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ABSTRACT

Due to the associated chattering effects, Pulse-Width-Modulation (PWM) control
strategies have been of limited theoretical interest in the investigations about regulation
of mechanical systems, such as robotic manipulators. This article proposes dynamical
PWM control as a means of circumventing the inconveniences caused by the discontinu-
ities associated to the PWM control strategies and still retain the classical robustness
features associated to this practical discontinuous control technique. As examples, the
results are applied to, both, rigid and flexible joint single link robotic manipulators.

INTRODUCTION

The design of PWM control policies for the regulation of dynamical systems is gen-
erally based on approximating an average (i.e., smooth) desired behavior by means
of high-frequency discontinuous control signals which, somehow, emulate the effects of
the designed average feedback control inputs. In spite of its well known robustness fea-
tures, the PWM control approach induces undesirable bang-bang control inputs causing
noticeable high frequency discontinuities, or “chattering”, in the controlled responses.
This kind of discontinuous behavior severely limits, for a large class of mechanical
and electro-mechanical systems, the applicability of PWM stabilizing feedback control
policies, as well as that of some other closely related discontinuous feedback control
techniques (such as Sliding Mode control and Pulse-Frequency-Modulation control).
For mechanical systems, in general, and robotic manipulators, in particular, low lim-
its to possible wear and tear effects, and high accuracy of the regulated variables, are
important design concerns when choosing the regulating feedback control scheme.
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PWM control constitutes a robust fecdback control policy due to its insensitivity
to external disturbance inputs, certain certain immunity to model parameter varia-
tions, within known bounds, and enhanced performance in spite of the effects of ever
present modeling errors. For basic work related to PWM control schemes, in linear
and nonlinear dynamical systems, the reader is referred to Polak [1], Skoog {2], Skoog
and Blankenship [3], Tsypkin [4], La Cava et al 5], Csaki [6] and also Sira-Ramirez
[7)-[12]. A large collection of mechanical nonlinear systems belong to the class of sys-
tems ezactly linearizable by state coordinate transformations and static state feedback.
The generalized state models (see Fliess [13], [14]) of such systems do not include input
signel derivatives. Thus, static, instead of dynamical, controllers naturally arise from
the exact linearization procedure introduced in [14]. In this article, wer present a gen-
eral design method for synthesizing static, as well as dynamical, PWM feedback control
laws stabilizing to a constant equilibrium point the state of any nonlinear dynamical
system belonging to the above class. PWM controllers are proposed which effectively
stabilize to zero a suitably designed auxiliary scalar output function of the system. The
obtained restricted dynamics results, in turn, in a linearization and local asymptotic
stabilization of the original system state to its equilibrium value. However, the obtained
static PWM controller is shown to include undesirable chattering effects on the gen-
erated input signals. A dynamical PWM controller alternative is then proposed, and
synthesized, on the basis of Fliess’s generalized controller canonical form (FGCCF)
(sec [14]) of the associated eztended system (see Nijmeijer and Van der Schaft [15]).
Continuous, instead of bang-bang, fecdback control input signals are, thus, obtained
which robustly stabilize to a constant operating point the closed loop system, while
effectively smoothing out the chattering effects on the control signals and regulated
state variables.

Next section presents a fundamental result on the PWM control of an elementary
scalar dynamical system. It is shown that, based on this scalar result, a general PWM
controller design procedure can be proposed for higher order nonlinear controlled plants.
This section also reviews FGCCF on which, both, the static, and dynamical, PWM con-
troller design procedures are based. The dynamical PWM control design scheme for
linearizable systems, proposed in this section, utilizes the concept of the extended sys-
tem. Two illustrative examples are presented later. The first one is constituted by a
purely mechanical system, representing a single link rigid robotic manipulator, on which
the performances of a static and a dynamical PWM fecdback controller are tested by
means of computer simulations. The second example deals with the more delicate issue
of using static and dynamical PWM fecdback control policies for a single link flexible
robotic manipulator.

PWM CONTROL OF NONLINEAR SYSTEMS

PWM Control of a Scalar System

Consider the scalar PWM controlled dynamical system with state variable s, in
which the constants a, W and r are all strictly positive quantities.

§=—as—Wv

sgn[s(t for t <t < tp+ 7[s(t)]T
”=PWM‘(3)={ og el for t:+r[:(t:)]T§§k<)]tk+T (1)
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1 for |s(t)] >

R

(s(t)] = {

rls(t)  for [s(t)| <

o

k=0,1,2,"'; tk+1=t);+T.

The t4’s represent regularly spaced sampling instants. The sampling interval [tx, tx41]
is known as the duty cycle and its width is here represented by the constant T i.e.,
T = tg41 — ti. At each sampling instant, ;, the value of the width of the next sign-
modulated, fixed amplitude, control pulse v is determined by the sampled value of the
duty ratio function, represented by 7[s(tx)]. The function “sgn” stands for the signum

function:
+1 if s>0
sgn(s) =< 0 if s=0

-1 if s<0

The pulse width, 7{s(2)]T, saturates to the value of the duty cycle, T, i.e., 7[s(t+)]
saturates to 1, as long as the value of the controlled state s is larger, in absolute value,
than a given prespecified threshold 1/r (see Figure 1). When the absolute value of the
state, s, of the scalar system (1) is driven below the value 1/r, the duty ratio, 7{s(t:)],
also starts decreasing, in a linear fashion, with respect to |s). When the scalar system

-1/r t/r

Figure 1. Duty Ratio function for PWM controlled Scalar System.

is, eventually, at rest in s = 0, no control pulses are then applied to the system. The
basic idea behind the above discontinuous PWM control law (1) is that large errors in
the scalar state s should require larger corrective pulse widths during the fixed inter-
sampling periods. Small errors, on the other hand, should be driven to zero, on the
basis of the adopted sampling frequency, with corrective pulse widths decreasing to
zero until stabilization. In a sense, PWM policies are “proportional” feedback policies
subject to saturation. The following theorem establishes a sufficient condition for the
asymptotic stability to zero of the PWM controlled system (1). The same theorem is
also found in [1] and also in [2]. In reference [2] it is further established that the pro-
posed convergence condition is also necessary. We furnish, however, a different proof
of the sufficiency result.

Theorem 1: The PWM controlled system (1) is asymptotically stable to s = 0, if

rW < atanh (%) (2)
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Proof: Due to the piecewise constant nature of the control inputs and the linearity of
the underlying continuous system (1), it suffices to study the stability of the discretized
version of (1) at the sampling instants. An exact discretization of the PWM controlled
system (1) thus yields

We—oT

s(te +T) = e=*Ts(t)) — -

(caf[-’(‘k)]T - 1) sgn[s(tx)] @)

Suppose the initial condition s(#o) is chosen decp into the region |s| > 1/r. The evolution
of the sampled values of s(t) obey, according to (1):

s(tuas) = 7 {s(t) = (e = 1) agmla(ee)]} 0

The absolute value of the incremental step, As(t) := s(tk+1)— (&), is readily obtained
from (4), from where it is easily found that

sl = (1= |(stew) + )| )

< (1) [isal + g]

The condition |As(tx)| < 2/r is sufficient to ensure that the value of s(ti) will be
eventually found within the bounded region |s| < 1/r, irrespectively of the initial
condition value s(to) given in |s| > 1/r. Sufficiency is clear from the facts that, in
the region |s| > 1/r, the |As(t,)| decrease at each step and that one must guarantee
that s(t;) does not persistently “jump” over the band |s| < 1/r, thus falling into a
possible limit cycle behavior. ;From (5) and the fact that |(2x)] > 1/r, the condition
|As(ti)| > 1/r, the condition |As(tk)| < 2/r is guaranteed if we let

(1-eT) [1 + T—ZV- <2 (6)

which is just the expression (2), after some straightforward manipulations.
Suppose now that the initial state, s(fo), of the scalar system (1), is found in the

region |s| < 1/r. The exact discretization of the PWM controlled system is now given
by

-aT
$(try) = e7Ts(te) — WCT (e""|'(‘k)IT = 1) sgn[s(te)] (7
The absolute values of the incremental steps As(tx) = s(tx + T') — 3(tx) are thus given
by
w (ea(rls(u)l—l)T _ e-—aT)

|Asty)] = (1-e7T) FE =

s(ty) + )

ea(rla(ﬂ)l—-l)T — e=aT
< (1 = e‘“T) [|s(tk)| + % ( =) )]

A sufficient condition for asymptotic stability of (7) to zero is given by |As(t:)| <
2|s(tx)]. Notice however that from the fact that r[s(tx)| < 1, (8) implies that

As(el < (1= e=7) [ls(ea)] + 3;'-]
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Figure 2. State Response, duty ratio function and PWM centrol signal for first order
PWM controlled scalar system.

Hence, the above convergence condition is fully guaranteed if we let

W
(el < (1= e7) [Istea)l + =] < 2ls(ta) ©)
i.e., from the second inequality one has

2 < lamisttl = st = ool tanh ()

which after multiplication of by r, and the fact that r|s(tx)| < 1, results in:
w T T
ia—- < r|s(tx)| tanh (%—) < tanh (a?)

The result follows.

A computer simulation of system (1) is shown below in Figure 2. This figure depicts
the state s(t), the PWM control input signal v(t) and the duty ratio function 7(s(t)).
The values of the involved constants were chosen as: @ = 5.4,r = 0.01,7 = 0.1, W = 10.
Since rW/a = 0.0185 < tanh(0.27) = 0.2636, asymptotic stability of s(t) to zero is guar-
anteed by Theorem 1.

Fliess’ Generalized Controller Canonical Form

Consider the analytical n-dimensional state variable representation of a nonlinear
system:

z = F(z,u) (10)

It is assumed that the nonlinear system (8) exhibits a constant equilibrium point of
interest characterized by F(X(U),U) = 0. We refer to this equilibrium point as
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(X(U),U). Associated to the system (10) is FGCCF given by (see [14] for further
details) :

2:'1 = 29 (11)
22 = 23

Znmy = Zn
i = c(z,u, i‘a Ty u(a))

Implicit in this representation is the assumption of the existence of an element, z; =
h(z), called the differential primitive element, which generates the generalized state
representation (11) of system (10). Under these circumstances, system (10) is trans-
formed into system (11) by means of an invertible input-dependent state coordinate
transformation of the form

z= Q('Ta u, i‘) MY u(a—l)) (12)
given by
q)(.’l,‘, u, 72, ] u(a-l)) = [h(z)’ h(:l:), Tty h(n_l)(z, u, i‘y R u(a—l))]l (13)

We assume that the equilibrium point (X(U),U) of (8) is transformed, by (10),
into the vector z = 0, i.e., ®(X(V),U,0,---,0) = 0. ;From this assumption, it readily
follows that ¢(0,U,---,0) = 0. Suppose that for a suitably designed feedback control
policy the state of (9) is asymptotically driven to zero. The autonomous dynamics
described by

e(0,u, 4, ,u®) =0 (14)

constitutes the zero dynamics (see Fliess [16]). In order to guarantee an overall stable
performance of the controlled system, it is of crucial importance to assess the stability
of such a dynamics around its possible equilibrium points. Around the equilibrium
point of interest u = U we assume that the dynamical system (14) is asymptotically
stable, i.e., the system dz/dt = F(z,u) with output y = A(z) is minimum phase.
Non-minimum phase systems can also be controlled by PWM control policies by means
of suitable change of the differential primitive element. This topic, however, will be
explored elsewhere (see also Fliess and Messager [17] for related aspects in connection
with sliding mode control of linear time invariant systems). Motivated by the fact that
for a large class of mechanical and electromechanical systems the integer a, in the cor-
responding GCCF (11), is equal to zero, we shall concentrate our developments, from
now on, on such a particular class of systems. This class corresponds to systems ezactly
linearizable by means of state coordinate transformations and static state feedback i.e.,
those systems in which the function ¢, in (11), is of the form ¢(z,u) = ¢(®(z),u), and
for which the transformation (12) only involves state variables. We further assume that
8c/du is not identically zero, at least, locally around the equilibrium point.

Static PWM Control for Exactly Linearizable Systems

Let P,_1()) be an (n — 1)th order Hurwitz polynomial with constant coefficients:

Pn_l(A) = A"-l + an—1 A"_z +---4 a;A + ay (15)
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Consider now the following auxiliary output function of the system (11):
5(2) = 2o+ Gna12n1 4+ @222+ iz (16)

If the condition s = 0 is achieved by means of suitable controls, the restricted motions
of the system (11) satisfy the following asymptotically stable linear time-invariant dy-
namics:

21 = 29 (17)
B = 2z
Znl = —Gpo1Znol] —t— G223 — G127

The following proposition is a direct consequence of the preceding considerations and
of Theorem 1.

Proposition 1: A system of the form (10) is locally asymptotically stabilizable to the
equilibrium point (U, X(U)) if the control action u is specified as a PWM control policy
given by the solution of the following implicit (algebraic) equation

(®(z),u) = — é(a;_l + aa))hV(z) - W PWM, ia;h"l(x)] (18)

1=1

where ap =0, and q,, = 1.

Proof: Imposing on the auxiliary output function s(z), given in (16), the asymptoti-
cally stable discontinuous PWM controlled dynamics defined by (1), one immediately
obtains, in terms of the transformed coordinates z, an implicit nonlinear equation for
the required control input u. Rewriting the obtained expression in original state and
input coordinates the static controller adopts the form (18). ;From the assumption
that dc/du is locally non zero, it follows that (18) can be explicitly solved for u. We
denote, in general, the solution for u in an equation of the form: ¢(®(z),u) = 2,41, as
u = g(z, znt1), i.e., o(®(z), 9(z, 2441)) = zn41 for some given indeterminate zp41.

As it can be easily secn from (18), the case of exactly linearizable systems results in
a static PWM controller and, hence, the proposed scheme yields discontinuous control
actions. Hence, “bang-bang” feedback control signals are generated in the closed loop
system.

Dynamical PWM Control of Nonlinear Systems

Consider now the eztended system, associated to system (8) (see [15)):
= F(z,u) (19)
= v

It is easy to sec that if 2, = h(z) is a differential primitive element for (10), z; also
qualifies as a differential primitive element for (19). Letting ¢(z, ) become a new state
variable zny, it is follows readily that the GCCF of (19) is written as

é’l = 2 (20)

Z3 = z3
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Zn = Zpy1

Zni1 g'c(z(zMF @0 ;= p-1(z) F @%(‘?lu—) z=01z) °
u = g(z, zn41) u = g(2, Znt1)
= f(2,2n41) + 9(2, 2a1 )0

Hence, if the original system is exactly linearizable by means of state coordinates
transformations, and static state feedback, so is the extended system with respect to
the new auxiliary input v. An equilibrium point of (20) i8 evidently given by v = 0,u =
U,z = X(U). We denote this equilibrium point by ((X(U),U),0).

Notice that the state coordinate transformation taking (19) into the linearizable
form (20) is given by

][] e

which is evidently invertible whenever ®(z) is invertible and d¢/du is non zero. It is
easy to see that z = 0 is an equilibrium point of (20). Let p,(\) be an n — th order
Hurwitz polynomial with constant coefficients:

Pa(d) = A"+ a 2" 4t ad o (22)
If one considers now the following auxiliary output function of the system (20)
0(2,2n41) = Zng1 F Cnza + - + G222 + 012 (23)

then the condition o = 0 implies that the restricted motions of the system (20) satisfy
the following asymptotically stable linear time-invariant dynamics

2.1 = 22 (24)
Zlg = 23
Zn = —Gpzp — o — @ —a12;

The following proposition is a direct consequence of the preceding considerations and
of Theorem 1.

Proposition 2: A system of the form (10) is locally asymptotically stabilizable to the
equilibrium point ((X(U),U),0) if the control action u is specified as a dynamical
PWM control policy given by the solution of the following explicit first order nonlinear
differential equation with discontinuous right hand side:

£(B(z, ) + 9((z, u))is = '.:‘El(““‘ + aa)h¥D(z) — (an + a)h™(z,u) (25)

-W PWM, z a;h(‘.'l)(x) + h(")(z, u)

1=1

where ag = 0.
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Proof: As in Proposition 1, above, imposing on the auxiliary output function o(z, zp41),
given in (23), the asymptotically stable discontinuous PWM controlled PWM con-
trolled dynamics, defined by (1), one immediately obtains, in terms of the transformed
coordinates (z,241), a nonlinear algebraic equation for the required control input v.
Rewriting the obtained static controller expression in terms of the original state and
input coordinates (z,u), the controller adopts the dynamical form of equation (25).
Notice that since g = 8¢/8u is assumed to be nonzero, the controller (2.25) is locally
well defined and no impasse points needs to be considered (see Fliess and Hassler [18]).

APPLICATIONS TO SINGLE-LINK RIGID AND FLEXIBLE JOINT MA-
NIPULATORS
PWM Control of a Single Link Rigid Robotic Manipulator

Consider the following nonlinear dynamical model of a single link robotic manipu-

lator (Khalil [19]):

il = T2 (26)
o g .
Tq9 = zsm Ty - -M.'L‘g + WU

where z; is the link angular position, z; is the angular velocity and u represents the ap-
plied torque. The mass M is assumed to be concentrated at the tip of the manipulator.
The constant k is the viscous damping coefficient.

It is desired to synthesize, both, a static and a dynamical PWM feedback control
policy which drives the angular position of the system to a constant desired angular
position 2y4.

Static PWM Controller Design. Let z; = z; — z14. It is easy to see that z
qualifies as a differential primitive element for (26) and that to obtain the FGCCF of
(26) it simply requires the use of the following (trivial) state coordinate transformation
2 =T~ Tidy 22 = T2t

2.1 == 22 (27)

. 1

23 mu

Let s(2) = 2z 4+ a1z, with a¢; > 0, be an auxiliary output function for system (27).
Notice that if s(zx) is stabilizedto zero, the constrained dynamics evolves according to
dz/dt = —a1# (or dz1/dt = —a1(z1 — 14)) thus achieving the desired regulation task.
Imposing on the auxiliary output function s(z) the asymptotically stable dynamics of
the PWM controlled system (1) one obtained the following static PWM controller

X k
_%SIH(ZI +21d) = 3zt

k
u = MLY-aaz + (H —a- al) 23 (28)
+% sin(zy + z14) = W PWM, (22 + a121)]

which, in original coordinates is rewritten as

u = ML? {—aal(x, — 1) + (ka —a— al) z2 (29)
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15
X(t)

X, (1)

Figure 3. Angular position and angular velocity of static PWM controlled rigid robotic
manipulator.

+—% sin(zy) — WPW M, [z, + a1(z1 — zld)]}

Simulations were run for the above PWM controlled manipulator (26), (29), with the
following parameters: M = 0.01068 [Kg],L = 0.5 [m),k = 0,zy0 = 4 [rad],g =
9.8 [m/s?. The auxiliary output function was synthesized with a; = 60 [s~!]. The
static PWM controller parameters were chosen as: a = 5.4 [s~!], W = 100 [rad/s],T =
0.1 [s],r = 0.01 [s/rad]. In this case the sufficient condition of Theorem 1 is verified
as rW/a = 0.185 < tanh(0.27) = 0.2636. Figure 3 depicts the state trajectories of the
controlled system clearly showing convergence to the desired angular position.

The angular velocity is also shown to converge to zero with significant chattering.
Figure 4 shows a magnified view of a portion of the discontinuous applied torque input
signal u, as generated by (29), and of the PWM signal.

In spite of the fact that the discontinuities associated to the input torque variable
u do not noticeably propagate towards the angular position variable (due to the two
natural integration steps existing between the angular acceleration and the angular
position) the bang-bang input behavior is deemed as highly undesirable. These dis-
continuities not only cause wear and tear, but, also, they represent an opportunity
for unnecessary excitation of high-frequency unmodelled dynamics of the mechanical
system.

Dynamical PWM Controller Design. Consider now the extended system of
(26):

.'if] = I3 (30)
T, = gsin Ty — —T2+ —=u

L M ML?
Xt = v

Taking again the angular position error z; = z14 as a differential primitive element

244



4 u(t)

0 0.2 0.4 0.8
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1
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Figure 4. Discontinuous control input torque signal (magnified view of only a portion)
and PWM control signal for static PWM controlled robotic manipulator.

zy. The resulting FGCCF of the extended system is now obtained as

2.1 = 23 (31)
Z.g = 23

. g k 1

iz = —EZQ cos(z1 + T14) — M—zs + -Wv

with 2 = z; ~ 214,20 = Z3,23 = —(g9/L)sinzy — (k/M)z; + [(1/ML?)]u. Let the
auxiliary output function o(z) be defined as: z3 + azz; + @121, with a; and a; positive
constants, chosen in the standard second order system form, with damping factor
and natural frequency wy, : @2 == 2{w, and a; = w?. Notice that if o(2) is stabilized
to zero, the constrained dynamics evolves in accordance to the asymptotically stable
second order dynamics: dz;/dt = z3; dzp/dt = —2(w,2z2 — wlz thus achieving the
desired control task: 2 = —» 0 and 2, =, — 2,4 — 0.

Imposing on o(z) the same asymptotically stable dynamics of the PWM controlled
system (1) one obtains the following static PWM controller for the extended system

v = ML? [— (a + % + 2Cw,.> 23 — (2{waa + w2)z; — awlz (32)
+%Zz cos(z1 + z1g) = W PWM,(z3 + 2(w, 23 + w:zl)]

which, in original coordinates, is rewritten as a dynamical PWM controller given by
the solution of the following time-varying ordinary differential equation for the control
input u with discontinuous (PWM) right hand side

. k g . k 1
u = MLz {— (G+M‘+2Cwﬂ,) (—Zs1nzl —ﬁx2+ Wu) (33)
_ (2(w,,a + w:) T9 — a,wrz‘ (z1 —z14) + %‘.’Bg cos(z1) ‘

. k 1
-W PWM, [—%sm I Ve -+ Wu + A wnz + wi(2y — -‘514)]}
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X5(t)

x;(0

° T T T S
o 0.5 1 1.5 2
Figure 5. Angular Position and angular velocity of dynamical PWM controlled rigid
robotic manipulator.

Simulations were run for the dynamically PWM controlled manipulator (26), (33)
with the same physical parameter values as before. The auxiliary output function &
was synthesized such that the corresponding characteristic polynomial of the linearized
system is p2(A) = A?+2(wa A+ w?, with ¢ = 0.8 and w, = 28.0 [rad/s). The static PWM
controller parameters were chosen in the same manner as in the previous example. Fig-
ure 5 depicts the state trajectories of the controlled system clearly showing convergence
to the desired angular position and to zero angular velocity with no chattering being
exhibited now.

Figure 6 shows the PWM signal and the substantially smoothed out (chattering-
free) applied torque input signal u, as generated by the dynamical PWM controller
(33). The effect of adding an integrator to the original input u of the system results in
a low pass filtering effect on the generated auxiliary input v of the extended system.

PWM Control of a Single Link Flexible Joint Robotic Manipulator

Consider the following damping-free nonlinear dynamical model of a single link
robotic manipulator with a flexible joint (Spong and Vidyasagar [20], Khalil [19]):
I+ MgLsingi + k(1 —q2) =0 (34)
Ji— k(g1 —q2) =u
where q; is the angular position of the link, ¢, is the motor shaft’s angular position
and u represents the generated torque applied to the shaft (sec [20] for details). The
constants I and M represent, respectively, the moment of inertia and the mass of the
link. J is the moment of inertia of the link and the motor shaft. The constant « is the
elasticity coeflicient associated to the flexible joint.
A state space model of the above system is readily obtained by defining z, = ¢,z =
dz,/dt,z3 = ¢3,24 = dz3/dt as shown below. (See also Korasani [21], for a different
state space model).

1.31 = T3 (35)
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Figure 6. Chattering free control input torque signal and PWM signal for dynamical
PWM controlled rigid robotic manipulator.

I3
I3

T4

MgL
I

sin(z;) — %(xl —z3)

i

T4

1
= —;—(1'1 e 33) + -ju

It is desired to synthesize, both, a static and a dynamical PWM feedback control
policy which drives the angular position of the system to a desired constant angular

position z,4. We summarize below the steps leading to both controllers designs.

Static PWM Controller Design

State coordinate transformation and its inverse to obtain FGCCF of the flexible link

manipulator model:

z,

T2

I3

T4

2

22

23

24

= I — Tid
= z4
Mgl K
= - ;] sin(z;) ~ -I-(ml — 3)
= —— % cos(z;) — %(zz — z4)
= z1+ x4

= 2

1 .
~[Tz3+ MgLsin(z + z1)] 4+ 21+ 214

1
;[Iz4 + MgLz; cos(z; + z1d)] + 22

(36)

(37)
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Fliess generalized controller canonical form:

21 = 22 (38)
Z; = 23
3 =
. M L MgL
Zy = Ig [ nt—1 —— cos(z1 + z1a) + ]sm(zl + 214)
MgL MgL .
- [7 +5+ _Ig_ cos(z1 + 214)] [23 + = sin(z + zm)] +

Auziliary output function:

8(2) = 24 + a3z3 + a222 + a1y (39)
with the a’s chosen so that ps()) = A® + agh? + az) + a; is a Hurwitz polynomial (for
instance p(A) = (A4 a)(s?+2(wa A +w?), witha > 0and 1> (> 0,w, > 0). In original
coordinates:

gLa:z cos(z1) — ﬁ(3:2 —z4)— MgILaa sin(z;)

I I

s(z) = —

Ka
—Ts—(zl — 23) + 6272 + a1 (%1 — Z14)

Static PWM controller in transformed coordinates:

U =

_JIMgL L
g [ cos(zy + z14) + ] sin(z1 + Z14) (40)

I MgL MgL
+ [1 + i + cos(z1 + :2:14)] [Za + sin(z + -’tu)]

1J
- [(a + a3)zq + (a2 + aas)zz + (a1 + aa2)z2 + aa, 1)

—~W PWM,[z4 + aszs + 6272 + a121]

Static PWM controller in original coordinates:

JMgL MgL . I M
v = - Kg' [a:§+ }q cos(zl)+;]sm(a:1)+[l+-j+

L cos(zl)] x (41)

Mgl . Mgl
[— }q sm(xl)—;(z] —z3)+ i 51n(z1)]

o[22

+(az + aas) [M

T3 cos(z1) + - 14)]

L
sin(z;) + ;(zl - :ca)] + (a1 + aaz)z; + aasz1 — -1?14]}

-W PWM, [— M}qug cos(z1) — "}(.’L‘g ~ T4)
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Figure 7. Angular position of link and motor shaft for static PWM controlled flexible
robotic manipulator.

L . K
—as sin(z;) — 437(11 — T3) + azzz + ay(z; — 9314)]

g
I

Simulations were run for the static PWM controlled manipulator (35)-(40) with
the following parameters: M = 0.01068 [Kg],L = 0.5 [m],x = 1.0 Nm/rad,z14 =
4 [rad],g = 9.8 [m/s?],J = 0.07 [Nms?/rad]. The auxiliary output function was
synthesized such that the corresponding characteristic polynomial is given by p:()) =
(A4+8)(A2+2¢wp A+ w3) with b = 30, (¢ == 0.8,w, = 28.0. The static PWM controller pa-
rameters chosen again as: a = 5.4 [s™!], W = 10* [rad/s], T = 0.1 [s],r = 10~* [s/rad].

Figure 7 depicts the controlled trajectories of the angular positions z; and z3 clearly
showing convergence of z, to the desired angular position. Due to the assumed flexi-
bility, the shaft’s angular position z; exhibits a small steady state error of 0.052 [rad]
with respect to z;. Figure 8 shows the link and shaft’s angular velocities z; and z4. The
effects of the PWM discontinuities are clearly portrayed in the shaft’s angular velocity
response.

Dynamical PWM Controller Design

The eztended system:

il = I (42)
. . K
£ = — }q sin(z;) — Z(zl — 3)
T3 = 24 )
Ty = ii(.1': - z3) + —l-u
1+ = FE-z)+ 5
= v

The (PWM) signal and the discontinuous applied torque input u, as generated by
(41), are shown in Figure 9.
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Figure 8. Angular velocities of link and motor shaft for static PWM controlled flexible
robotic manipulator.

State coordinate transformation and its inverse to obtain FGCCF of the extended ma-
nipulator system:

2y = Ty — T4 (43)
23 = I3
MgL K
23 = — }q sin(z;) — —I—(zl — z3)
Mgl
Z4 = - Ig x5 cos(z1) — ;(1'2 —z4)

2
25 = (_A{f_L) sin(zl)cos(xl)+—1‘%

(z1 — z3) cos(z;)
MgL

tT

MgL e
z3sin(z;) + —fz—n sin(z,) + (%) (21— z3)

P oy — 2+
7 T

1 = 51+ T (44)
Ty = 29

1 .
23 = —[Iz5+ MgLsin(z1 + 2u)] + 21 + 214
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Figure 9. Discontinuous control input torque signal (magnified view of only a portion)
and PWM control signal for static PWM controlled flexible robotic manipulator.

1
Ty = ;[124 + MgLz; cos(zy + 214)] + 22

MgL\?
u = zs—( }q ) sin(z; + T14) cos(21 + 214)

1 , MgLe  (K\* ¥
+;[Iz3 + MgLsin(z + 214)) ["‘fz“ F 4 (.I_) + ﬁ] cos(zy + z14)

MgL , . MgLx
- Ig 23 sin(z; + 214) ~ ——%—E sin(z; + 214)

Fliess generalized controller canonical form of the extended system:

il = 23 (45)
2 = 2
Z3 = 24
24 = 25
Ty = oz,v)

The function c(z,v) is easily obtained from (42), (43) and it only requires long but
straightforward manipulations. It is not presented here in the interest of brevity.

Auziliary output function for the extended system:

o(z) =25+ aszs + azza+ azza + a1z (46)
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with the a’s chosen so that ps(A) = A+ agd3 4+ a3A? + ayA + ¢y is a Hurwitz polynomial
(for instance p(A) = (A? + 2(winA + w2 )(A? + 2Gwa A + wd), with 1 > (1,6 >
0,win,w2n > 0). In original coordinates:

MgL?\ . MgL
o(z) = (_Ig— ) sin(z;) cos(z1) + 52 N(a:l — 3) cos(zy) (47)
MgL , . MgL . ?
+—}q—z§ sin(zq) + —I’; (; - a3) sin(z;) + [(;) - —;-as] (z1 — z3)
: MgL
+;—J(z1 —z3) + %u - gI T4 z2 cos(zl)nTa‘(xz —z4)

+azzz + a1(21 — 214)

Dynamical PWM controller in original coordinates:

e % {~w PWMIo(2)] - a

MIgL [M}”J sin(z;) + ;(”1 - 23) cos(zl)] (48)

MgL
et 5 [t =29 (545) 4

MgL
T3 COS(.’E])';‘(Z'z - :::4)] + a; [ - sin(z;) + %(.1:1 -~ 23)] — a1z,

Mgl
+as[ - I

_MgL {zg cos(xy) — 2z, [M L

T Ig sin(z1) + ;(11 - :cs)] sin(z,)

- [M;]Lzz cos(z1) + %(Iz = 14)] cos(z1)

+ [MIQL sin(z1) + (1 - 13)] o sin(zl)}

& [MgL K K Mgl , .
-7 [ 7 cos(zq) — (7 + 7) (z2— :54)] + T z3sin(z)

K

MgLk MglLk . . ;
ekl sin(z,) + —% sin(z,) + (7> (21— z3) + ;—J(zl ~z3) + —Iﬁju}

+ Iz

Simulations were run for the dynamically PWM controlled manipulator (42), (48)
with the same parameter values as before. The auxiliary output function was syn-
thesized such that the corresponding characteristic polynomial is given by ps()) =
(A +2Gwia A +wd, (A2 +2¢wan A+ w?, ) with () = 0.8,(; = 0.9,wy, = 28.0 [rad/s),wy, =
15.25 [rad/s]. The PWM controller parameters were chosen as before. Figure 10 de-
picts the controlled trajectories of the angular positions z; and z3 clearly showing
convergence of r; to the desired reference value.
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Figure 10. Angular position and angular velocity of dynamical PWM controlled flexible
robotic manipulator.

Due to the assumed flexibility, the shaft’s angular position z3 exhibits a small steady
state error of 0.052 [rad] with respect to z;. Figure 11 shows the link and shaft’s angular
velocities z3 and z4.

The (chattering-free) dynamically generated torque input signal u, as generated by
(48), is shown in Figure 12,

CONCLUSIONS

A general stabilizing design procedure, based on dynamical PWM fecdback control
policies, has been presented for nonlinear systems describing some linearizable mechan-
ical systems. A stabilizing discontinuous static controller of the PWM type is proposed
for an elementary scalar system. Based on this simple result, a static PWM controller
design can be obtained, for general high order nonlinear systems, by the zeroing of a
suitably chosen auxiliary scalar output function. Zeroing of such an auxiliary output
function induces an asymptotically stable motion for the constrained dynamics charac-
terized by a linear time-invariant system with eigenvalues placeable at will. The results
are easily implemented on a dynamical extension of the original nonlinear system which
now results in a dynamical PWM fecdback controller. In the dynamical controller case,
the discontinuities, associated to the PWM regulator, take place on the one-dimensional
state space of the dynamical controller, and not in the state space of the system. The
resulting integrated control actions are, thus, continuous with substantially reduced
(smoothed out) chattering.

In order to establish the salient stability features of the actual closed loop PWM
controlled system, no necd arises to resort to average controlled system considerations,
nor high sampling frequency assumptions. As a matter of fact, the sampling frequency
plays no crucial role in the stabilization features of the system, aside from the verifica-
tion of a simple algebraic condition. New applications areas, such as nonlinear chemical
process control, nonlinear electromechanical systems control etc., in which PWM con-
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Figure 11. Angular velocities of link and motor shaft for dynamical PWM controlled
flexible robotic manipulator.
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Figure 12. Chattering frec control input torque signal and PWM signal for dynamical
PWM controlled flexible robotic manipulator.
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trol was not traditionally feasible, can now benefit from the inherent robustness and
high performance characteristics of this class of discontinuous control strategies.
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