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SUMMARY

A sliding mode feedback controller, based on integral reconstructors is developed for the regulation of the
‘boost” DC-t0-DC power converter circuit conduction in continuous conduction mode. The feedback
control scheme uses only output capacitor voltage measurements, as well as knowledge of the available
input signal. represented by the switch positions. The robustness of the feedback scheme is tested with

abusively large, unmodelled. sudden load resistance variations. Copyright 2002 John Wiley & Sons,
Lid.
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1. INTRODUCTION

Sliding mode control of DC-to-DC Power Converters. in continuous conduction mode, has
been extensively treated in the literature over the last 15 years. Initial steps were given by
Venkatarramanan er al. {1] for the *boost” converter circuit. The differential geometric aspects of
sliding mode control were later exploited by Sira-Ramirez and [lic-Spong [2}, in order to obtain
a systematic controller design procedure for a larger class of switched bi-linear circuits. The
reader is referred to the several existing authoritative books on Power Electronics (sce
References [3-5]) for interesting practical operation details and available feedback control
methods. A survey of important developments in the regulation of this ubiquitous class of
power supplies can be found in the book cdited by Bose [6]. For other control methods
applicable to DC-to-DC Power Converters, the reader is referred to the book by Ortega ¢t al. [7)
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and to the recent article by Escobar er af. [8] where comparisons of several nonlinear feedback
control schemes are experimentally carried out. A recent book by Utkin er «f. [9], contains an
interesting. -and rather complete. account of shding mode control of these useful power
clectronics devices.

In this article. we propose a new sliding mode feedback control option for the ‘boost’
converter circuit. The approach is based on the recently introduced ideal of Integral
Reconstructors. or. also called. Generalized PI controllers (see References [1013]). This control
technique side-steps the need Tor any asymptotic observers. or on-line calculations based on
samplings and time-discretizations. i the feedback regulation of observable lincar dynamic
systems. The extension of the integral reconstructor-based feedback control technique to the
nonlincar arena is here accomplished in the context of the switched regulation of a DC/DC
power converter circuit. of the “boost’ tvpe. operating in continuous conduction mode. The
basic idea resides in obtaining a nonlincar integral input -output parameterization, or integral
reconstructor. of the unmeasured system state variable and proceed to use it in the sliding
surface synthesis. Due to a constant bias, arising {rom the unknown valuc of the initial state, the
definitive sliding surface expression incorporates a compensating output crror integral control
action. The integral reconstructor-based shiding mode scheme is shown to exhibit the stabilizing
fcatures of the traditional sliding modc control. but it turns out to be vastly superior as far as
robustness. with respect to unmodclled parameter variations. is concerned. The feedback
control scheme 1s thus based only on the available output voltage and the applied input signal
without nced for asymptotic observers or on-line calculations. based on sampled values of
measured signals. This gives traditional ‘op-amps’, and modern integrated analog circuits, a
renewed importance in the feedback regulation of power electronics circuits.

Section 2 presents the "boost™ converter model and establishes the feedback control objectives.
It also revisits the rationale behind the traditional sliding mode control approach for the
regulation of the boost converter. In Section 3 we introduce the sliding mode controller based
on integral reconstructors and proceed to analytically derive its asymptotically stabilizing
properties. Section 4 presents some digital computer simulations illustrating the performance of
the proposed fecedback controller. In this section we also examine the robustness of the proposed
feedback control scheme when the circuit is subject to unmodelled, sudden, large load variations
(up to 500 per cent of its nominal value). The obtained resuits are highly encouraging for actual

implementation. Section 5 is devoted to present the conclusions of this work and gives some
suggestions for further research.

2. CONTROL OF THE BOOST CONVERTER USING INTEGRAL
RECONSTRUCTORS

2.1, The *hoost” conterter mode

Consider the "boost’ converter circuit. shown in Figure |. The system is described by the set of
equations
L2y =—uz; + E
. 22 (N
Czy= uz; — —
) R
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Figure . The "boost’ converter circuit.

—

E

where Zy represents the inductor current and z: is the output capacitor voltage. The control
input u. representing the switch position function. is a discrete-valued signal taking values in the
set {0, 1}. The system parameters arc constituted by: L, which is the inductance of the input
circuit: C the capacitance of the output filter and R. the output load resistance. The external
voltage source has the constant value E. We assume that the circuit is in continuous conduction
mode. i.c. the average value of the inductor current never drops to zero, due to load variations.
We introduce the following state normalization and time scale transformation:
21 L 2> !

=. 2= T=

— o)
EVcC E JIc (2)

Xy =

The normalized model is thus given by

N =—uxa+ 1
. *2
Xa= ux; — 2 (3)
r=ux

where now. with an abuse of notation. the " represents derivation with respect to the
normalized time, 1. The variable x| is the normalized inductor current. x» is the normalized
output voltage and wu, still represents the switch position function. The constant system
parameters are all comprised now in the circuit *quality’ parameter. denoted by Q and given by
the strictly positive quantity, R\/C/L. It is assumed that the only system variable available for
measurement is the output capacitor voltage xi.

The operating normalized equilibrium point for the system can be computed in the following
idealized manner: Assume that by means of an infinite frequency discontinuous control input a
constant value, X» = ¥, of the output capacitor voltage and of the inductor current arc
achieved. To this constant equilibrium state value. it corresponds a constant equivalent control.
or average control input, denoted by ue,, which is obtained from the first equation in (3), as
liq = 1/V. The corresponding normalized equilibrium value of the inductor current, according
to the second equation of (3) is then given by ¥, = /2/0. Note that since. lieq, must be bounded
within the closed interval [0.1], then. necessarily. the achievable normalized constant voltage
values. V', for x», are strictly greater than 1.

The normalized ‘boost’ circuit equations cxhibit two important properties which should be
remarked. We summarize these properties in the following proposition.

Copyright 2002 John Wiley & Sons, Lud. Ini. J. Robust Nonlinear Control 2002; 12:1-14
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Proposition 2.1

In an average sense. the output capacitor voltage variable x: s a non-minimum phase output
variable. while the input inductor current is a minimum phase output variable.

Proof

Take the average output capacitor voltage. x». as the system output. i.c. v = x3. Imposing a
constant value. . on the output. r. results in an average control input of the form.
wxy) = 1g/(x Q). Under normal. non-saturated. operating conditions. the control input
satisfies: O<uyv)< 1. and. hence. vy > 0. This feedback control input. then. induces a
corresponding zero dynamics on the variable xy. given by the unstable nonlincar dynamics

N= L 0N+

The instability of this dynamics can be readily verified by considering its tangent lincarization
around the equilibrium point. % =15/Q. This dynamics is given by ts=y,. wherc
Ng = XN — {[

Take now the average inductor current. v, as the system output. v = .. Letting.

- s i . U .

xy =X, = V;/Q, the corresponding average control input is given by, u(x>) = 1/x., which
under, non-saturated. operating conditions satisfics 0 <u(x>)< 1 and, hence x> > 1 > 0. One is
lead to the following asymptotically stable zero dynamics:

_ V: N2
ToQwn @

Note that the quantity, IV(.\')=(1/2)‘\'§. satisfies the flinear differential equation given by,
W =—(2/OXW — W), with W=1/2V3. Thus W — W cxponentially asymptotically. The
physically significant corresponding equilibrium point of the variable. x, is located at the valuc.
Y2 = Vy > 0. This is, clearly, the only achievable equilibrium given the non-negative nature of
the average control input values. g

The two facts. in the above proposition. have motivated indirect feedback control schemes based

on inductor current regulation. or. alternatively. stored cnergy regulation (see References
[14,15]).

2.2, Control objectives and traditional sliding mode control

The control objective consists in sustaining, by means of discontinuous feedback control, an
average constant equilibrium value of the normalized output capacitor voltage, xa, given by the
desired value: ¥, = Vy.

A traditional solution to the proposed control problem consists in adopting the following
sliding mode control scheme (see Reference [2}). Consider a sliding surface co-ordinate function
a(x) whose zcro level set value ideally induces an average constant equilibrium value on the
normalized inductor current, given by ¥, = }'7/Q. The sliding surface may then be set to be of
the form

S=1lveR|olx)=x — % = — Vi/Q =0 (4)

Copynight © 2002 John Wiley & Sons. Lud Int. J. Robust Nonlinear Controd 2002; 12:1=14
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The ideal sliding dynamics corresponding to a{x)= 0 is given. as pointed out above, by the
lollowing nonlinear asymptotically stable zero dvnamics for the output capacitor voltage:

13

i\

e (5
o

.\.': =

1S

1o

X

The required sliding mode controller achieving finite time convergence to the switching line
a(x)= 0 is given by

1 for a(x)>0

= (6)
0 for atx)<0

The discontinuous feedback controller (6) is casily derived from the general reaching condition:
ad <0. (sce Reference [16]) which. in our case, yields, 66 = a(—uxy + 1). Starting from zero initial
conditions one has, ¢(x(0)) <0. Thus the choice « =0 results in a growing normalized inductor
current governed by X; = | and a zero output voltage (governed by X» = —x2/R, x2(0) =0). Thus
the current x, grows. while a(.x) approaches zero and x» remains at zero. If ¢ = 0 is overshot, then,
given the achieved positive value of vy, wis set to | and the output voltage starts growing while the
derivative ol x; starts decreasing, 1.c. o decreases back to zero. The sustained condition ¢ = 0 causes
the voltage x» to rapidly grow towards its equilibrium value, V4 > 1, according to the asymptotically
stable zero dynamics (5). The sliding surface is then reachable from the zero initial conditions.

More generally, considering the product ¢ = a(—uxa + 1), at any value of the state vector in
a vicinity of the sliding surface, we see that when ¢ <0, the choice 1 = 0 yields a positive second
factor in the previous product. Therefore, g4 is negative. Similarly, when ¢ is positive, the choice
1 = 1 yields a negative value for the factor (—ux>+ 1) = —x» + |, since now xa is larger than 1.
The product ¢d is again negative.

We summarize the previous results in the following proposition.

Proposition 2.2

The discontinuous feedback policy (6), creates. in finite time, a sliding regime on the sliding
surface (4). The discontinuously controlled motions induce an average constant value of the
normalized inductor current, x|, given by ¥, = V;/Q, and a corresponding ideal sliding

dynamics for the output capacitor voltage, x.. whose trajectories asymptotically reach the
desired constant voltage value, ¥, = V.

Figure 2 illustrates the traditional sliding mode controlled motions for a typical converter circuit
with high frequency sampling rate.

Unfortunately, the above controller is based on a measurement of the inductor current. or.
cquivalently, of its normalized value, x|. In practice, and within the domain of DC/DC power
convertors, the inductor current, vy, is known to be a hard signal to measure precisely. This is
due to the high-frequency switching commanding the inductor current time derivative and the
high-pass filter nature of the input circuit. For this reason, a scheme which is based on the non-
minimum phase output variable. v = x1, is usually preferable. How this can be achieved is
cxplained 1n Section 3, by invoking the philosophy of integral reconstructors-based feedback
control. recently developed within the linear systems context. In the next paragraphs. we
examine the robustness. with respect to load resistance variations, of the traditional sliding
mode controller in the indirect regulation of the output capacitor voltage.

Copyright ¢ 2002 John Wiley & Sons. Ltd. Int. J. Robust Nonlinear Control 2002 12:1-14
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Figurc 2. Traditional sliding mode controlled responses of the “boost™ converter circuit.

2.3. Robusmness of traditional sliding mode control to load variations

Sliding mode control is known to be a robust fecedback control technique with respect to
unmodelled external uncertain signals and plant parameter variations. However, when used in
an indirect scheme such as it is in our case, the invariance of the sliding motions with respect to
the minimum phase variable may bring in undesirable feedback performance in the output
capacitor voltage ideal sliding dynamics. It should be clear from the system equations (1) that if
the inductor current is kept constant. a sudden, unmodelled variation of the parameter Q, due to
a load resistance variation, will inevitably lcad the ideal sliding motions towards an undesirable
cquilibrium value.

Figure 3 shows the undesirable performance of the sliding mode-based control scheme with
respect to a sudden, and permanent. variation of the load resistance value in a typical ‘boost’

converter. As cxpected. the output voltage significantly varies when the load parameter is
subject to a sudden unmodelled variation.

3. ASLIDING MODE CONTROLLER BASED ON INTEGRAL RECONSTRUCTORS
The normalized system (3) is observable. in an average sensc, {rom the mcasured normalized
output variable v = x,. This is casily verified since the ‘observability’ matrix
0 1
("'.\'. N l o

Copynght « 2002 John Wiley & Sons. Ltd Int. J. Robust Nonlinear Control 2002; 12:1-14
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Figure 3. Sliding mode controlled "boost’ converter performance to unmodelled load variations.

is rank 2 for all avérage values of « which arc not identically equal to zero. Since the average
value of the input. under ideal sliding mode conditions. is u.q = 1/Vy > 0. the observability
condition is clearly met.

An integral input output parameterization. or an integral reconstructor, of the normalized
inductor current, x(t). is dircctly obtained from the first cquation of (3),

xio) = o (1= ulp)y(p)) dp

Xa(1) = (1)

(8)

The integral reconstructor of x;. in Equation (8). may be considered to be a ‘open-loop
estimate’ of the normalized inductor current x| which is biased by an unknown constant value,

represented by the initial condition x(0). We denote by (1), the integral reconstruction of x,
in Equation (8), i.c.

.\'1(1’):/ (1 —w{p)y(p)) dp (&)
0

It is clear that the relation linking the estimated value X; of x; to its actual value, is just
given by

X(1) = Xy(1) + x,(0) (10)

We use estimate (9) of the inductor current. x|, in the sliding surface definition. (4). and

proceed to complement the expression with an integral control action, computed on the basis of
the output voltage stabilization crror, v — .

Copynight « 2002 John Wilev & Sons. Lid. Int. J. Robust Nonlinear Control 2002 12:1- 14
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Consider then the following integral reconstructor-based sliding mode controller:

{ 1 for Giv.u. &)>0
"=

(1
0 Tor 60w &)<
5 = a l% = k)
gy, . &)= / (V= utpntpndp — =S+ k¢ (12)
Ju Q
== Iy d0)=0 (13)

with kg u strictly positive design constant to be chosen later.
The modified sliding surface co-ordinate function. 6. can also be equivalently written in terms
of the. non-measured. actual state vy as

R ; ;.'3 }
X1, &)= x5 — = — 3 (0) + ko (14)
Q
In spite of the unknown value of v (0). expression (14) is found to be uselul for our analysis
purposes.
The time derivative of any of the two equivalent expressions of the modified shiding surface
co-ordinate function (14), or (12), is given by
6w, 8= 1= uy +ko(y— Fy) (15)
Note that on ¢ =0 the inductor current, x,. is
¥y = V3/Q + x1(0) —kol.

The equivalent control, corresponding to the modified sliding surface co-ordinate function is
now given by

given by the expression

1+ k(](vl' - V&l)
Ueqg = —

)

(16)

A sliding regime locally exists on 6(y,u, ¢) = 0 whenever the [ollowing intermediate condition.
0 <uey <. is satisfied (sce Reference {17]):

0<! +ko(y = Vy)<y (7n
which is equivalent to the following sct of inequalities:
1 | = Vy
Vi——<y<Vy+—2" 3
i ™ < d+1—/\‘“ for kg > 1
(18)
) Vd=1 .
y>Vy— min —.\/_— for 0<ko<
ko 1 —ky

Thus. the sct of values for kg that guarantees a larger region of existence of a sliding regime

corresponds to the condition. &y € (0,1). The following choice of. kg, as a strictly positive
constant, within the interval:

1
0<I\'“<7<] “9)

d

Copyright © 2002 John Wiley & Sons. Ltd. Int. J. Robust Nonlinear Control 2002: 12:1-14
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clearly guarantees the non-empty character of the region of existence of sliding motions and it
will prove to be the most convenient to assure reachability from the origin of the closed-loop
system state space.

For the reachability of the shiding surface from the origin, suppose the system is initially
resting at the zero state. x(0) = 0. x2(0) = 0. 2(0) =0, then. the initial value of the modified
sliding surface is negative. d(x1(0).0)= 6(0.0) = —=13/Q<0. and the initial value of the
product. dd. is given by

. [.'2
G(0.0)6(0.0) = —5““ —kob'y)

The modified sliding surface . thus. starts increasing towards zero from the given zero initial
condition. provided Ay is chosen within the prescribed interval. The region of existence of a
sliding motion. 1s. therefore. always reachable from the origin by the proposed switched control
strategy (11).

The local reachability of the sliding surface. ¢ =0, from an arbitrary initial state value, is
established by the well-known condition, 66 <0. to be verified in a local neighbourhood of the
modificd sliding surface. As we have already seen, this neighbourhood can be made to include
the origin of the state space. which is a common starting point for the DC/DC power converter
operation.

Suppose, then, that (19) is valid. Let 6 <0, then. according to (11), the control is set to w = 0.
The time derivative of the modified sliding surface co-ordinate is given by ¢ = | +ko(v — Vg).
Then for all y > Vg — I/ko, the time derivative, 6 is positive and the product 66 is negative.
Supposc now that 4 is positive, then, the control input is given by u = 1. The time derivative of
the sliding  surface  co-ordinate s ¢ =1—y+kor—=Vy). Thus, for all
¥ (1= koV)/(1 = ko) = Vy— (Vg — 1)/(1 = ky), the product 66 is, again, negative. We
conclude that a sliding regime cxists on the modified sliding surface,
S = 10w, O] o(r.u.&) = 0}, which is locally reachable in finite time, by means of the proposed
discontinuous control law (11).

The ideal sliding dynamics, obtained from the invariance conditions. 6 =0, ¢ = 0, is now
obtained as

3

L+ koly — V) [V2
j= ol |)[—d+-\‘|(0)—/\'0§]—'§

Q

¥ (20)
é =)= Vd

where we stress that the output signal, v, satisfics the non-singularity condition, v > 1 > 0.

The only constant equilibrium point. (3, &), of the ideal closed-loop sliding dynamics (20) is
given by

4 S=—x(0) @1

[t remains to be proved that the nature of the stability of the equilibrium point with respect to
ideal sliding trajectories starting on the sliding surface S. It may be verified that such an
equilibrium point is not attractive [rom cvery point the sliding surface. We prove, thus. local
asymptotic stability, which sulfices for our purposes. By resorting to tangent linearization of the

ideal sliding dynamics. we can indecd sce that the equilibrium point (21) is locally asymptotically
stable.

Copyright « 2002 John Wiley & Sons. Lid Int. J. Robust Nonlinear Control 2002: 12:1 -14
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The tangent lincarization of the ideal sliding dynamics (20) is given by

o= Vo

o ke, 2=kaby, (22)
= i ,ng_,, Q AR

where ;= 3= vi(0)/ky and vs=1—=Fy. Since O0<ky<1/V,. the linearized system (22) is
asvmptotically stable to zero. The result follows.

Note that a small value of the design parameter. k. not only increases the damping in the
lincarized average version of the closed-loop system. but it also lowers the corresponding
natural frequency. This results. generally speaking. in a slower convergence of the controlled
motions towards the origin of the incremental variables and. hence. a slower convergence of the
nonlincar controlled system output towards the desired constant cquilibrium.

Figure 4 depicts the local asymptotically stable nature of the desired equilibrium point for the
ideal shding dynamics (22). The ideal sliding trajectories are shown in the local sliding surface
co-ordinates ¢,y for a typical converter parameter Q and for the design values, kg, Vg, used
below in the Simulation Results section.

We summarize the proven result in the following proposition.

Proposition 3.1
Consider a “boost’ converter, represented in normalized form by (3), in which it is desired to
stabilize the measurcd output variable, y= x>, towards the given constant value. Vg > 0.
Suppose that the control input, u. is also available for mcasurement. Then, the following integral
reconstructor-based sliding mode controller, using only input-output, information:

1 for G(3.,u)>0

0 for d&(y,u)<0

u=

" v
)= J5 (1= st dp = Tt ko 23)

e . . 1
c= \(T)_ Lvd- ;(0)2 0, 0<1\'()<—
Vy

‘1 é

0.2

o

-0.2

0.4

0.6

0.8

-

° a 2 3 ) 4

Figure 4. Local asymptotic stability of the ideal sliding dynamics towards the desired equilibrium point.

Copyright ¢ 2002 John Wiley & Sons. Lid. Ini. J. Robust Nonlinear Controf 2002: 12:1=14
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vields a permanent sliding motion on the surtace

S = o S dva )= 04

I ,
{(.\-.;n\ N -(—;- N0) + kol =n} (24)

1 <
which is reachable from the origin in finitc time. The induced sliding motions on the sliding
manifold. S. ideally. locally asvmptotically stabilize the trajectorics of the circunt variables
vi. X and ¢ towards the equilibrium values
=l n=r = Lo
Ny =—. o=l < =\

Q ko

where x(0) is the unknown initial state of the normalized inductor current variable x,. The
sliding motions exist on. S. whenever the regulated values of the output. v, satisfly the incquality

. 1 Vy =1
> Yy - e 25
v> by mm{ko l —ku} (25)

Figure 3 depicts the integral reconstructor-based sliding mode feedback control scheme for the
stabilization of the normalized *boost™ converter circuit.

4. SIMULATION RESULTS

Simulations were performed on a typical ‘boost’ converter circuit with parameter values
given by

L =20 mH. C =20 pF. R =130 Q. E=15V

This parameter values yield a value of Q given by O = 0.9486 and a time normalization factor
given by 1 = 6.32 x 107%r.

boost
DC/DC

Power
Converter

Va

Figure 3. Integral reconstructor-based sliding mode control scheme for the stabilization of the “boost’
converter circuit.

Copyright « 2002 John Wiley & Sons. Lid. Int J. Robust Nonlinear Control 2002; 12:1-14
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It was desired to bring the "boost” converter trajectories from unknown initial conditions
(taken to be. for the simulation purposes. x1(0) = 0.5 and x~(0) = 0.8) towards the final desired
value of 2y = 30 V. with corresponding Z; = 2 A. The simulations. shown in Figure 6, depict the
performance of the proposed sliding mode plus integral reconstructor-based feedback control

3} (fl\‘~ zl(t)
21, — ——— .
3 time {s}
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
]
o) T
15 z2(t) .
0l time [s]
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
0.004 14!
250x103{/ a(t) ,
-5.00x10° | time {s}

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 008 0.09 0.10

time [s]

Figure 6. Controlled "boost’ converter performance.

30, 141 v
z1(2)
2.5N " 22(t) {\\
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' \ 40 2
1.5 .‘ ———
1.0 i 20|!
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0.5 A\ | )
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000 004 008 0.12 000 004 008 0.12
[A] 200, (onm}
0.0 —— oq
! 160 R = 1500
20x10° ! Gl 120 }
40010° 8 |
5 4 | R =300
LI ime {s] time {s)

000 004 008 0.12 000 004 008 012
Figure 7. Controlled "boost™ converter performance to unmodelled load variations of 500 per cent.
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scheme on the behaviour of the considered DC/DC “boost’ converter circuit. The underlying

sampling frequency was sct to be 138.22 KHz. and the valuc of the design constant Ay was set to
be ko =0.1<1/Vd =0.5.

4.1, Robustness to load variations

In order to test the robustness of the proposed GPI sliding mode control scheme. we let the load
resistor R undergo a sudden unmodelled and permanent variation of 500 per cent of its nominal
value of 30 Q. This variation took place. approximately. at time. 1 = 0.0633 5. while the system
was not vet stabilized to the desired voltage valuc. Figure 7 shows the excellent recovering
leatures of the proposed controller to the imposed load variation.

5. CONCLUSIONS

In this article we have extended the integral reconstructor-based control technique to the realm
of sliding mode control, within the context of a specific nonlinear physical example of wide
interest in the Power Electronics arca. We have proposed an asymptotically stabilizing sliding
mode controller which only requires measurements of the non-minimum phase state variable of
the converter. represented by the output capacitor voltage. The integral reconstructor-based
controller is motivated by the usual indirect design of the traditional sliding surface co-ordinate
function in terms of the normalized inductor current variable stabilization error. An integral
reconstructor of the normalized inductor current variable, exhibiting a constant *off-set’ error, is
synthesized in terms of an integral of a simple nonlincar function of the available input and the
mcasured output signals. The sliding surface synthesis uses this ‘open loop' estimate of the
inductor current in combination with a suitable integral output stabilization error compensation
term. The integral input-output parameterized sliding surface is shown to be locally reachable
and. once a sliding regime is established. a locally asymptotically stable ideal sliding dynamics is
obtained on the sliding manifold which converges to the desired equilibrium values for the
normalized circuit variables.

Through computer simulations, the proposed control scheme was shown to be remarkably
robust with respect to unusually large unmodelled load parameter variations of up to 500 per
cent. Note that for an extremely large load it is possible that the inductor current drops to the
zero value. thus saturating the controller action to yicld a fixed switch position and a consequent
temporary, or permanent, loss of feedback. Strategics to cfficiently emerge from, and avoid,
such situations, are known as operation in discontinuous conduction mode. These are the object
of sustained studies in the current literature. Our approach, while being quite robust in this
respect. is not devised to entirely avoid such possibility.

A needed extension of the results, here presented. requires the use of a more complete model
including parasitic voltages in the diodes. as well as internal resistances in the inductor. in the
transistors realizing the switch. and in the external voltage source. These imperfections should
also include a non-ideally constant external voltage source.

The same integral reconsuuctor-based shding mode control technique is applicable to
‘Buck’ converters, ‘Buck-Boost’ converters, un-interruptible power supplies and. possibly. to the
"Cuk" converter. An interesting topic for further study is represented by the integral

Copyright « 2002 John Wilev & Sons. Lid. Ini. J. Robust Nonlinear Control 2002: 12:1-14
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reconstructor-bused  AC  voltage generation problem using traditional DC/DC  Power
Converters (sec Reference [18]).
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