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2. An Algebraic Approach to Sliding
Mode Control

Hebertt Sira-Ramirez

2.1 Introduction

Recent developments in nonlinear systems theory propose the use of differen-
tial algebra for the conceptual formulation, clear understanding and definit-
ive solution of long standing problems in the discipline of automatic control.
Fundamental contributions in this area are due to Fliess (1986, 1987, 1988a,
1988b, 1989a, 1989b) while some other work has been independently presented
by Pommaret (1983, 1986). Similar developments have resulted in a complete
restatement of linear systems theory using the theory of Modules (see Fliess
(1990c)).

In this chapter implications of the differential algebraic approach for the
sliding mode control of nonlinear single-input single-output systems are re-
viewed. We also explore the implications of using module theory in the treat-
ment of sliding modes for the case of (multivariable) linear systems. .

Formalization of sliding mode control theory, within the framework of dif-
ferential algebra and module theory, represents a theoretical need. All the basic
elements of the theory are recovered from this viewpoint, and some fundamental
limitations of the traditional approach are therefore removed.

For instance, input-dependent sliding surfaces are seen to arise naturally
from this new approach. These manifolds are shown to lead to continuous,
rather than bang-bang, inputs and chatter-free sliding regimes. Independence
of the dimension of the desired ideal sliding dynamics with respect to that of the
underlying plant, is also an immediate consequence of the proposed approach.
A relationship linking controllability of a nonlinear system and the possibility
of creating higher order sliding regimes is also established using differential
algebra. The implications of the module theoretic approach to sliding regimes
in linear systems seem to be multiple. Clear connections with decouplability,
nonminimum phase problems, and the irrelevance of matching conditions from
an input-output viewpoint, are but a few of the theoretical advantages with far
reaching practical implications.

The first contribution using differential algebraic results in sliding mode
control was given by Fliess and Messager (1990). These results were later ex-
tended and applied in several case studies by Sira-Ramirez et al (1992), Sira-
Ramirez and Lischinsky-Arenas (1991) and Sira-Ramirez (1992a, 1992b, 1992c,
1993). Recent papers dealing with the multivariable linear systems case are
those of Fliess and Messager (1991) and Fliess and Sira-Ramirez (1993). Ex-
tensions to pulse-width-modulation, and pulse frequency modulation control
strategies may also be found in Sira-Ramirez (1992d, 1992¢). Some of these



24

results, obtained for sliding mode control, can be related to ideas presented by
Emelyanov (1987, 1990) in his binary systems formulation of control problems.
In Emelyanov’s work, however, the basic developments are not drawn from dif-
ferential algebra. The algebraic approach to sliding regimes in perturbed linear
systems was studied by Fliess and Sira-Ramirez (1993a, 1993b). The theory is
presented here in a tutorial fashion with a number of illustrative examples.

Section 2.2 is devoted to general background definitions used in the dif-
ferential algebraic approach to nonlinear systems theory. Section 2.3 presents
some of the fundamental implications of this new trend to sliding mode control
analysis and synthesis. As a self-contained counterpart of the results for non-
linear systems, Sect. 2.4 is devoted to present the module theoretic approach
to sliding mode control in linear systems. Sect. 2.5 contains some conclusions
and suggestions for further work.

2.2 Basic Background to Differential Algebra

In this section we present in a tutorial fashion some of the basic background
to differential algebra which is needed for the study of nonlinear dynamical
systems. The results are gathered from Fliess’s numerous contributions with
little or no modification. Further details are found in Fliess (1988a, 1989a).

2.2.1 Basic Definitions

Definition 2.1 An ordinary differential field K is a commutative field in which
a single operation, denoted by “d/dt” or “”, called derivation, is defined, which
satisfies the usual rules: d(ab + c)/dt = (da/dt)b + a(db/dt) + dc/dt for any
a,b and c in K. If all elements c in K satisfy dc/dt = 0, then K ts said to be
a field of constants.

Example 2.2 The field IR of real numbers, with the operation of time dif- |
ferentiation d/dt, trivially constitutes a differential field, which is a field of

constants. The field of rational functions in ¢ with coefficients in IR, denoted

by IR(t), is a differential field with respect to time derivation. IR(z) is also a

differential field for any differentiable indeterminate z.

Definition 2.3 Given a differential field L which contains K, we say L is a
differential field extension of K, and denote it by L/ K, if the derivation in K
is a restriction of that defined in L.

Example 2.4 IR(f)/IR is a differential field extension over the set of real
numbers. The differential field IR(¢)/Q(t) is also a differential field extension
over the field Q(t) of all rational functions in ¢ with coefficients in the set of
rational numbers Q. Similarly, the field C(t) of rational functions in t with



25

complex coefficients, is a differential field extension of, both IR(t) and of Q(t).
Evidently, C(t)/Q and C(t)/C are also differential field extensions.

In the following developments u is considered to be a scalar differential
indeterminate and k stands for an ordinary differential field with derivation

denoted by d/dt.

Definition 2.5 By k(u), we denote the differential field generated by u over
the ground field k. i.e., the smallest differential field containing both k and u.
This field is clearly the inlersection of all differential fields which contasn the
union of k and u.

Example 2.6 “Consider the field of all possible rational expressions in u and
its time derivatives, with coefficients in IR. This differential field is IR{u). A
typical element in IR{u) may be

u® 3w+ x(i) " ut - 1.02(x)° 502,

- AT (2.1)

Example 2.7 Let z4,...,z, be differential indeterminates. Consider the dif-
ferential field k(u). One may then extend k(u) to a differential field K contain-
ing all possible rational expressions in the variables z,,...,z, , and their time
derivatives, with coefficients in k(u). For instance, a typical element in K/IR(u)
may be

2 i a3 () N2
w3 (2:%)” = by (3090 (4)26 + 22

%231‘4(51)3 + u(® — 62’!222

A differential field K, like the one just described, is addressed as a fi-

nilely generated field extension over IR{u). In general, K does not coincide

with IR(u, z) and it is somewhat larger since we find in K some other variables,
like e.g. outputs, which may not be in R{u, z)/IR{u).

(2.2)

Definition 2.8 Any element of a differential field extension, say L/K, has
only two possible characterizations. Either it satisfies an algebraic differential
equation with coefficients in K, or it does not. In the first case, the element is
said to be differentially algebraic over K, otherwise it is said to be differentially
transcendental over K. If the property of being differentially algebraic is shared
by all elements in L, then L is said to be a differentially algebraic extension of
K. If, on the contrary, there is at least one element in L which is differentially
transcendent over K, then L is said to be a differentially transcendent extension

of K.

Example 2.9 Consider k(u), with k being a constant field. If z is an element
which satisfies, # — az — u = 0, then z is differentially algebraic over k(u).
However, since no further qualifications have been given, u is differentially
transcendent over k.
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Definition 2.10 A differential transcendence basis of L/K 1is the largest set
of elements in L which do not satisfy any algebraic differential equation with

- coefficients in K, i.e. they are not differentially K-algebraically dependent. A
non-differential transcendence basis of L/ K is constituted by the largest set of
elements in L which do not satisfy any algebraic differential equation with coef-
ficients in K. The numbcr of elements constituting a differential transcendence
basis is called the differential transcendence degree, and denoted by diff tr d °.
The (non-differential) transcendence degree (ir d °) refers to the cardinality of
a non-differential transcendence basis.

Example 2.11 In the previous example the differential field extension
k(z,u)/k(u) is algebraic over k(u), but, on the other hand, k(u)/k is dif-
ferentially transcendent over k, with u being the differential transcendence
basis. Note that z is transcendent over k(u) as it does not satisfy any algeb-
raic equation, but does satisfy a differential one. Hence, z is a non-differential
transcendence basis of k(z, u)/k(u). Evidently, diff tr d °k(z, u)/k(u) =0, and
tr d°k(z,u)/k{u) =1

Theorem 2.12 A finitely generated differential extension L/ K is differentially
algebraic if, and only if its (non-differential) transcendence degree is finite.

Proof. See Kolchin (1973).

Definition 2.13 A dynamics is defined as a finitely generated differentially
algebraic extension K/k(u) of the differential field k{u).

The input u is regarded as an independent indeterminate. This means
that u is a differentially transcendent element of K/k, i.e. u does not satisfy
any algebraic differential equation with coefficients in k. It is easy to see, that
if u is a differential transcendent element of k{u), then it is also a differential
transcendence element of K/k(u).

The following result is quite basic:

Proposition 2.14 Suppose ¢ = (z1,%Z3,...,2n) is @ non-differential tran-
scendence basis of K/k(u), then, the derivatives dz;/dt;(i = 1,...,n) are
k(u) -algebraically dependent on the components of z.

Proof. This is immediate.

One of the consequences of all these results, discussed by Fliess (1990a) is
that a more general and natural representation of nonlinear systems requires
implicit algebraic differential equations. Indeed, from the preceeding proposi-
tion, it follows that there exist exactly n polynomial differential equations with
coefficients in k, of the form

P, (:i:.-,:c,u,it,...,u(“))=0 ; i=1,...,n (2.3)
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implicitly describing the controlled dynamics with the inclusion of input time
derivatives up to order a.

It has been shown by Fliess and Hassler (1990) that such implicit repres-
entations are not entirely unusual in physical examples. The more traditional
form of the state equations, known as normal form, is recovered in a local fash-
ion, under the assumption that such polynomials locally satisfy the following
rank condition

opP;
By 6 ... 0
rank 0 ZP2 =n (2.4)
632 a
... 9Py
0 0 Din
The time derivatives of the z;’s may then be solved locally
& =pi(e,u, .., u®)=0i=1,...,n (2.5)

It should be pointed out that even if (2.3) is in polynomial form, it may
happen that (2.5) is not. The representation (2.5) is known as the Generalized
State Representatiion of a nonlinear dynamics.

2.2.2 Fliess’s Generalized Controller Canonical Forms

The following theorem constitutes a direct application of the theorem of the
differential primitive element which may be found in Kolchin (1973). This
theorem plays a fundamental role in the study of systems dynamics from the
differential algebraic approach (Fliess 1990a).

Theorem 2.15 Let K/k(u) be a dynamics. Then, there ezists an element
¢ € K such that K = k(u,§) i.e., such that K is the smallest field generated by
the indeterminatles u and £.

Proof. See Fliess (1990a).

The (non-differential) transcendence degree n of K/k(u) is the
smallest integer n such that &™) is k(u)-algebraically dependent
on & dE/dt,...,d"=D¢/dtP-D. We let ¢1 = £ ¢ = d/dt,...,
g = d=Dg/de®=1), It follows that ¢ = (g1,...,qn) also qualifies as
a (non-differential) transcendence basis of K/k(u).Hence, one obtains a
nonlinear generalization of the controller canonical form, known as the Global
Generalized Controller Canonical Form (GGCCF)

G = g2
g2 = q3
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: (2.6)
C(q.n)q7usi‘7"')u(a)) = 0

where C is a polynomial with coefficients in k. If one can solve locally for the

time derivative of ¢, in the last equation of 2.6, one obtains locally an explicit

system of first order differential equations, known as the Local Generalized
Controller Canonical Form (LGCCF)

g1 = q2
v @2 = g3
(2.7)
in = clg,u,5,...,u®)

Remark. We assume throughout that o > 1, i.e. the input u explicitly appears
before the n-th derivative of the differential primitive element. The case a = 0
corresponds to that of exactly linearizable systems under state coordinate trans-
formations and static state feedback. One may still obtain the same smoothing
effect of dynamical sliding mode controllers which we shall derive in this art-
icle, by considering arbitrary prolongations of the input space (i.e. addition
of integrations before the input signal). This is accomplished by successively
considering the eztended system (Nijmeijer and Van der Schaft 1990), and pro-
ceeding to use the same differential primitive element yielding the LGCCF of
the original system.

Example 2.16 Consider the second order system

#, = z9+ u, £ = u. Then one may consider £ = z; as a differential
primitive element. In this case the GCCF of the system is simply & = &,
E2=utu

2.2.3 Input-Output Systems

Definition 2.17 (Fliess 1988) Let k be a differential ground field and let u be
a differential transcendent element over k. A single input-single output system
consists of

(i) a given input u

(ii) an output y, belonging o a universal differential field extension U, such
that y is differentially algebraic over the differential field k(u), which de-
notes the smallest differential field containing, both k and u.

Remark. An input-output system may be viewed as a finitely generated dif-
ferential field extension k(y, u)/k(u). The differential field k(y, u) is, hence, dif-
ferentially algebraic over k(u), i.e. y satisfies an algebraic differential equation
with coefficients in k(u).
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Definition 2.18 Let k {y,u} denote the differential ring generated by y and
u and let U be a universal differential field. A differential homomorphism
¥ : k{y,u} — U is defined as a homomorphism which commutes with the
derivation defined on k {y, u}, i.e.

voekny),  v(0)= 0 (28)

Definition 2.19 A differential k-specialization of the differential ring k {y, u}
is a differential homomorphism v : k {y,u} — U, taking k {y, u} into the uni-
versal differential field U, which leaves the elements of the ground field k in-
variant, i.e.

Va€ek, ¢Y(a)=a (2.9)

The differential transcendence degree of the extension over k, of
the differential quotient field Q(y(k {y,u})), is nonnegative and it is
never higher than the differential transcendence degree of k(u}/k (i.e.
diff tr d °Q(¥(k {y,u})/k < diff tr d °k(u)/k = 1 ). One frequently takes ¢ as
the identity mapping.

Remark. Differential specializations have been found to have a crucial relevance
in the definition of the zero dynamics (Fliess 1990b). Indeed, consider the input-
output system k(y,u)/k(u). Let J be the largest differential subfield of k <
u,y > which contains k(y) and such that J/k(y) is differentially algebraic.
Notice that J is not, in general, equal to k{y,u), unless the system is left
invertible. Consider now the differential homomorphism % : k {y, u} — U, such
that 1(y) = 0. Hence, ¥(y(#)) = 0, for all 8 > 1. It follows that ¥(k {y,u}) =
k {u} and the quotient field Q(¥(k {y, u}))/k coincides with the differential field
extension k(u)/k. Extend now the corresponding differential specialization ¥ to
the differential field J, in a trivial manner, and obtain a smaller differential field
J*. The specialized extension J*/k , which is evidently differentially algebraic,
is called the zero dynamics.

In the language of differential algebra, feedback is also accounted for, in
all generality, by means of differential specializations (Fliess 1989a). This most
appealing way of treating the fundamental concept of control theory is stated
as follows:

Definition 2.20 A closed-loop control is a differential k-specialization v :
kE{y,u} — U such that diff tr d °Q(¢(k {y,u}))/k = 0. We refer to such
feedback loops as pure feedback loops. In such a case, the specialized ele-
ments Y(u), P(y) satisfy an ordinary algebraic differential equation. Whenever
diff tr d °k(¥(y))/k is zero, the closed-loop is said lo be degenerate .

We are mainly interested in  those cases for  which
diff tr d °Q(v(k {y,u}))/k = 0. However, let v be a scalar differen-
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tial transcendent element of k{v)/k, such that ¥(u), ¥(y) are differentially
algebraic over k{v). Then, if diff tr d °Q(¥(k {y,v}))/k = 1, the underlying
differential specialization 3 leads to a regular fecdback loop with an
(independent) external input v (Fliess 1987).

Definition 2.21 An input-output system k(y,u)/k(u) is invertible if u is
differentially algebraic over k(y), i.e. if diff tr d *k(y, u)/k(y) = 0. It is easy to
see that every nontrivial single-intput single-output system is always invertible.

A

2.3 A Differential Algebraic Approach to
Sliding Mode Control of Nonlinear
Systems

In this section we present some applications of the results of the differential
algebraic approach, proposed by Fliess for the study of control systems, to
characterize in full generality, sliding mode control of nonlinear systems.

2.3.1 Differential Algebra and Sliding Mode Control of
Nonlinear Dynamical Systems

Consider a (nonlinear) dynamics K/k{u). Furthermore, let, ¢ = ((1,...,{n) be
a non-differential transcendence baisis for K, i.e. the transcendence degree of
K /k{u) is then assumed to be n.

Definition 2.22 A sliding surface candidate is any non k-algebraic element
o of K/k(u) such that its time derivative do/dt is k(u)-algebraically dependent
on { , i.e. there exists a polynomial S over k such that

S(('Y,C,u,’l'l,...,u(a)) =0 (210)

Remark. In the traditional definition of the sliding mode for systems in Kal-
man form with state ¢, the time derivative of the sliding surface was required
to be only algebraically dependent on ¢ and u. Hence, all the resulting slid-
ing mode controllers were necessarily static. One can generalize this definition
using differential algebra. The differential algebraic approach naturally points
to the possibilities of dynamical sliding mode controllers specially in the case
of nonlinear systems, where elimination of input derivatives from the system
model may not be possible at all (see Fliess and Hasler (1990) for a physical
example).

Proposition 2.23 The element o in K/k(u) is a sliding surface candidate if
it is k-algebraically dependent on all the elements of a transcendence basis €.
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Proof. The time derivative of & is k-algebraically dependent on the derivat-
ives of every element in the transcendence basis {. Therefore, d(/dt is k{u)-
algebraically dependent on ¢

The condition in the above proposition is clearly not necessary as ¢ may
well be k-algebraically dependent only on some elements of the transcendence
basis ¢, and still have do/dt being k(u)-algebraically dependent on ¢. Imposing
on o a discontinuous sliding dynamics of the form

o =—-Wsign o (2.11)
one obtains from (2.10) an ¢mplicit dynamical sliding mode controller given by
S(~Wsign(e), ¢, u,4,...,u(*) =0 (2.12)

which is an implicit time-varying discontinuous ordinary differential equation
for the control input u. The two structures associated with the underlying vari-
able structure control system are represented by the following pair of implicit
dynamical controllers

S(—W,¢,u,4,...,u®) =0 foro >0

SW, ¢ u,t,...,ul®) =0 foro<0 (2.13)

each one valid, respectively, on one of the regions ¢ > 0 and & < 0. Precisely
when ¢ = 0 neither of the control structures is valid. One then ideally char-
acterizes the motions by formally assuming ¢ = 0 and do/dt = 0 in (2.10).
We formally define the equivalent conirol dynamics as the dynamical state
feedback control law obtained by letting do/dt become zero in (2.12), and con-
sider the resulting implicit differential equation for the equivlent control, here
denoted by u.,

S(O:Caueq;i‘eqw--»ugg)) =0 (214)

According to the initial conditions of the state ¢ and the control input and
its derivatives, one obtains in general, o = constant. Hence, the sliding motion
ideally taking place on o = 0 may be viewed as a particular case of the motions
of the system obtained by means of the equivalent control. _

Note that whenever 85/3¢ # 0, one locally obtains from the implicit
equation (2.10)

o =5 u,n,...,ul®) (2.15)

The corresponding dynamical sliding mode feedback controller, satisfying
(2.11), is given by

s(¢,u, 1, ..., ul®) = —Wsign o (2.16)

Furthermore, if 8o/8u(®) # 0, one obtains locally a time-varying state space
representation for the dynamical sliding mode controller (2.16) in normal form
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U = uy

Uy = ug

: (2.17)
g = 0O(u1,...,uq,{, Wsign o)

All discontinuities arising from the bang-bang control policy (2.11) are seen to
be confined to the highest derivative of the control input through the nonlinear
function 8. The output u of the dynamical controller is clearly the outcome of
o integrations performed on such a discontinuous function ¢ and for this reason
u is, generically speaking, sufficiently continuous.

2.3.2 Dynamical Sliding Regimes Based on Fliess’s GCCF

The general results on canonical forms for nonlinear systems, presented in
Sect. 2.2, have an immediate consequence in the definition of sliding surfaces
for stabilization and tracking problems. We explore the stabilization problem
below.

Consider a system of the form (2.7) and the following sliding surface co-
ordinate function, expressed in terms of the generalized phase coordinates ¢

oc=c1q1+¢c2q2 4+ +Cn-1qn-1+dn (2.18)

where the scalar coeflicients ¢; (¢ = 1,---,n — 1) are chosen in such a manner
that the polynomial

p(s)=¢1 +eps+ -+ ep1s” 248"t (2.19)

in the complex variable s, is Hurwitz. Imposing on the sliding surface coordinate
function o the discontinuous dynamics (2.11), then the trajectories of o are
seen to exhibit, within finite time T given by T = W~!|s(0)| , a sliding regime
on ¢ = 0. Substituting in (2.11) the expression (2.18) for o, and using (2.7),
one obtains after some straightforward algebraic minipulations, the implicit
dynamical sliding mode controller

c(q,u,it,...,u(")) = Cn—1é+chn—1<11 + (c2cn—l -01)42 EELL
+ (cn—2cn-1 - Cn—S)Qn—Z + (CrZ._l - cn-2)‘1n—l
~Wsign o
= =C1q2—¢C293— " — Cn-20n-1 — Cn-1qn
~Wsign o (2.20)

Evidently, under ideal sliding conditions ¢ = 0, the variable ¢, no longer qual-
ifies as a state variable for the system since it is expressible as a linear combin-
ation of the remanining states and, hence, g, is no longer a non-differentially
transcendent element of the field extension K. The ideal (autonomous) closed-
loop dynamics may then be expressed in terms of a reduced non-differential
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transcendence basis of K/k which only includes the remaining n — 1 phase co-
ordinates associated with the original differential primitive element. This leads
to the ideal sliding dynamics

i = q
g2 = 43
(2.21)
gn—1 = —cCi1q1—C2q2 — ' —Cn=2n-2— Cn-1qn-1

The characteristic polynomial of (2.21) is evidently given by (2.19) and hence
the (reduced) autonomous closed-loop dynamics is asymptotically stable to
zero. Note that, by virtue of (2.18), the condition ¢ = 0 holds, and due to the
asymptotic stability of (2.21), the variable ¢, also tends to zero in an asymp-
totically stable fashion. The equivalent control, denoted by u.4, is a virtual
feedback control action achieving ideally smooth evolution of the system on
the constraining sliding surface o = 0, provided initial conditions are precisely
set on such a switching surface. The equivalent control is formally obtained
from the condition do/dt = 0, i.e.

(g, u, teg, - ..,ugg)) = c1Cp-1q1 + (c2¢n—1—C1)g2 + - (2.22)
+ (cn-2€n-1— Cn-3)dn-2 + (€2 _; — Cn-2)qn-1

Since ¢ asymptotically converges to zero, the solutions of the above time-varying
implicit differential equation, describing the evolution of the equivalent control,
asymptotically approach the solutions of the following autonomous implicit
differential equation

e(0,u,4,...,u®)=0 (2.23)

Equation (2.23) constitutes the zero dynamics (Fliess 1990b) associated with
the problem of zeroing the differential primitive element, considered now as
an (auxiliary) output of the system. Note that (2.23) may also be regarded as
the zero dynamics associated with the zeroing of the sliding surface coordinate
function o. If, (2.23) locally asymptotically approaches a constant equilibrium
point 4 = U, then the system is said to be locally minimum phase around such
an equilibrium point, otherwise the system is said to be non-minimum phase.
The equivalent control is, thus, locally asymptotically stable to U, whenever
the underlying input-output system is minimum phase.

One may be tempted to postulate, for the sake of physical realizability
of the sliding mode controller, that a sliding mode control strategy is prop-
erly defined whenever the zero dynamics associated with the system is consti-
tuted by an asymptotically stable motion towards equilibrium. In other words,
the input-output system should be minimum phase. It must be pointed out,
however, that non-minimum phase systems might make perfect physical sense
and that, in some instances, instability of a certain state variable or input
does not necessarily imply disastrous effects on the controlled system (for an
example of this frequently overlooked fact, see Sira-Ramirez (1991, 1993)).
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2.3.3 Some Formalizations of Sliding Mode Control for
Input-Output Nonlinear Systems

Definition 2.24 Consider a differential k-specialization ¢, mapping k {y} —
U, such that diff ir d °Q(¢(k {y}))/k = 0. The elements o € Q(¢(k {y}))/k
are referred to as ideal sliding dynamics , or sliding surfaces. Note thal
Q(é(k{y}))/k = k{é(y))/k. We will be using the identity map for the map-
ping ¢ from now on. A sliding surface o is, therefore, directly taken from the
specialized extension k{y)/k, as e = 0.

Definition 2.25 Let o be an element of k(y)/k such that o = 0 represents
a desirable ideal sliding dynamics. An equivalent control, corresponding to o,
is said to exist for the system k(y,u)/k(u), if there ezists a differential k-
specialization v : k {y,u} — U, which represenis a pure feedback loop, such
that do/dt is identically zero. A sliding regime is said to exist on o = 0 if
o € k(Y(y))/k and diff tr d°k(y(y))/k = 0. The differential k-specialization
¥ : k{y,u} — U, may be computed, in principle, from the condition do/dt = 0.

Sliding mode control thus leads to a very special class of degenerate feed-
back in which the resulting closed-loop system ideally satisfies a preselected
autonomous algebraic differential equation. Note that, in this setting and at
least for single-input single-output systems, the order of the highest derivative
of the output y in the differential equation representing the ideal sliding dy-
namics, is not necessarily restricted to be smaller than the highest order of the
derivative of y in the differential equation defining the input-output system.
The following helps to formalize this issue.

Definition 2.26 An element r in the differential field k(y)/k s said to be a
prolongation of an element p € k(y)/k, if r is obtlained by a finite number of
time differentiations performed on p, i.e. if there erist a nonnegative inleger,
L such that r = p\I), The integer L, of required differentiations, is called the
length of the prolongation. Similarly, given an input-output system k(y, u)/k(u)
a prolonged system ts obtained by straightforward differentiation of the input-
oulput relation (Nijmeijer and Van der Schaft 1990). All prolongations of an
input-output system rest in the differential field extension: k(y, u)/k(u).

Proposition 2.27 Let k(y, u)/k{u) be an invertible system, then any prolong-
ation of the system, of finite length, is also invertible.

Proof. It is easy to see that diff tr d °k(y)/k is invariant with respect -to
prolongations.

Theorem 2.28 Modulo singularities in the actual computation of the required
control input, and the need for suitable prolongations, the equivalent control
always exists for a given element o € k(y).
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Proof. The result is obviously true from the fact that the single input-single
output system k(y,u)/k(u) is trivially invertible, modulo the possible local
singularities.

Example 2.29 Consider the first order input-output system § = u and the
asymptotically stable second order ideal sliding dynamics ¢ = § + 2w,y +
wly = 0, > 0, w, > 0. The dynamical feedback (equivalent) controller % =
—2fwntt — w2y, obtained from ¢ = i + 2w, 4+ w2y = 0, defines the equivalent
control for arbitrary initial conditions in u.

Remark. We have defined sliding motions in a quite general and relaxed sense.
Essentially, we have required only that the ideal (autonomous) sliding dynam-
ics be synthesizable, in principle, by pure feedback. The process of actually
achieving a sliding regime on such a desirable autonomous dynamics may then
be carried out through discontinous or continuous (e.g. high gain) feedback con-
trol of a static or dynamic nature. Owing to the generally local nature of the
invertibility of a given system, as well as the possible presence of singularities,
it may actually happen that finding well-defined discontinuous or continuous
feedback policies, which eventually result in closed-loop compliance with the
ideal sliding dynamics, may not be possible at all due to singularities.

Consider now a regular feedback loop with an external input v, obtained
from the differential k-specializations ¢+, and ¢~ mapping k {y} +» U, such
that

diff tr d° Q(¢¥ (k {y}))/k = diff tr d° Q(¢~ (k {v}))/k =1 (2.24)

In particular, let the external input v be obtained as v = —Wsign(¢). The
controlled elements o € Q(¢* (k {y}))/k and o € Q(¢~ (k {y}))/k are referred
to as controlled motions towards sliding, and the differential specializations ¢+
and ¢~ constitute the sliding mode control strategy .

Example 2.30 Consider again the single integrator system with a higher
order sliding surface. A sliding regime is achieved on ¢ = 0 in finite time by
imposing on ¢ the discontinuous dynamics do/dt = —Wsign ¢, i.e. ¢ = y® +
%wn§ +wiy = ~Wsign (i + 2wny + w2y). Using suitably prolonged system
equations, one obtains the dynamical sliding mode controller i = —2¢wn 1 —
wliu — Wsign (4 + 26wnu + wly).

2.3.4 An Alternative Definition of the Equivalent Control
Dynamics :

One may generate a differential algebraic extension of k(u) by adjoining the slid-
ing surface element & to u, and considering k(u, ) as an input-output system.
The differential field extension k(u,o)/k(u) is indeed an input-output system,
or, more precisely, an input-sliding surface system. The element o is then a
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non-differential transcendence element of the field extension k(u,o)/k(u). It
therefore satisfies an algebraic differential equation with coeflicients in k{u).
This means that there exists a polynomial with coefficients in & such that

P(o,6,...,0 u,5,...,uM) =0 (2-25)

where we have implicitly assumed that p is the smallest integer such that
d°c/dt? is algebraically dependent upon a,¢,...,0(), u, 4, ...,ul?). This gen-
eral characterization of sliding surface coordinate functions has not been clearly
esta_lzlished in the sliding mode control literature. Obtaining a differential equa-
tion for the sliding surface coordinate o, which is independent of the system
state, has direct implications for the area of higher order sliding motions (see
Chang (1991)), for a second order sliding motion example) and some recent
developments in binary control systems. We will explore only the first issue in
Section 2.3.5. A state-independent implicit definition of the equivalent control
dynamics can then be immediately obtained from (2.25) by setting ¢ and its
time derivatives to zero

P(0,0,...,0,u,%,...,4M) =0 (2.26)

2.3.5 Higher Order Sliding Regimes

Recently some effort has been devoted to the smoothing of system responses
to sliding mode control policies through so called higher order sliding regimes.
Binary control systems, as applied to variable structure control, are also geared
towards obtaining asymptotic convergence towards the sliding surface, in a
manner that avoids control input chattering through integration. These two
develpments are also closely related to the differential algebraic approach. In
the following paragraphs we explain in complete generality how the same ideas
may be formally derived from differential algebra.

Consider (2.25) with o as an output and rewrite in the following Global
Generalized Observability Canonical Form (GGOCF) (Fliess 1990a)

o, = 03
oy = 03
(2.27)
P(oy, ... ,ap,d',,,u,it,...,u("))=0

As before, an explicit LGOCF can be obtained for the element ¢ whenever

8P/86, # 0
6‘1 = 02
&2 = 03
(2.28)

&p = P(Ul;---aap,“y“’---,u(7)>
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Definition 2.31 An element o of the dynamics K/k{u) admits a p-th order
sliding regime if the GOCF (2.29) associated with o is p-th order.

One defines a p-th order sliding surface candidate as any arbitrary (algeb-
raic) function of o and its time derivatives up to (r — 1)-st order. For obvious
reasons the most convenient type of function is represented by a suitable linear
combination of ¢ and its time derivatives, which achieves stabilization

s=mioy+meoa+ -+ Mmpu_10,1 40, (229)

First-order sliding motion is then imposed on this linear combination of gener-
alized phase variables by means of the discontinuous sliding mode dynamics

§ = —Msign s (2.30)

This policy results in the implicit dynamical higher order sliding mode control-
ler

(o1 ey Op 8, .. .,u(7)) = —M0y—Me03— -+ — My_20,-1 ~ Mp_10,
—Msign (s) (2.31)

As previously discussed, s goes to zero in finite time and, provided the coeffi-
cients in (2.29) are properly chosen, an ideal asymptotically stable motion can
be then obtained for s, which is governed by the autonomous linear dynamics

a = 02
g2 = 03
(2.32)
Gpo1 = =m0~ = Mp_10p_1

2.3.6 Sliding Regimes in Controllable Nonlinear Systems

The differentially algebraic closure of the ground field k in the dynamics K
is defined as the differential field x, where K D & D k, consisting of the ele-
ments of K which are differentially algebraic over k. The field & is differentially
algebraically closed if and only if k& = «.

The following definition is taken from Fliess (1991) (see also Pommaret
(1991)).

Definition 2.32 The dyﬁamics K/k{u) is said 1o be algebraically controllable
if and only if the ground field k is differentially algebraically closed in K.

Algebraic controllability implies that all elements of K are necessarily
influenced by the input u, since they satisfy a differential equation which is
not independent of u and possibly some of its time derivatives.
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Proposition 2.33 A higher order sliding regime can be created for any element
s of the dynamics K/k(u) if and only if K/k(u) is controllable.

Proof. Sufficiency is obvious from the fact that s satisfies a differential equation
with coefficients in k(u). For the necessity of the condition, suppose, contrary to
what is asserted, that K /k(u) is not controllable, but that a higher order sliding
regime can be created on any element of the differential field extension K/k{u).
Since & is not differentially algebraically closed, there are elements in K, which
belong to a differential field x containing k, which satisfy differential equations
with coefficients in k. Clearly these elements are not related to the control input
u through differential equations. It follows that a higher order sliding regime
cannot be imposed on such elements. A contradiction is established.

In this more relaxed notion of sliding regime, one may say that sliding
mode behaviour can be imposed on any element of the dynamics of the system,
if and only if the system is controllable. The characterization of sliding mode
existence through controllability, is a direct consequence of the differential al-
gebraic approach.

2.4 A Module Theoretic Approach to Sliding
Modes in Linear Systems

The particularization of the differential algebraic approach to the case of linear
systems applies the notion of Modules of Khdler differentials. This theory es-
tablishes far reaching properties of the linearized version of the system to those
of the underlying nonlinear system (see Fliess (1991) for details). It turns out
that, in its own right, the theory of linear systems can be handled in a self
contained manner, from the theory of modules over rings of finite linear differ-
ential operators. This approach discards the need to relate the linear system
to some linearizability properties of an underlying nonlinear system generat-
ing it, which operates in the vicinity of an equilibrium point. Due to the wide
spread knowledge about linear systems, this latter approach is preferred in the
presentation that follows.

In this section we address the algebraic approach to sliding mode control
of linear systems. We first provide some background definitions of the relevant
topics in algebra. The reader is referred to the book by Adkins and Weintraub
(1992) for a fundamental background. We shall be closely following the work
of Fliess (1990c) for the portion containing background material on the applic-
ations of module thoery to linear systems. The algebraic approach to sliding
mode control is taken from Fliess and Sira-Ramirez (1993a, 1993b).

Definition 2.34 A ring (R,+,-) is a set R with two binary operations

+ : R — R(addition)
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: R — R(multiplication)

such that (R, +) is an abelian group with a zero. Multiplication and eddition
satisfy the usual properties of associativity and distributivity.

Here we shall be dealing only with commutative rings with identity.

Example 2.35

The set 2Z of even integers is a ring without an identity. The set of all square
n X n matrices defined over the field of real numbers. The set of all
polynomials in an indeterminate z

Definition 2.36 Lei R be an arbitrary ring with identity. A left R-module is
an abelian group M together with a scalar multiplication map

-:RxM-—-M
which satisfies the following azioms Va,be R, mne M

a(m+n) =am+an
(a+b)ym =am+bdm
(ab)m = a(bm)
Im=m.

Example 2.37

Let F be a field, then an F-module V is called a veclor space over F. Let
R be an arbitrary ring. The set of matrices Mp, n(R) is a left R-module
via left scalar multiplication of matrices. Any subgroup N C M which
is closed under scalar multiplication by elements in R is itself a module,
called a submodule of M.

If S C M, then [S] denotes the intersection of all submodules of M
containing S. We may say that [S] is the “smallest” submodule, with re-
spect to inclusion, containing the set S. The submodule [S] is also called the
submodule of M generated by S.

Definition 2.38 M is fintely generated if M = [S] for some finite subset S of
M. The elements of S are called the “generators” of M. The rank of a module
M is the cardinality of the minimal set of generators of M in S.

We denote by k [c%] the ring of finite linear differential operators. These
are operators of the following form
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~ d®
Z Gagior Ga €k

Jinite

The ring & [é’?] is commutative if, and only if, k is a field of constants. We
will be primarily concerned with rings of linear differential operators with real
coefficients. This necessarily restricts the class of problems treated to linear,
time-invariant, systems. The results, however, can be extended to time-varying
systems by using rings defined over principal ideal domains (see Fliess (1990¢)).

Definition 2.39 Let M be a left k [a‘{-]-module. An element m € M is said
to be torsion if and only if there ezisis # € k [ff] y® #£ 0, such that sm = 0
t.e. m satisfies a linear differential equation with coefficients in k.

Definition 2.40 A module T such that all its elements are torsion is said to
be a torsion module.

Definition 2.41 A finite set of elements in a k[$])-module M constitutes a
basis if every element in the module may be uniquely expressed as a k[5]-linear
combination of such elements. A module M is said to be free if il has a basis.

Proposition 2.42 Let M be a finitely generated left k [a‘-if]-module. M is
torsion if and only if the dimension of M as a k-vector space 1s finite .

Definition 2.43 The set of all torsion elements of a module M is a submodule
T called the torsion subrnodule of M.

Definition 2.44 A module M is said 1o be free if and only if its torsion
submodule is trivial.

Theorem 2.45 Any finitely generated left k [ad?] -module M can be decomposed

into a direct sum
M=T¢ed

where T' is the torsion submodule and & is a free submodule.

2.4.1 Quotient Modules

Let M be an R-module and let N C M be a submodule of M, then N is a
subgroup of the abelian group M and we can form the guotient group M/N
as the set of all cosets

M/N ={m+ N ; for me M} (2.33)

They evidently accept the operation of addition as a well defined (commutative)

operation
(m+N)+(p+N)=(m+p)+N
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The elements m+ N of M/N can now be endowed with an R-module structure
by defining scalar products in a manner inherited from M, namely,
alm+N)=am+ N ;Va€eR and me M

The elements m’ = m(modN) are called the residues of M in M/N. The map
M — M/N taking m — m’ = m + N is called the canonical projection.

2.4.2 Linear Systems and Modules

Linear systems enjoy a particularly appealing characterization from the algeb-
raic viewpoint. This has been long recognized since the work of Kalman (1970).
More recently Fliess (1990¢) has provided a rather different approach to such
characterization, which still uses modules but in a different context. In this
section we follow the work of Fliess (1990c) with little or no modifications.

Definition 2.46 A linear system is a finitely generated left k [é’-t-]-module A.

Example 2.47 (Fliess, 1990c) Consider a system X as a finite set of quantities

w = (wy,...,wy) which are related by a set of homogeneous linear differential
equations over k.
Let

Bo () = Y7 0igul® =0, (aass €4

Jinite

Consider the left k [adg]-module F spanned by w = (W,...,W,;) and let = C F
be the submodule spanned by

ea = Eq (ngj)) =Y Ui JTLY, (Gayij € k)
Jinite

The quotient module A = F/= is the module corresponding to the system.
It is easy to see that the canonical image (residue) of w in F/Z satisfies the
system equations.

2.4.3 Unperturbed Linear Dynamics
Definition 2.48 A linear dynamics D is a linear system D where we dis-
tinguish a finite set of quantities, called the inputs u = (uy,...,uy,), such that

the module D/[u] is torsion.

The set of inputs u are said to be independent if and only if [u] is a free
module. An output vector y = (y1,...,¥p) is a finite set of elements in D.

Example 2.49 (Fliess 1990c) Consider the single input single output system
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d d d
a(3p)y = b(gp)u ab €k[3], a#0

Take as the frec left k[4]-module F = [q,7] spanned by 7 , §. Let = C F be
the submodule spanned by a($)7 — b(5)3. The quotient module D = /=
is the system module. Let u,y be the residues of @, 3 in D. Then u,y satisfy
the system equations. If we let y be the residue of y in D/[u], then y satisfies

a(L)y = 0, which is torsion.

w

2.4.4 Controllability

Definition 2.50 A linear system is said to be conirollable if and only if ils
associated module A is free.

Example 2.51 The system given by w; = ws is controllable since its associ-
ated module is not torsion.

Definition 2.52 A linear dynamics D, with input u, is said to be controllable
if and only if the associated linear system is controllable.

Example 2.53 The linear dynamics £, = u is controllable, since its associated
linear system is described by a frec module. The module decomposition D =
& @ T shows that a system is controllable if and only if T" is trivial.

Example 2.54 The linear system w; = wy ; s = —~wz is uncontrollable
since its associated module can be decomposed as [w;] @ [wa] with [w;] being
evidently torsion.

2.4.5 Observability

Definition 2.55 A linear dynamics D with input u and oulput y, is said to
be observable if and only if D = [u,y]. The quotient module D/[u,y] is trivial.

Example 2.56 The linear dynamics 2; =22 ; Z2=u; y =21 1s observable

sincexy =y ; 22 =Y.

If the system is unobservable then [u,y] C D and the quotient module
D/[u,y] is torsion.

Example 2.57 The linear dynamics z; = 2, ; £3 = u; y = 2218 unobservable
since z1 ¢ [u,y] and the residues ;75 in the quotient module D/[u, y] satisfy
¥, — F; = 0 and T, = 0 which is torsion but nontrivial.
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2.4.6 Linear Perturbed Dynamics

Here we will introduce the basic elements that allow us to treat sliding mode
control of perturbed linear systems from an algebraic viewpoint. The basic
developments and details may also be found in Fliess and Sira-Ramirez (1993b)

Definition 2.58 A linear perturbed dynamics D is a module where we dis-
linguish a control input vector T = (Uy,...,Un) and perturbation inputs

£=(€,,...,Ey) such that
D/[a,£) = torsion.

Consider the canonical epimorphism
$:D—D/lf]=D
Since [@] N [€] = 0, then ¢ |z and ¢ |y are isomorphisms, i.e.

@[] ; €=

This means that we should not distinguish between “perturbed” and “unper-
turbed” versions of the control input (i.e. between % and u ), nor between
similar versions of the perturbation input ( € and ¢ ). Since D/[u] is torsion, we
call D the unperturbed linear dynamics with u being the unperturbed control.

Control and perturbation inputs are not assumed to interact, thus the
condition

(€1n ) = {0}

appears to be quite natural. It will be assumed furthermore assumed that (4]
is free. This means that we are essentially considering linear systems with un-
restricted control inputs. Note, however, that perturbations are not necessarily
independent in the sense that they might indeed satisfy some (linear unknown)
set of differential equations. For this reason we assume here that [€] is not
necessarily free, i.e. it may be torsion. It is reasonable to assume that the un-
perturbed version of the system, D is controllable, i.e. D is free. Regulation of
uncontrollable systems is only possible in quite limited and unrealistic cases.

2.4.7 A Module-Theoretic Characterization of Sliding
Regimes

The work presented here is taken from Fliess and Sira-Ramirez (1993a), where
an algebraic characterization of sliding regimes is presented in terms of module
theory.

Definition 2.59 Let D be a linear perturbed dynamics, such that D is con-
trollable. We define a submodule S of D as a sliding submodule if the following
conditions holds
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(i) The sliding module does not contain elements which are driven ezcluswely
by the perturbations. This condition is synthesized by [S]N [€] =

(ii) The canonical image S of S in D = D/[€] is a rank m free submodule,
i.e. the quotient module

D/S is torsion.

This condition means that all the control effort is spent in making the
system behave as elements that are found in S.
w

It is convenient to assume that the unperturbed version of the system is
observable; D = [u,y]. This guarantees that elements in the sliding module S
may be obtained, if necessary, from asymptotic estimation procedures.

D/S is the unperturbed (residual) sliding dynamics while D/S is the
perturbed sliding dynamics. The canonical image of u in D/S is the
perturbed equivalent control, denoted by %.,. The canonical image of u on
D/S is addressed simply as the equivalent control, ug. Note that T, generally
depends on the perturbation inputs £, while Ueq, is perturbation independent.

Example 2.60 Consider the linear perturbed dynamics y y = u+£. In this case

= [#,7,€)/[é), with é = §— @ — €. The module D/[, €] = torsion and D is
ra.nk 1, with u acting as a basis. D is also controllable. The condition ¥ = - —Y
may be regarded as a desirable asymptotically stable dynamics. Consider S =
[3] = [§ + u). It is easy to sec that 5 C D with rank § = 1, while SN[{] = 0.
Finally, the residue y of y in D/[y + u] satisfies : § = —y, which is torsion.
Note that the unperturbed equivalent control satisfies u g + teq = 0, while the
perturbed equivalent control satisfies ueq + Tg = €.

2.4.8 The Switching Strategy

Let z = (z1,..., 2m) be a basis of S and Z = (Z1,...,Zm) be a basis of S. The
basis z is the image of Z under ¢|z. The input-output system relating u to z
is right and left invertible, and hence decouplable. Therefore the multivariable
case reduces to the single-input single-output case. The basis z (resp. Z) is
unique up to a constant factor.

Example 2.61 Consider the previous example, ¥ = u+£, with sliding module
S generated by s = u + y. The element z = u 4 y is a basis for S, while
7 = U+ 7 is a basis for 5. The relation between z and u is trivially invertible.
A switching strategy is obtained by condsidering z = —Wsignz, with W > 0 a
sufficiently large constant. This choice results in the discontinuous controller,
t+u = —W sign (u+y). The response of the perturbed basis to the synthesized
controller is governed by Z = £ — W sign 7.
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2.4.9 Relations with Minimum Phase Systems and
Dynamical Feedback

Definition 2.62 Let [u,S] stand for the module generated by u and S. The
sliding module S is said to be minimum phase if and only if one of the following
conditions are satisfied

(i) vl =

(i) If [u] ¢ S then the endomorphism 7, defined as
r:[u,8)/S — [v,S5]/S, has eigenvalues with negative real parts.

The first condition means that the elements of the vector u can be ex-
pressed as a (decoupled) k[$]-linear combination of the basis elements in S.
The second condition means that some Hurwitz differential polynomial asso-
ciated with u can be expressed as a decoupled k[ad;] linear combination of the
basis elements in S.

Example 2.63 In the previous example the basis 2 for S was taken to be
z = u+y and evidently [u] ¢ S, since u is not expressible as a k[$] linear
combination of z. Definitely [u] C [u,S] = [u, 2] since z = & + u. The residue
u of u in [u, z]/[2] satisfies the linear system equation & + u = 0 and therefore
the sliding module is minimum phase.

2.4.10 Non-Minimum Phase Case

Let S be non-minimum phase. One may replace z by some other output ¢ € D,
which is for instance a basis of [u, z] and such that the transfer function relating
u and ¢ is minimum phase.

It is easy to see, due to linearity, that the convergence of o ensures that
of z. Thus the minimum phase case is recovered. If the resulting numerator of
the transfer function, relating o and wu, is not constant, then switchings will be
taken by the highest order derivative of the control signal. This gives naturally
the possibility of smoothed sliding mode controllers (see Sira-Ramirez (1992a,
1992¢, 1993)).

2.4.11 Some Illustrations

Example 2.64 Consider the perturbed linear dynamlcs =u+¢, and the
(desired) unperturbed second order dynamics given by ¥ + 2(w,,y + w2y = 0.
Consider the sliding module $ C D, generated by z =6+ 2wnu+ wly. The
element z is a basis for § and 7 = U+ 2w T+ w2F lS a basis for S. The residue
y of y in D/S satisfies the relation y + 2¢wny + w? »y = 0, which is certainly
torston and asymptotically stable to zero.
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Evidently {u] ¢ [2]. In order to obtain the necessary inclusion, consider
the module [u, z]. Here one finds that the relationship between u and the basis
element z for S, is given by z = i+ 2(w,t + w2u Taking the quotient [u, z]/[z],
one is left with the torsion system i + 2w, ut + w2u = 0.

The linear map associated to 5’? is represented by the matrix

;= 0 1
T —w?: —2€w,

which has eigenvalues with negative real parts. The sliding module S is therefore
minimum phase.

Let W be a positive constant parameter. A dynamical sliding mode con-
troller, which is robust with respect to £, is given by

U+ 2wnti + w20 = ~Wsign(ii + 2wn T + w?27).

Use of the proposed dynamical switching strategy on the system leads to the
following regulated dynamics for %,

7 =€+ 2wné +wiE — Wsign 7.

For sufficiently high values of the gain parameter W, the element Z goes to zero
in finite time, and the desired (torsion) dynamics is achieved.

Example 2.65 Consider the nonminimum phase system y T+ 2wn T + wiyg =
u— pu+& (with 8 > 0), and the desired dynamics y+ a7 =0 ; a > 0.
Evidently, 2 = y + ay is a basis for the sliding submodule S, and z = 0 is
deemed to be desirable.

However, as before, [u] ¢ S. The relationship between z and u is readily
obtained as ii+(a—B)t—afu = 42{wn z+w? 2. The canonical image u of u in
[u z]/[2] leads to the following unstable (torsion) dynamics u+(a—-ﬂ)u afu =
(£ + a)(£ — B)u = 0. The sliding module is therefore nonminimum phase.

Take a new basis o of S such that & = 8o+ ay+ ay. Note that z = 6 — Bo
and 7 = ¥ — §7. One now has ¢ + 2{wn 0 + wko = u 4 au. The residue of u in
[u,0]/[0] satisfies & + au = 0, and the sliding module is now minimum phase.

A robust dynamical sliding mode controller may now be synthesized which
guarantees asymptotic convergence of @ to zero, and hence of 7 to zero. The
desired unforced dynamics is, therefore, asymptotically attainable by means of
dynamical sliding modes.

2.5 Conclusions

The differential algebraic approach to system dynamics provides both theor-
etical and practical grounds for the development of the sliding mode control
of nonlinear dynamical systems. More general classes of sliding surfaces, which
include inputs and possibly their time derivatives, have been shown naturally
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to allow for chatter-free sliding mode controllers of dynamical nature. Although
equivalent smoothing effects can be similarly obtained by simply resorting to
appropriate system extensions or prolongations of the input space, the the-
oretical simplicity and conceptual advantages stemming from the differential
algebraic approach, bestow new possibilities for the broader area of discontinu-
ous feedback control. For instance, the same smoothing effects and theoretical
richness can be used for the appropriate formulation and study of many poten-
tial application areas based on pulse-width-modulated control strategies (Sira-
Ramirez 1992d). The less explored pulse-frequency-modulated control tech-
niques have also been shown to benefit from this new approach (Sira-Ramirez
1992¢, Sira-Ramirez and Llanes-Santiago 1992). Possible extensions of the the-
ory to nonlinear multivariable systems, and to infinite dimensional systems
such as delay differential systems and systems described by partial differential
equations, deserve attention.

Module Theory recovers and generalizes all known results of sliding mode
control of linear multivariable systems. A more relaxed concept of sliding mo-
tions evolve in this context, as any desirable output dynamics is synthesizable
by minimum phase sliding mode control. This statement is independent of
the order of the desired dynamics. Generalizations demonstrate, for instance,
that matching conditions are linked to particular state space realizations, but
they have no further meaning from a general viewpoint. This fact has also
been corroborated in recent developments in sliding observers (see Sira-Ramirez
and Spurgeon (1993)). Multivariable sliding mode control problems have been
shown to be always reducible to single-input single output problems in a natural
manner.

Nonminimum phase problems have been shown to be handled by a suitable
change of the output variable, whenever possible. The practical implications of
this result seem to be multiple (see also Benvenuti et al (1992)). Extension of
the results here presented to the case of time varying linear systems requires
non-conmutative algebra.

An exciting area in which the algebraic approach may be used to full ad-
vantage is the area of sliding mode observers for linear systems. An interesting
area rest on the extension of sliding mode theory from an algebraic viewpoint,
to nonlinear multivariable sytems. The results so far seem to indicate that
the class of systems to which the theory can be extended without unforseen
complications is constrained to the class of flat systems (see Fliess et al (1991)).
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