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1 Introduction

Modeling and regulation of switched dc-to-dc power converters was initiated by
the pionecring work of Middlebrook and Cuk [1] in the mid seventies. The area
has undergone a wealth of practical and theoretical development as evidenced
by the growing list of research monographs, and textbooks, devoted to the
subject (see Severns and Bloom (2], and Kassakian et al [3]).

In this article, a Lagrangian dynamics approach is used for deriving a phys-
ically motivated model of the dc-to—~dc power converters of the “Boost” type.
The approach, however, is suitable to be applied to any kind of dc-to-dc power
converter. The proposed modeling technique is based on a suitable parametriza-
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tion, in terms of the switch position parameter, of the Euler-Lagrange func-
tions describing each intervening system and subsequent application of the
Lagrangian formalism. The resulting system is also shown to be a Lagrangian
systemn, hence, passivity based regulation is proposed as a natural controller
design technique (see Ortega et al, [4] for details). The second part of the arti-
cle designs and compares the performance of traditional (static) sliding mode
controller and that of a dynamical passivity-based sliding mode controller. The
comparison is carried out in terms of evaluating a physically motivated scalar
performgnce index involving the total stored energy. It is shown that, depend-
ing on the choice of the controller’s initial state, the passivity based controller
might render a finite performance index while the traditional controller results
in an unbounded index.

2 Modeling of Switched Euler-Lagrange Sys-
tems

An Euler-Lagrange system is classically characterized by the following set
of nonlinear differential equations, known as Lagrange eguations,
d (0£) _ 3_£ oD

where ¢ is the vector of generalized positions, assumed to have n components,
represented by ¢1,...,¢s, and ¢ is the vector of generalized velocities. The
scalar function L is the Lagrangian of the system, defined as the difference

between the kinetic energy of the system, denoted by 7(4, ¢), and the potential
energy of the system, denoted by V(g), i.e,

£(4,9) =T(4,9) - V(9 (2.2)
The function D(¢) is the Rayleigh dissipation cofunction of the system. The
vector Fy = (Fy,,...,F,.) represents the ordered components of the set of

generalized forcing functions associated with each generalized coordinate.
We refer to the set of functions (7, V, D, F) as the Fuler-Lagrange functions
of the system and symply express a system X by the ordered cuadruple

L =(T,V,D, %) (2.3)

We are particularly interested in dynamical systems containing a single
switch, regarded as the only control function of the system. The switch position,
denoted by the scalar u, is assumed to take values on a discrete set of the form
{0,1}. We assume that for each one of the switch position values, the resulting
system is an Euler-Lagrange system (EL system for short) characterized by its
corresponding EL parameters.
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Definition 2.1 We define a switched EL function M, associated with the
EL functions My and M, as a function, parametrized by the switch position
u, which is consistent with My and M;, for the corresponding values of the
switch position parameter, u € {0,1}, i.e.,

Mu|u=o = MO ; Mulu._.l = M]_ (2.4)

A system arsing from switchings among the EL systems Xy and X; is said to
be a switched EL system, whenever it is completely characterized by the set of
consistent switched EL functions

zu = (7‘;4) vu,Du,fu) (2'5)

Assume we are given two EL system models, ¥y and X, characterized
by EL parameters, (7o, Vo, Do, Fo) and (71, V1, D1, F1), respectively. Our ba-
sic modeling problem consists, generally speaking, in determining a consistent
parametrization of the EL functions, (74, Vi, Dy, Fy) in terms of the switch po-
sition parameter, u, with corresponding switched Lagrangian £, such that the
system model obtained by direct application of the EL equations (2.5) on £,
results in a parametrized model, X, which is consistent,in the sense described
above, with the models £y and &y .

2.1 A Lagrangian Approach to the Modeling of a “Boost”
Converter ‘

Consider the switch-regulated “Boost” converter circuit of Figure 1. We con-
sider, separately, the Lagrange dynamics formulation of the two circuits asso-
ciated with each one of the two possible positions of the regulating switch. In
order to use standard notation we refer to the input current z; in terms of the
derivative of the circulating charge ¢r, as g;. Also the capacitor voltage z,
will be written as g¢/C where g¢ is the electrical charge stored in the output
capacitor. The switch position paramerter, u, is assumed to take values in the
discrete set {0,1}

Consider then u = 1. In this case, two separate, or decoupled, circuits are
clearly obtained and the corresponding Lagrange dynamics formulation can be
carried out as follows.

Define T1(¢z) and V;(gc) as the kinetic and potential energies of the circuit,
respectively. We denote by D;{dc) the Rayleigh dissipation cofunction of the
circuit. These quantities are readily found to be

Tilir) = L)’

1
Vifee) = w%

. 1, .
Di(jc) = 3R(ic)’
Fo, = E ; Fp.=0 (2.6)
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where ]-';L and f;c are the generalized forcing functions associated with the
coordinates ¢; and gc, respectively.

Consider now the case u = 0. The corresponding Lagrange dynamics for-
mulation is carried out in the next paragraphs.

Define To(g4z) and Vo(gc) as the kinetic and potential energies of the circuit,
respectively. We denote by Do(4dL, §c) the Rayleigh dissipation function of the
circuit. These quantities are readily found to be,

. 1 .
Tolgr) = zL(G)’
1
Vo(gc) = 5-5942:
. 1_,. .
Do(4r,g4c) = §R(q1, -dc)’
fgz. = E ’ }-gc = 0 (2.7)

where, 73 and F7_ are the generalized forcing functions associated with the
coordinates ¢z and gc, respectively.

The EL parameters of the two situations, generated by the different switch
position values, result in identical kinetic and potential energies. The switching
action merely changes the Rayleigh dissipation cofunction between the values
Do(gc) and Di(dr,gc). Therefore, the dissipation structure of the system is

the only one affected by the switch position.

Tli) = LG’
Vulge) = %‘I%
Duldr,dc) = %R[(l - u)gr — 4}’
Foo = E ; Fo =0 (2.8)

The switched lagrangian function associated with the above defined EL
parameters is given by

. 1. . 1
Lo ="Taldr) ~ Valgo) = 5L (01)" = 559% (2.9)
One then proceeds, using the Lagrange equations (2.1), to formally obtain

the parametrized differential equations defining the switch regulated system
corresponding to (2.8). Such equations are given by,

d 8£u 6£u — aDu
& (aq,,) “ % - oyt

d (&Cu) 0Ly 0D, + Fo, (2.10)

dt \8jc ) ~ Bgc dic
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Use of (2.9) on (2.10) results in the following set of differential equations

LijL = —(l—u)R[(l—u)dL~(jc]+E
= Rl1-wiL—ic] (211)

which can be rewritten, after substitution of the second equation into the first,
as

co (1wl E
@ o= —(-uge+7
. 1 )
Q¢ = —%90+(1 — u)gL (2.12)
Using z; = ¢1 and 23 = g¢/C one obtains
. 1 E
2y = —(1-u) -I—I‘xz‘l- i
1 1

.’éz = ra . (2.13)

(1 — u) -C—.’El L .}2—6‘-

The proposed switched dynamics (2.13) coincides with the classical state
model developed in [1). The fact that switched circuits, such as the above
presented “Boost” converter, can be modeled using the Lagrangian formalism,
implies that a passivity-based approach can be naturally attempted in the design
of stabilizing feedback control policies. In order to establish suitable compar-
isons we first revisit the traditional static sliding mode controller and its main
properties.

3 Regulation of the “Boost” Converter

3.1 Traditional Sliding Mode Control of the “Boost” Con-
verter

Consider the “Boost” converter circuit, shown in Figure 1, described by the set
of differential equations (2.13).

We shall denote by F; and T, the state variables of the system under ideal
sliding mode conditions. In other words, ¥ and 75, represent the “average”
values of the state variables under sliding mode operation. The “equivalent
control”, denoted by u.q, represents an ideal, i.e., a virtual fecdback control ac-
tion that smoothly keeps the controlled state trajectories of the system evolving
on the sliding surface, provided motions are started, precisely, at the sliding
surface itself (sec Utkin [5] for definitions).

In order to avoid a well-knwon unstable closed loop behavior due to the non-
minimum phase character of the converter we proceed, instead of regulating the
output capacitor votage, z2, to indirectly regulate such a variable as indicated
in the following proposition.
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Proposition 3.1 Consider the switching line s = z, —~ V2 /RE, where V3 > 0
is a desired constant capacitor voltage value. The switching policy, given by

u=05[1-sign (s)] = 0.5[1~sign (z1 ~ V}/RE) ] (3.1)

locally creates a stable sliding regime on the line s = 0 with ideal sliding dy-
namics characterized by

V2 : 1 Vi E
- _=_;f:._._——-=—- 3 :1—:- 3.2
T RE ' T TRC [”"’ 79 I A (82
Moreover, the ideal sliding dynamics behaviour of the capacitor voltage variable,
described by (3.2), can be ezplicitly computed as

£a(t) = \/V7 + [E3(tn) — V3] e Pt (3.3)

where t; stands for the reaching instant of the sliding line s = 0 and Ta(ts) is
the capacitor voltage at time t5.

Figure 2 depicts a typical “start up” state variables evolution, from zero
initial conditions, in a current-mode controlled “Boost” converter such as that
of Proposition 3.1.

A measure of the performance of the sliding mode controlied system, de-
scribed above, is obtained by using the integral of the stored stabilization error
energy. This quantity is given by

00 00 2
Ip= /0 H(r)d r = / %[L (n(r)-;—d;) +C(1‘2(T)—Vd)2]df

(3.4)
Such a performance criterion can also be regarded as a weighted integral square
state stabilization error for the state vector. We simply address such an index
as the “WISSSE” index.

Proposition 3.2 The WISSSE indez, computed along the sliding mode con-
trolled trajectories of the “Boost” converter, is unbounded, independently of the
initial conditions of the converter.

3.2 Passivity-Based Sliding “Current-Mode” Controller
for the “Boost” Converter

In the following developments we introduce an auxiliary state vector, denoted
by z4. The basic idea is to take z4 as a “desired” vector trajectory for the
converter state vector #. This auxiliary vector variable will be determined
on the basis of energy shape considerations, and passivity, imposed on the
evolution of the error vector £ — z4. The fecdback regulation of the auxiliary
state z4, towards the desired constant equilibrium value of the state z, will in
fact result in the specification of a dynamical output feedback controller for the
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original converter state. We will be using a sliding mode control viewpoint for
the regulation of z4 towards the desired equilibrium value of z.
We rewrite the “Boost” converter equations (2.13) in matrix-vector form as

DB:I':-F(I—;I)JBI-}-RB:C:gB (3.5)

where
L 0 0 1 0 0 . | E
DB:[O C] “7’3:[-1 0] ?Rﬂz[o 1/3] '53"[0]
(3.6)

Consider the stored stabilization error energy, Hg, of the state z with respect
to the auxiliary state variable z4,

1
Hd = E(:L‘ L zd)T’DB(:c — zd) (3.7)
Suppose z4 satisfies the following controlled differential equation
Dpi+ (1—-u)JpE+Rpaf =0 - (3.8)

where Rpa = R + Rp, with R = diag[R; 0]. Then, the following proposition
holds valid.

Proposition 3.3 Given a desired state vector trajectory z4(t) for the converter
state vector z(t), the error vector & = & —zq asymptotically decays to zero, from
any arbitrary initial condition £(0), whenever z4(t) is obtained as a solution of
the controlled differential equation:

Dpza+ (1 —u)Ipza+ Rpaza =E€p

for any given control policy u which is equally applied to both the plant and
the aurxiliary system. Moreover, for some positive constants a, and (3, which
may be, respectively, taken as a = min{R;,1/R} and 8 = max{L, C}, the time
derivative of the total stored error energy Hq satisfies

a
-Hy <0
ﬂ d_

Hd = —(z—xd)TRBd(:c—zd) < -

Consider now the auxiliary system defining z4, explicitly written as
Laqg + (1 - U)xzd - Rl(xl - xld) =F

. 1
Cioyg— (1 ~u)z1a+ I_Zzu =0 (3.9
The following proposition depicts the most important features of a sliding
current-mode regulation policy of the auxiliary system (3.9) towards the desired
constant equilibrium state (z14(00), 224(00)) = (V#/RE, Vy) of the “Boost”
converter.
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Proposition 3.4 Consider the switching line s = 2,4~ de /RE, where V4 >0
is a desired constant capacitor voltage value for the auziliary variable 94 and
for the converter’s capacitor voltage xo. The switching policy, given by

u = 0.5[1 — sign (s) ] = 0.5[1 — sign (z14 — VZ/RE)] (3.10)

locally creates a sliding regime on the line s = 0. Moreover, if the sliding-
mode switching policy (8.10) is applied to both the converter and the auziliary
system, the converter state trajectory z(t) converges towards the auziliary state
trajectory x4(t) and, in turn, z4(t) converges towards the desired equilibrium
state. i.e.,

V2
(z1,22) 2 (z1a,%24) — (R—dE:,Vd)

The ideal sliding dynamics is then characterized by

v: o 1 V2\ E +'Ry(%, - V}/RE)
Frgm —te By = e |Fog — | -4 1171 77 ¥4
*14=pE ' *M¥="Re ["2“ ( E) Foq ]

E + Ry(%, ~ Vi /RE)
T2d

Ueg =1~

(3.11)

where T, is the converter’s inductor current under sliding mode conditions,
primarily occurring in the controller’s state space and induced, through the
control input u on the controlled system state space.

Figure 3 depicts simulations of a typical closed loop state behaviour for a
passivity-based regulated converter system whose converter’s initial state starte
from several initial conditions.

We can prove the following result.

Theorem 3.5 Consider the WISSSE performance indezx (8.4). The passivity-
based sliding current-mode controller, described in Proposition 3.4, yields iden-
tically unbounded WISSSE index behaviour as the traditional sliding current-
mode static controller of Proposition 3.1, provided initial conditions for the
controller and the plant are chosen to be identical. If, on the other hand, in:-
tial conditions for the dynamical controller are chosen to be precisely at the
required constant state equilibrium vector for the controlled system, then the
WISSSE indez is finite. This property holds true when the tnitial states of
the converter are taken to be different from those of the controlled converter,
provided it is guaranteed that T,(t) < Vy for allt > t),.
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FIGURES

Figure 1: The “Boost” Converter Circuit.
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Figure 2: Typical Sliding “Current-Mode” Controlled State Responses for the

“Boost” Converter.
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Figure 3: Controller and Plant State Resposes for Different Controller Initial
Conditions, (——) (314(0),2:24(0)) = (0,0) ] () (zld(o),zzd(O)) - (1.6, 19)
(--) (z14(0), z24(0)) = (3.125,37.5).



