn, one may write zx_1 = f(xx_2) = f(0zk-1) =
f(6%xk), it is clear that = = F(f(8%zs)). We de-
note this last quantity by f (2)(62zk). The expres-
sion f(#)(6#z,), for > 0, should be clear from the
recursion:

FO(E ) = F(FED(51ay))
FO(8zx) = f(dz)

The operators § and § satisfy the following
relation

(3)

857 bk = {¢, O'éx} (4)
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Similar expressions may be defined for the advances
of states.

Tep1 = 871z = flak) = FW(zk)

Ter2 =077z = f(f(2x)) = fPax)

zivs = f(fP(2h)) = fO(ax) (5)

Tiyi = fl(zy)

We set
FO(zy) = 2

2.3. An exact state reconstructor
based on delayed output values

Using the system state equation in (1) in an itera-
tive fashion, one finds:

Tk =0f(zk) = f(dzx)
Tk = f(6(f(0zx))) = F(f(6%2x))
=[O (8%zy) (6)

o = frD(5n1gy)

The elements in a finite sequence of advances of the
output signal, yi, are found to be given by,

vk = h(zi) = h(fO(zy)
Yk+1 = 6 h(zk) = h(§7 zk) = h(f (k)
= (ho M) (zy)
k2 = 67 (ho f(zk)) = h(67" f(zk))
= h(f(f(zk)))
= (ho P)(zx)

Ykt (n—1) = (ho fIP=1)(zy)

The following proposition shows that an observ-
able system is constructible.

Proposition 2.1. Let the nonlinear chaotic
system, Ty = f(xk), ye = h(zx) be locally
observable, and suppose that corresponding to the
constant value, y., there ezists a unique state vec-
tor equilibrium value, z.. Then, the system is con-
structible, i.e. there exists a map ¢ : R* = R"
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Fig. 1. [Exact state reconstruction for the Parasitoid-Host

system.

Figure 1 shows the state evolution of the sys-
tem and the exactly reconstructed state trajectory
for z4 using the, arbitrarily initialized, state recon-
structor (18). The initial states of the system were
set to be g = 0.2 and 2y = 0.2. The parameter a
in the system was chosen as: a = 3.45. The state
reconstructor (18) was arbitrarily initialized with
y—1 = z_1 = 1. The time step was set to 0.1.

3.2. A Lozi system

Consider the chaotic system, known as the Lozi
system (see [Chen & Dong, 1993)),

Tk+1 = 2k

21 = —Plzg| + Qi + 1 (19)

Ye = Tk

where yj represents the output measurement mak-
ing available the state variable xx.

The Lozi system is known to exhibit chaotic
behavior for the following numerical values of the
system parameters: P = 1.8 and Q = 0.4. The
system is globally observable from y; and given
a constant value for y, = ye > O there exists
a unique equilibrium point for z and z given by
z.=2=1/(1+ P - Q).

An exact reconstructor for the nonmeasured
variable zp may be trivially obtained, since z is a
one step delay of 2. However, in order to illustrate
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Fig. 2. Exact state reconstruction for the Lozi system.

the proposed method, we follow the general pro-
cedure for obtaining the exact state reconstructor,
presented in the proof of Proposition 2.1.

Thus, we first rewrite the system in the delayed
form:

Tk = 21

(20)
2 = =Plzg_1| + Q1 + 1

The output y; and its first advance, yx41, are
given by: yx = g, Yk+1 = 2x. From these two
expressions it readily follows, by global invertibil-
ity that, 2x = yr and 2 = ygy1. Taking one
step delay in these two obtained expressions, one
has, zx_1 = ygr_1 and zx_; = yx. These new re-
lations, when substituted in the system equations
(20), yield an exact state reconstructor expression
for the states of the system,

Tk = Yk

(21)
zp = = Plye| + Qyr-1+ 1

The exact reconstructor (21) requires the
knowledge of the delayed output y; at time k — 1.
However, observe that if at the initial instant £ = 0
the output y_; is not known, or available, then
the available information, yg, yields an exact re-
construction of 2z, for all k > 1. Figure 2 shows
the state evolution of the system and the exact re-
constructed state z for an arbitrarily initialized re-
constructor. We set £g = 0.5 and 29 = —0.4. The
reconstructor was initialized with y_; = z_; = 0.
The time step was chosen to be 0.1.



digital computer program, two independent mes-
sages. The original messages consisted of a digitized
file of Van Gogh'’s self portrait and a digitized text
message containing a biography note on Van Gogh.
The encoding of the messages was carried out using
the states z, and, w, of the following unobservable,
but constructible, Lozi system,

Tk+1 = 2k
=Pzl + Qi + 1
Wi+1 = Tk2k

Yk = Tk

Il

Zk+1 (22)

The exact state reconstructor of the system
(22), made available at the remote decoding loca-
tion, was readily derived to be,

Tk = Yk
2k = —Ply| + Qye-1 + 1
We = Ye-1(=Plyk-1] + Qur-2+ 1)

(23)

The image and text files were chaotically en-
coded in a byte-by-byte fashion after a simple nor-
malization of the carrier chaotic states by an appro-
priate constant factor. We thus defined

In = Kyzpe + i, Tk = Kowy, + t

(24)
ty = T — Koty

i =Ip — K12,

where 4y and t; represent the kth byte of the image
and the text files, respectively. Iy and T} are the
corresponding kth bite of the chaotic encrypted im-
age and text. The factors K; and K are suitable
normalizing parameters, taken to be both equal to
1000. The reconstructed states £ and 1 exactly co-
incide with the original states z and w.

We remark at this point that a secure commu-
nication is not foreign to our proposed scheme. For
this, two evident options are possible: (1) The digi-
tized message signal is first encrypted by means of a
sufficiently safe encryption procedure (prime num-
ber factorization techniques and the like) and then
the already encrypted message is further chaotic en-
crypted and sent over the channel or (2) once the
chaotic encrypted digitized message is ready, as pre-
viously described, a second encryption process is
carried, via the traditional techniques, before es-
tablishing communication. The complete decoding
processes at the receiving end, in each case, are car-
ried out in the obvious manner.
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Fig. 4. Original image, chaotic encrypted image and its ex-
act remote reconstruction.

We carried out a computer-based experiment
which allowed us to encrypt, transmit, over the in-
ternet, and then simultaneously decrypt, at the re-
celving computer, the digitized image and text files
described above. The encryption and decryption
programs were written in the C programming lan-
guage, compiled with Borland C** version 1.01.
The encryption program was made to run in a PC
equipped with an AMD K6-2-366 Mhz processor.
The sizes of the digital image and the text files were
of about 120 KB and 1 KB, respectively. The pro-
cess of encryption was performed in approximately
two seconds. We then proceeded to transmit, from
our “drive” computer, the signals Iy, Ty along with
the chaotic system output signal yi, through the
e-mail facility, to the remote computer, located in
a different continent, where the exact state recon-
structor program was run. The decoding process
also took about two seconds for the two files.

Figure 4 presents the original image, the chaotic
encrypted image and the recovered image. Simi-
larly, Fig. 5 depicts a portion of the original text file,
the corresponding portion of its chaotic encrypted
file and the recovered file.
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