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Summary. ! We present a flatness based control synthesis for non-minimum phase
outputs of linear and nonlinear systems. Three concrete examples are illustrating

our approach.

Introduction

We want to regulate a non-minimum phase controllable and observable SISO
system, with input u and output y, given by the transfer function g%‘—:%, where
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— P(s),Q(s) € R[s] are coprime,

— some of the transmission zeros, i.e., some of the zeros of P(s), have non-
negative real parts.

By Bézout’s theorem there exists A, B € R|[s] such that AP + BQ =
Introduce a new system variable z by

2= Ay + B (1L.1)

The transfer function of the system with input u and output z is Q(,) The
quantities u, y and 2 satisfy

Q)=

y = P J) (11.2)
Equations (11.2) tell us that u and y are expressed as linear combinations
of z and its derivatives up to some finite order. According to (11.1), z is,
conversely, expressed as a linear combination of u and y and their derivatives
up to some finite order. Those properties are reminiscent to flatness (cf.
(19, 22]) and z is called a flat output. We will exploit those properties for our
non-minimum phase tracking (see [1] and (7] for other flatness based control
strategies of linear systems). Over a finite time interval Ty < ¢t < T3, a suitable
open loop strategy for u(t), y(t) and z(t) may be given by taking polynomial
time functions which satisfy (11.1)-(11.2). This polynomial specification is far
from being the only possible one. On an infinite time interval t > T, one could
choose finite Fourier series for tracking some periodic reference trajectory.
The feedback stabilization around the reference trajectory may be achieved
by classic techniques. Robustness could be tackled as in [1]. Many of the
well-known performance limitations related to non-minimum phase systems
(see, e.g., [40]) are thus bypassed.

The zero-dynamics, which was introduced by Byrnes and Isidori [5] (see,
also, (26, 36} and the references therein), allows checking the non-minimum
phase character of input-output nonlinear systems. The control of such non-
minimum phase systems has already been the subject of a rich literature (see,
e.g., (10, 24, 29, 32, 37, 50, 52]2).

Here we attack the problem from the point of view of flatness, which
has already been utilized in (32, 37]. A (differentially) flat system [19, 22] is
equivalent to a controllable linear system via a special type of dynamic feed-
back, called endogenous. It is best understood without making any distinction
between the system variables:

1. Every system variable may be expressed as a function of the components
of a finite set 2 = (23,...,2,) and of a finite number of their time-
derivatives.

% The thesis of van Nieuwstadt {37) contains an interesting bibliographical anal-
ysis.
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2. Every component of z may be expressed as a function of the system
variables and of a finite number of their time-derivatives.

3. The components of z are differentially independent, i.e., they are not
related by any differential relation.

The fictitious output z is called a flat output®. In all known examples it may
be chosen with a clear engineering and physical meaning. More formally, the
notion of flat output may be introduced for linear systems using the language
of modules (see [3, 13, 14, 17, 19]) and for nonlinear systems via differential
fields (see [12, 14, 19]). This last approach could have been replaced by the
differential geometry of infinite jets and prolongations (see [21, 22, 38, 39]
and the references therein).

Three concrete examples are examined and simulations are provided. The
first one is an experimental flexible structure given by a transfer function (8,
9]. The second one, which has already been studied by one of the authors [46,
47), is a dc-to-dc power converter, which is static state-feedback linearizable.
The last one is a PVTOL aircraft [24] which is not static state-feedback
linearizable but flat, (see 32, 33] and [22]). In all those three cases we have
given a stabilizing feedback around the reference trajectory. Note that for the
power converter this is a passivity based output feedback [48].
ACKNOWLEDGEMENTS. The authors would like to thank Prof. H. Bourles,
Prof. D. Claude and Dr. E. Delaleau for some helpful comments.

1. Linear systems

1.1 Modules

Let k be a field and k[2] be the commutative principal ideal ring of poly-
nomials of the form 3 ;; .. Ga e Ga € k. Let M be a kf-2]-module. An
element m € M is said to be torsion if, and only if, there exists a polynomial
7 € k{4, m # 0, such that #m = 0. The set tM of all torsion elements of
M is a submodule of M; it is said to be trivial if, and only if, tM = {0}. A
k[%]-module is said to be torsion if, and only if, all its elements are torsion;
it is said to be torsion-free if, and only if, tM is trivial.

A finitely generated k[3]-module M is said to be free if, and only if, there
exists a basis, i.e., a finite set b =(by,...,b,,) such that

— any element of M depends k[dit]-linearly on b,
— the components of b are k[-2]-linearly independent.

The rank of this free module is m.
Here are some standard properties of finitely generated modules over prin-

cipal ideal rings (see, e.g., [30}).

3 If m independent channels have been distinguished, this last statement is equiv-
alent to saying that z possesses m components.
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1. A finitely generated k[‘% -module M may be written
M~tMeF (11.3)

where tM is the torsion submodule and F =~ M/tM is a free module.
The rank of M is, by definition, the rank of F.

2. For a finitely generated kf ‘%]-module M, the following two properties are

equivalent:
— M is torsion,
— the dimension dimy M of M as a k-vector space is finite.

3. Any submodule of a finitely generated (free) k[‘%]-module is a finitely
generated (free) k[%]-module. Any quotient module of a finitely gener-
ated k[}-module is a finitely generated k{%]-module.

4. For a finitely generated k[2]-module M, the following two properties are
equivalenti:

— M is torsion-free,
— M is free.

Remark 1.1. All modules considered in the sequel will be finitely generated
k[%]—modules.

Let M be a module. The derivation a% defines an endomorphism of the
torsion submodule tM, which may be viewed as a k-linear endomorphism
7 of the finite-dimensional k-vector space tM. A Smith zero [3] of M is an
eigenvalue of 7 over the algebraic closure & of k.

Notation. Write [S] the submodule spanned by a subset S of M.

1.2 Systems

A k-linear system A is a module. A k-linear dynamics is a k-linear system
A with an input, i.e., with a finite subset u = (u;,...,um) such that the
quotient module A/[u] is torsion. The input u is assumed to be free, i.e., the
submodule [u] is free of rank m. Then, the rank of A is equal to m. A k-linear
input-output system is a k-linear dynamics A with an output, i.e., with a finite
subset y = (y1,...,yp) of A.

There exists a short exact sequence

0= N—> F— A—0

The module F is free. The free module A, which is called sometimes the
module of relations, should be viewed as a system of equations defining A.
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Ezample 1.1. Consider the system of equations
m
Z g we =0 (11.4)
x=1

where a,« € k[dit], ¢ = 1,...,v. The unknowns are wy,...,w,. Let F be the
free module spanned by fi,..., f,. Let ' C F be the submodule spanned
by $°¥_, a.xfc- The module corresponding to (11.4) is F/N.

1.3 Controllability and observability

A k-linear system A is called controllable if, and only if, the module A is freet.
Any basis of A, which may be viewed as a fictitious output, is called a flat,
or basic, output.

Ezample 1.2. Consider the classic state-variable representation

d 31 Ty Ut
o =A} . |+B]| : (11.5)
Zn Tn Um
where A € k™*", B € k™*™. The control variables u = (u;,...,um) are

assumed to be independent. It follows from [13] that (11.5) is controllable, i.e.,
that rk(B, AB,..., A" 'B) =n, if, and only if, the corresponding module A
is free. As a matter of fact, the torsion submodule ¢4 in the decomposition
(11.3) corresponds to the Kalman uncontrollable subspace.

Ezample 1.3. Assume that (11.5) is controllable. There exists a static state
feedback which transforms it into the famous Brunovsky canonical form (see,
e.g., [27]; see also [16, 18] for a module-theoretic derivation which comprises
the time-varying case) which reads z(*9) = v;, i = 1,...,m, where the v;’s
are the new control variables and the v;’s the controllability, or Kronecker,
indices.

The next property is clear.
Proposition 1.1. The set z = (z1,...,2x,) is a flat output.
Ezample 1.4. Consider the input-output system

n Uy
Al | =8| : (11.6)
Yp Um

where A € k[S]P*P, det A £ 0, B € K[3]P*™. It is known that (11.6) is
controllable if, and only if, A and B are left coprime (see, e.g., [25] and
(3, 17, 18]). Denote by 4 its corresponding module.

* See [15] for the connection with Willems’ behavioral approach [51].
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Proposition 1.2. The output y = (¥1,.-.,Yp) is flat if, and only if, the
following two conditions are satisfied:

1) the matrices A and B are left coprime;

2) the system is square, i.e., m = p, and the matriz B is unimodular.

Proof. The first condition ensures the controllability of (11.6) and is equiv-
alent to the freeness of A. The second condition is equivalent to u; € [y],
1=1,...,m.

A k-linear system A with input u = (u,...,%,,) and output y =
(y1,...,Yp) is called observable if, and only if, [u,y] = A (see [13], where
it is shown that this intrinsic definition coincides with the classic one for
systems given by the Kalman state-variable representation).

1.4 Equivalence and endogenous feedback

Two systems A,, ¢ = 1,2, are said to be equivalent if, and only if, the modules
A, and A; are isomorphic. In other words any variable of one system may be
expressed as a k[-Z]-linear combination of the variables of the other: those
expressions define an endogenous feedback (compare with [19, 22}).

Fzample 1.5. The controllable dynamics 2™ = u, corresponds to the rank 1

free module A, with basis z,, ¢ = 1,2. The isomorphism A; — Az, 7y — T2,
shows the equivalence of the two dynamics. Note that, if n; # na, us is not
the image of u; under this isomorphism.

1.5 Transmission zeros

Take a system A with input u = (u1,...,um) and output y = (y1,...,¥p)
Let @ : A = A/tA be the canonical epimorphism (the free module A/tA

is the transfer module [45]). Set & = (@,...,Um), ¥ = (¥1,---,Yp), Where
U =wui, 1 =1,...,m,Y; =wy;,1=1...,p

Lemma 1.1. The restriction of v to [u] induces an isomorphism [u] — [T].
Proof. Tt follows at once from [u] N tA = {0} and ker @ =tA.

Let T be the quotient module (@, 7]/[7]. The transmission zeros of A (see

{3]) are the Smith zeros of 7.
When k& is a subfield of the field C of complex numbers, the system A is
said to be minimum phase if, and only if, the real parts of the transmission

zeros are strictly negative.

Remark 1.2. Assume that the input-output system A is controllable, i.e., that
the module A is free. Then T = [u, y]/[v].
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Ezample 1.6. Take again (11.6), which is assumed to be controllable, i.e., A
and B are left coprime. The transmission zeros of (11.6) are the zeros of the
invariant factors of B(s), where s stands for %.

The notion of equivalence is independent of any distinction between the
system variables. We now introduce an equivalence for input-output systems,
which preserves the output. Consider a system A with input u and output y
and another system X with the same output y and a new input v. These two
systems are said to be eguivalent (by endogenous feedback) if, and only if, the
following conditions are satisfied:

1. there exists an isomorphism a: A — 2,
2. the restriction of a to {u,y] defines an isomorphism between [u,y] and
[v,y]-

The next result follows at once.
Proposition 1.3. The transmission zeros are invariant under equivalence.

Remark 1.3. Two input-output systems which are equivalent by static state
feedback are not necessarily equivalent in the above sense as static state feed-
back does not necessarily preserves observability. This is why transmission
zeros are not preserved by static state feedback equivalence (see, e.g., [11]).

1.6 Controllable and observable SISO systems

To a controllable and observable system A with a single input u and a single
output y corresponds a rank 1 free module A such that A = [u,y]. Let z
be a basis of A (any other basis is of the form az, @ € k,a # 0). Set
u=Qz,y=Pz; P,Q€ k[d%].

Proposition 1.4. The polynomials P and Q are coprime. The transmission
zeros of A are the zeros of P(s) over k, where the variable s stands for ‘%.

Proof. Bézout’s theorem shows that [u,y] = [z] (= A) if, and only if, P and
Q are coprime. From Qy = Pu and from the property of the transmission
zeros of (11.6), we see that the transmission zeros of A are the zeros of P(s)
over k.

The transfer function of the input-output system A is gl(% (see [17] for a
module-theoretic approach to the Laplace transform and to transfer matrices,
which comprises the time-varying case). The next property is clear.

Proposition 1.5. The system output y is a flat output if, and only if, the
numerator of the transfer function is a non-zero constant.
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2. Application to a linear SISO system

2.1 Description of the System

The following transfer function (8, 9], which has been obtained by identifica-

tion,
0.27s2 —0.1187s + 6.1041

5% +0.2765s% + 6.1041s2
describes an experimental flexible structure used for studying elastic vibra-
tions. It consists of two freely rotating disks connected by a thin shaft as
shown in Figure 11.1.

Fig. 11.1. Flexible system example: Schematic diagram

The control is the torque u provided by a dc motor. The output y = 8, is the
farthest away angular rotation, which is measured by potentiometers. The
transmission zeros 0.2198 &+ 4.7497+/—1 are unstable and y is non-minimum
phase.

2.2 Open loop strategy

According to (11.1) and (11.2), the flat output z satisfies the following rela-

tions
a2 d
dtz + az?t. +a3fz

o
d* 4 42
u = [m‘r+bla?s +bzw]z
d a® | d? d
z = [Cla—t+02]u+[63m64m +c5§;+c6]y

(where a; = 027,a;, = -0.1187,a3 = 6.1041,b, = 0.2765,b,
6.1041, c; = 0.0001635, c; = 0.002497,c3 = —0.0006058,c4 = —0.00968, c;
0.00319, c¢ = 0.16382)

We are driving y from an operating point y(Ty) = ¥, to another one
y(T2) = F,, for Ty < T3. Set z4(T;) = Fi/as, 1 = 1,2. The time function
z4(t), Ty < t < T is defined as a suitable polynomial in ¢, of degree 9. It
yields functions y(t), u(t), Ty < t < Ty, which are, at least, continuous. The
behavior of y, u and z is illustrated in Figure 11.2.
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Fig. 11.2. Open loop control

2.3 Time scaling

Apply, as already often done for flat systems (see, e.g., [19, 20} and [1}), a
time-scaling which is here linear, i.e., t = Z, where a > 0 is a constant. This
results in \ . \

u = [04;17 +a3b1:7 +a2b237]z

y = [a2a1 j% + 002%, + 03] z

For 0 < a < 1, we can reduce the magnitude of u if necessary (compare with
[8, 9]). Figure 11.3 shows y, u and z for a = 0.5.

{open loop) system outen {open loop) control input
3 J
30 4 2t
2 W
=3 0
10
0
—
[+] 5 10 15
t
fiat output trajectory
5
4
23
=
2
1
) 5 10 15

Fig. 11.3. Open loop control under time scaling of the reference trajectory
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Fig. 11.4. Close loop control

2.4 Feedback stabilization

In Figure 11.4 we present simulations of a closed-loop éontrol strategy using
a standard observer-controller scheme for a controllable and observable state
space representation:

:iZ1 = ]

:i!g = I3

ia = T4

:f:4 = —bg.’l:a - b1$4

Yy = azr;+azrz; +a3r3

3. Nonlinear systems

3.1 Differential fields

All fields have characteristic zero. An (ordinary) differential field K (see, e.g.
[4, 28])° is a field which is equipped with a single derivation % = “" such
that
Vac K, 8=¢eK
Va,be K, S(a+b)=a+b, &(ab)=ab+ab

A differential field extension L/K is given by two differential fields K, L
such that K € L. An element in L is differentially algebraic over K if, and
only if, it satisfies an algebraic differential equation with coefficients in K. An
element in L is differentially transcendental over K if, and only if, it is not
differentially algebraic over K. The extension L/K is differentially algebraic
if, and only if, any element of L is differentially algebraic over K; L/K is

differentially transcendental if, and only if, it is not differentially algebraic.

5 See [14, 19] for a detailed review.
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A set £ = {& | i € I} of elements in L is said to be differentially al-
gebraically (in)dependent over K if, and only if, the set of derivatives of
arbitrary orders {6‘("‘) |+ €I,v;,=0,1,2,...} is algebraically (in)dependent
over K. An independent set which is maximal with respect to inclusion is
called a differential transcendence basis of L/K. Two such bases have the
same cardinality which is the differential transcendence degree of L/ K; it is
written diff tr d° L/K.

Notation. The differential subfield of L generated by K and the set £ is

denoted K(£).
A differentially transcendental field extension L/K is said to be pure

if. and only if, there exists a differential transcendence basis £ such that
L = K(§).

Remark 3.1. From now on all differential field extensions will be finitely gen-
erated.

3.2 Systems

Let & be a given differential ground field. A k-system is a differential field
extension K/k (12, 14, 19]. A k-dynamics is a k-system K/k equipped with an
input, i.e., with a finite set u = (uy, ..., um) such that K/k(u) is differentially
algebraic. From now on the input is assumed to be independent, i.e., k{u)/k
is a pure differentially transcendental extension and diff tr d° k(u) = m. An
output is a finite set y = (y1,...,y,) of elements in K/k.

3.3 Equivalence, endogenous feedback, differential flatness

Two systems K,/k, t = 1,2, are k-equivalent [19] if, and only if, there exist
differential fields M, such that M,/K, is algebraic and the two differential
extensions M;/k and M,/k are differentially k-isomorphic. In other words,
any variable of one of the systems may be expressed as an algebraic function of
the variables of the other one and of their derivatives up to some finite order.
Those expressions define an endogenous feedback between the two systems
[19].

A system K /k is (differentially) flat {19] if, and only if, K /k is k-equivalent
to a pure differentially transcendental extension of k. A differential transcen-
dence basis z = (z1,...,2m) of K/k such that K/k(z) is (non-differentially)
algebraic, which may be viewed as a fictitious output, is called a flat, or lin-
earizing, output. Recall that a flat system is equivalent to a controllable linear
system.

3.4 Residual dynamics

Consider a system K /k with input u and output y. Its residual dynamics is the
differential field extension K /k(y); its input residual dynamics is k(u,y)/k(y)
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(compare with the notion of zero dynamics (26, 36]). When the system K 1k
is flat, it might also be useful to consider the extension k(u, z)/k(z), where z
is a flat output.

Take two systems K/k and L/k with respective inputs u and v but with
the output y. They are said to be k-equivalent (by endogenous feedback) if,
and only if, the next two conditions are satisfied:

1. There exists a differential k-isomorphism o : M/k = N/k, where the
differential fields M and A are algebraic extensions of K and L.

2. There exists differential fields M and N, which are finite algebraic exten-
sions of k{u,y) and k(v,y), such that the restriction of a to M induces
a differential k-isomorphism between M/k and N/k.

The next result is clear.

Proposition 3.1. Take two k-equivalent input-output systems with the same
output y. Then their (input) residual dynamics are k(y)-equivalent.

4. A dc-to-dc power converter

4.1 Description and flatness

Fig. 11.5. “Boost” converter circuit

The average behavior of a pulse-width-modulated “boost” converter circuit
(see Figure 11.5) may be, according to [35], defined by

; = -1 E
0T vl (11.7)
I2 = 6“21 - ng

where z, is the average inductor current, z; is the average output capacitor
voltage and u is the duty ratio function taking values in the closed interval
[0,1] and acting as an input variable. It is known [47] that the output z, is
minimum phase, while z3 is not.
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Taking as an output ( = z,, we propose the following observer for the
output feedback implementation of the control law (11.9).

: L\ - ,E R 2
2y = —qpudb+i+ (-0
.’f?z = éui‘l _R;Ciz

¢ = z,

with R; > 0 being an observer design parameter. X
The state estimation error components, ¢; =(—( = z; — %y, €3 = 2, — %5,
evolve according to the following controlled dynamics

b = —tug-Rg

: — 1 1
€2 = 6“61 s Eéz

If one takes as a Lyapunov function candidate the positive definite function
V(e) = 3(Le} + Ce}), one easily verifies that the time derivative of V (¢),
along the controlled trajectories of the state estimation error vector ¢, is not
only independent of u, but it is also negative definite,

. 1

Vie) = —Ry€? _Efg < —aVie)
for a = min{R;,1/R}/maz{L,C} > 0. i.e, the quadratic function V(¢)
ezponentially converges to zero. As a consequence, the components of the

estimation error vector e also exponentially converge to zero.
The output feedback controller is now given by

LRC E* | 2 .
[2Lz: + ERC] 2,

L TwmC®
+u? (%sz+ %cae';’ - y'(t))J

2 —§ () + 2£wn (Ezl - %? —i/'(‘))

4.4 Simulation results

Two voltage transitions were performed. First, from arbitrary initial con-
ditions, it was set as a control objective the stabilization of the voltage z;
around a constant equilibrium value z; = V3; = 30 V. From the reached equi-
librium, a second transfer, starting at time T; = 0.07 s., was enforced to reach,
at time T3 = 0.12 s., a new equilibrium value given by, z;(T2) = V4, = 60
V. The observer design parameter was chosen to be R; = 0.01. The simula-
tion results shown in Figure 11.6 correspond to the following set of converter
parameter values,

L=20mH ; C=20uF ; R=302 ; E=15V

The controller design parameters £ and w, were chosen to be £ = 0.9, w, =
200.
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Fig. 11.6. Simulation of output feedback controlled dc-to-dc power converter

5. A PVTOL aircraft

5.1 Description and flatness

Fig. 11.7. Planar Vertical Take-Off and Landing Aircraft System

Consider, with {24, 32, 33] and [22], the following simplified description of a
PVTOL aircraft (see Figure 11.7)

£ = —uysin@+ eugcosh
Z = wujcosf+euzsind—g (11.10)
6 = Uz

where z and z are the horizontal and vertical coordinates of the center of
mass of the aircraft, respectively measured along an orthonormal set of fixed
horizontal and vertical coordinates. The angle 8 is the aircraft’s longitudinal
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axis angular rotation as measured with respect to the fixed horizontal coor-
dinate axis. The controls u; and u; represent normalized quantities related
to the vertical thrust and the angular torque applied around the longitudinal
axis of the aircraft respectively. The constant g is the gravity acceleration
and € is a fixed constant related to the geometry of the aircraft. The outputs
z and z are known to be non-minimum phase [24].

System (11.10) is not static state-feedback linearizable, but differentially
flat [22, 32, 33]. A physically motivated flat output is y = (F, L) with F =
z —esinf; L = z + ecos§. Thus, state variables are given by

5
(F) +(L49)?
z = L—e—(fﬁg)
\/(1"‘)2+1_:(’f«+9)2

= arctan { ~—
8 n L+g

r = F+e

By setting
@)
OO,

we obtain the following (linearizing) endogenous feedback

s = -

N2
u; = S+ ¢ (0)
u, = % (—v1 cosf —v;sinf — 269)
& = —uysinf@+uvycosb+g (9)

where v; = F¥), v, = L4 are new control variables.

5.2 Trajectory planning

It is desired to transfer, in a finite amount of time AT > 0, the aircraft
position in the z-z plane, from a given fixed initial position, specified by
a given set of constant horizontal and constant vertical coordinate values,
Zin and Z;,, towards a second constant position represented by the set of
coordinates Ty and Zy with the angular coordinate & changing from an initial
value 6;,, = 0 towards a final value 8¢ = 0. In [32] the same problem is solved
by constructing a bounded trajectory for the internal dynamics, represented
by the angular displacement 8, on the basis of the solutions of a sequence
of linear ordinary differential equations with suitable initial conditions. This
trajectory is in turn translated into a state space trajectory which is then
tracked in a conventional manner.
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v = FO=FY%+a, (F""(t) - F“”(t))
+az (F(O) = F*(0)) + oy (F(O) = F7(1)) + a0 (F() = (1))
— P 4a (—q'sin 9 —cBcosd — F‘“’(:)) + ag (_.; sin(9) — F° (t))
+a1 (£ —eboosd — F*(2)) + a0 (z — 5sind — F*(t))
v = LW =L'®@)+b, (L(a)(t) _ L“”(t))
bz ()= L*(®) + 1 (L09) = L) + bo (L() - L7 (&)
= L*@(t) +bs (¢ cos(8) — <6 sin(8) — L“”(t)) + b (c cos(8) — g — E‘(t))

+b (z' + efsiné —L'(t)) +bg(z+ ecos@— L°(t))

5.4 Simulation results

A maneuver transfering the PVTOL aircraft center of mass outputs (z, z)
from a given initial equilibrium position towards a prescribed second equi-
librium position was performed. The initial equilibrium point was set at
(Tin Zin) = (0,0) while the second equilibrium position for the center of
mass was set to be located at (Z;,2zy) = (1,1). The maneuver was set to
smoothly begin at T; =6 time units, and 1t was prescribed to be completed
at T, = 14 time units. The simulation results shown in Figure 11.8 corre-
spond to the following set of (normalized) system parameter values ¢ = 0.5,
g = 1. The controller design parameters were chosen so that the polynomials
pr(s) and pr(s) each had four roots located at the point —2, ie, az = 8,
a3 =24, a1 :32, Qg — 16, b3 :8, b2 = 24, b}_ :32, bo = 16.

Conclusion

This communication might be considered as a contribution to predictive con-
trol, which until now has been mainly developed for linear systems (see,
e.g., [2, 41, 49]). It demonstrates, once again, the power of flatness, which is
quite easy to teach to engineers (see, e.g., {31, 42, 44]), for dealing with con-
crete topics, concerning the motion planning and the stabilization of nonholo-
nomic mechanical systems [19, 20], magnetic bearings {31], chemical reactors
[42, 43], electric motors [6, 34], windshield wipers [1], tracking observers [23],
etc. Other connections may be found in [33}.
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Fig. 11.8. State variables, control inputs and flat outputs in position transfer
maneuver for a PYTOL example
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