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8. Robust Observer-Controller Design
for Linear Systems

Hebertt Sira-Ramirez, Sarah K. Spurgeon and
Alan S.I. Zinober

8.1 Introduction

Sliding mode observation and control schemes for both linear and nonlinear
systems have been of considerable interest in recent times. Discontinuous non-
linear control and observation schemes, based on sliding modes, exhibit fun-
damental robustness and insensitivity properties of great practical value (see
Utkin (1992), and also Canudas de Wit and Slotine (1991)). A fundamental
limitation found in the sliding mode control of linear perturbed systems and in
sliding mode feedforward regulation of observers for linear perturbed systems,
is the necessity to satisfy some structural conditions of the “matching” type.
These conditions have been recognized in the work of Utkin (1992), Walcott
and Zak (1988) and Dorling and Zinober (1983). Such structural constraints
on the system and the observer have also been linked to strictly positive real
conditions in Walcott and Zak (1988) and in the work of Watanabe et al (1992).
More recently a complete Lyapunov stability approach for the design of slid-
ing observers, where the above-mentioned limitations are also apparent, was
presented by Edwards and Spurgeon (1993).

Here a different approach to the problem of output feedback control for
any controllable and observable, perturbed linear system is taken. For the sake
of simplicity, single-input single-output perturbed plants are considered, but
the results can be easily generalized to multivarable linear systems.

Using a Matched Generalized Observer Canonical Form (MGOCF), similar
to those developed by Fliess (1990a), it is found that for the sliding mode state
observation problem in observable systems, the structural conditions of the
matching type are largely irrelevant. This statement is justified by the fact that
a perturbation input “rechannelling” procedure always aliows one to obtain a
matched realization for the given system. Such rechannelling is never carried out
in practice and its only purpose is to obtain a reasonable estimate (bound) of
the influence of the perturbation inputs on the state equations of the proposed
canonical form. It is shown that the chosen matched output reconstruction error
feedforward map, which is a design quantity, uniquely determines the stability
features of the reduced order sliding state estimation error dynamics. The state
vector of the proposed realization is, hence, robustly asymptotically estimated,
independently of whether or not the matching conditions are satisfied by the
original system.
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-The sliding mode output regulation problem for controllable and observ-
able minimum phase systems is then addressed, using a combination of a sliding
mode observer and a sliding mode controller. For this, a suitable modification
of the MGOCF is proposed. The resulting matched canonical form turns out
quite surprisingly to be in a traditional Kalman state space representation
form. The obtained Matched Output Regulator Canonical Form (MORCF) is
constructed in such a way that it is always matched with respect to the “re-
channelled” perturbation inputs. The output signal of the system, expressed
now in canonical form, is shown to be controlled by a suitable dynamical “pre-
compensator” input, which is physically realizable. For the class of systems
treated, the combined state estimation and control problem (i.e. output reg-
ulation problem) is therefore always robustly solvable by means of a sliding
mode scheme, independently of any matching conditions.

In Sect. 8.2 the role of the matching conditions in sliding mode controller,
sliding mode observer and sliding mode output regulation designs, is examined
from a classical state space representation viewpoint. This section addresses the
rather restrictive nature of the structural conditions that guarantee the robust
reconstruction and robust regulation of the system state vector components.
In essence, these conditions imply that the feedforward output error injection
map of the observer must be in the range space of the perturbation input
distribution map of the system. For guaranteeing robustness in a sliding mode
control problem, the matching conditions demand that the perturbation input
channel map must be in the range space of the control input channel map.
For the observer design in particular, these matching conditions imply that the
freedom in choosing the stability features of the reduced order ideal sliding
reconstruction error dynamics, is severely curtailed and the structure of the
system must, by itself, guarantee asymptotic stability of the reduced order
observation error dynamics. If the matching condition is not satisfied, then the
observation error is dependent upon the external perturbations, and accurate
state reconstruction is not feasible.

In Sect. 8.3 the MGOCF, based on the input-output description of the
given system, is proposed and it is shown that the matching conditions can
always be satisfied while placing no restrictions on the stabilizability of the
feedforward regulated error dynamics. This result constitutes the “dual”, in
a certain sense, to that recently published by Fliess and Messager (1991), in-
volving sliding mode controllers for linear time-invariant controllable systems.
Sect. 8.4 presents the MORCF for minimum phase controllable and observ-
able systems. The proposed canonical form is shown to be suitable for the
simultaneous design of a robust sliding mode observer/sliding mode controller
scheme, independently of any matching conditions. A tutorial design example
which considers the design of a sliding mode controller for a power converter
demonstrates the theoretical results of this chapter in Sect. 8.5. In Sect. 8.6
conclusions are drawn and further research is suggested.
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8.2 Matching Conditions in Sliding Mode
State Reconstruction and Control of
Linear Systems

Here the classical approaches to sliding mode controller and observer design us-
ing the traditional Kalman state variable representation of linear time-invariant
systems are presented. Within this constrained formulation, robust observation
and control schemes are feasible if, and only if, certain structural conditions
are satisfied. The structural conditions for the sliding mode controller design
restrict the system’s input disturbance distribution map to the range of the con-
trol input distribution map. Similar conditions for the sliding mode observer
design demand that the observer’s feedforward output error injection map be
in the range of the system’s input disturbance distribution map.

Consider a controllable and observable n-dimensional linear system of the
form

z Az + bu + v¢
y = cz (8.1)

where u and € are, respectively, the scalar control input signal and the
{bounded) scalar external perturbation input signal. The output y is also as-
sumed to be a scalar quantity. All matrices have the appropriate dimensions.
The column vector v is referred to as the perturbation input distribution map,
while b is called the control input distribution map. The system (8.1) is assumed
to be relative degree one, i.e. the scalar product ¢b # 0. It is assumed, without
loss of generality, that cb > 0. Furthermore, it is assumed that the underlying
input-output system is minimum phase.

8.2.1 Matching Conditions in Sliding Mode Controller
Design

Suppose it is desired by means of state feedback to zero the output y of the given
system. It is well known that if the system (8.1) is unperturbed (i.e. £ = 0),
then a variable structure feedback control law of the form

u= —Elz(cAz + K sign y) ' (8.2)

where K > 0 is a constant design gain, accomplishes the desired control ob-
jective in finite time. The output signal y satisfies then the following dynamics

y=—-Ksigny (8.3)

It can be shown under rather mild assumptions that the regulated output
variable y of the perturbed system (8.1) still converges to zero in finite time,
when the controller (8.2) is used. Indeed the resulting controlled behaviour of
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the output signal when the controller (8.2) is used in the system (8.1) is given
by
y=cyt ~ Ksigny (8.4)

Let the absolute value of the perturbation input £ be bounded by a constant
M > 0. Then, for K > M]cy|, the feedback control policy (8.2) is seen to
create in finite time a sliding regime on the hyperplane represented by y = 0,
irrespective of the particular values adopted by £.

The ideal sliding dynamics satsified by the controlled state vector z are
obtgined from the following invariance conditions (Utkin 1992)

y=0, y=0 (85)

These conditions imply the existence of a “virtual” perturbation-dependent
value of the regulating input u, known as the equivalent control, and denoted
by u.q (see Utkin (1992)), which replaces the discontinuous feedback control
action on the sliding hyperplane y = 0 and helps in describing, in an average
sense, the dynamical behaviour of the constrained system. From (8.1) and gy = 0
in (8.5) one obtains

_ cAz ¢y
U4 =T T (86)
Substituting (8.6) into (8.1) yields
. be be
i= (1= 2)Az+ (I~ 2 (8.7)

which represents a redundant dynamics taking place on any of the linear vari-
eties y = constant. In particular, when the initial conditions are such that
y = cx = 0, then (8.7) in combination with y = 0 is called the reduced order
ideal sliding dynamics. .

Note that the matrix P = [I —(bc)/(cb)] is a projection operator along the
range space of b onto the null space of ¢ (El-Ghezawi et al 1983), i.e.

Pb=0, Pz=12z Ve st. cz=0

Thus, in general, the reduced order ideal sliding dynamics will be dependent
upon the perturbation signal £. However, under structural constraints on the
distribution maps b and 4, known as the matching conditions, it is possible to
obtain a reduced order ideal sliding dynamics (8.7) which is free of the influence
of the perturbation signal £. One may establish that the ideal sliding dynamics
(8.7) are independent of £ if, and only if,

y=pb (8.8)

for some constant scalar p. In other words, the ideal sliding dynamics are in-
dependent of £ if, and only if, the range spaces of the maps ¥ and b coincide.
The proof is as follows. If the matrix feeding the perturbations £ into the (aver-
age) sliding dynamics equation (8.7) is identically zero, then no perturbations
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are present in the average system behaviour. This would require the following
identity to hold

(- %)», =0 (8.9)

which simply means that ¥ may be expressed as v = pb where p = (¢v)/(cb).
On the other hand if ¥ is a column vector of the form ¥ = pb, then

U=y = (b= Zbyp= - =0

If the matching condition (8.8) is satisfied, the ideal sliding dynamics is specified
by the following constrained dynamics

. be
r = (I— E—b')AI
y = ca=0 (8.10)

The robust sliding mode controller design problem, for systems satisfying the
matching condition (8.8), consists of specifying an output vector ¢ (i.e. a sliding
surface y = cx = 0 ) and a discontinuous state feedback control policy u of the
form (8.2), such that the reduced order ideal sliding dynamics (8.10) is guaran-
teed to exhibit asymptotically stable behaviour to zero. As may easily be seen,
such a stability property is a structural property associated with the particular
form of the maps A, ¢ and 7. It can be shown that the asymptotic stability
of (8.10) can be guaranteed if a strictly positive real condition, associated with
the constrained system, is satisfied (see Utkin (1992)).

8.2.2 Matching Conditions in Sliding Mode Observer
Design

An asymptotic observer for the system (8.1), including an external feedforward
compensation signal v, may be proposed as follows

= Ai+buthy—9)+ v
§ = cé (8.11)

The vector h is called the vector of observer gains and the column vector X is
the feedforward injection map.

The state reconstruction error, defined as e = z — £, obeys the following
dynamical behaviour, from (8.1) and (8.11)

e = (A=hco)e+9€ - v

ey = ce (8.12)

The signal ey = y — § is called the output reconstruction error.

Because of the observability assumption on the system (8.1), there always
exists a vector of observer gains h which assigns any arbitrarily prespecified set
of n eigenvalues (with complex conjugate pairs) to the matrix (A — he).
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The robust sliding mode observer design problem consists of specifying a
vector of observer gains h, a fecdforward injection map A and a discontinu-
ous fecdforward injection policy v, based solely on output reconstruction error
measurements e, such that the reconstruction error dynamics (8.12) is guaran-
teed to exhibit asymptotically stable behaviour to zero, in spite of all possible
bounded values of the external perturbation input signal .

Consider the time derivative of the output reconstruction error signal

éy = c(A—hc)e+ eyl —chv
- = cAe—chey +cvé —chv (8.13)

We assume, without loss of generality, that the quantity ¢) is nonzero and
positive (i.e. ¢A > 0). As before, let the absolute value of the the perturbation
input £ be bounded by a constant M > 0. Also let W be a sufficiently large
positive scalar constant. Then, a discontinuous feedforward input v of the form

v = Wsign ¢, (8.14)

is seen to create a sliding regime on a bounded region of the reconstruction
error space. Such a region would necessarily be contained in the hyperplane
ey = 0.

As may be easily verified, from (8.13) and (8.14), in the region character-
ized by e, = 0 and |cAe| + |cy€] < WeA, the above choice of the fecdforward
signal v results in the sliding condition ey é, < 0 (see Utkin (1992)) being satis-
fied. Using the known bound M on the signal £, such a region can be expressed
as

|cAe|l < Wed — Micy|

Thus, the discontinuous feedforward policy (8.14) drives the output observation
error ey to zero in finite time, irrespective of both the initial conditions of e
and the values of the perturbation input &, provided eAW > |ey|M.

The ideal reduced order sliding behaviour of the state reconstruction error
signal e is obtained from the following version of the invariance conditions

e, =0, =0 (8.15)

The conditions (8.15) imply a “virtual” perturbation-dependent value of the
output error feedforward injection signal v, which constitutes the equivalent
feedforward signal, denoted by v.q. This “virtual” feedforward signal is useful
in describing the average behaviour of the error system (8.12) when regulated
by the feedforward signal v. Using (8.13) and (8.15) one readily obtains

_cAe ¢y

Veqg = c—/\ 5 (816)

Substitution of the equivalent feedforward signal expression (8.16) in the state
observation error equation (8.12), leads to the following (redundant) ideal slid-
ing error dynamics, taking place on a bounded region of ey =0
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é=(I- ;\—;)Ae +(I- ;\—:)76 (8.17)

Note that the matrix S = [I —(A¢)/(c))] is a projection operator along the
range space of A onto the null space of ¢, i.e.

SA=0, Sez=12 Vz st.cx=0

The reduced order ideal sliding error dynamics will, in general, be dependent
upon the perturbation signal £. However, under a structural constraint on the
distributions maps 4 and A, known as the matching condition, it is possible to
obtain an ideal sliding error dynamics (8.17) which is free of the influence of the
perturbation signal £. One may establish that the ideal sliding error dynamics
(8.17) is independent of £ if, and only if,

y=pA (8.18)

for some constant scalar p. In other words, the sliding error dynamics is inde-
pendent of £ if, and only if, the range spaces of the maps ¥ and A coincide.
The proof of this result is similar to the one carried out for the sliding mode
controller case in Sect. 8.2.2 and is omitted.

If the matching condition (8.18) is satisfied, then the reconstruction error
dynamics is specified by the following constrained dynamics

: = (-2
e = (I 67)Ae .
ey = ce =0 (8.19)

The resulting reduced order unforced error dynamics obtained from (8.19),
must be asymptotically stable. As can be seen, such a stability property is a
structural property linked to the particular form of the maps A, ¢ and «. It can
be shown that the asymptotic stability of (8.19) can be guaranteed if a strictly
positive real condition, associated with the constrained system, is satisfied (see
also Walcott and Zak (1988)).

8.2.3 The Matching Conditions for Robust Output
Regulation

If the state variables z of the system are not available for measurement, then the
variable structure feedback control law (8.2) must be modified to include the
dynamical observer states, instead of those of the given system. The estimated
variable structure feedback control law is now

Q= —c—lb-(cAir + K sign y) (8.20)

The regﬁlated state variables z now obey the following variable structure con-
trolled dynamics
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Az — %(cA:i: + K sign y) (8.21)

8.
i

b b bK .
(I- z-;:)Az + ZECAC ~ 5 signy
where e is the state reconstruction error dynamics.
The output signal evolution is therefore governed by the dynamical system

y=cAe— Ksigny (8.22)

Since the observation error e is guaranteed to converge asymptotically to zero,
the output signal y is clearly seen to converge to zero in finite time, provided
a sufficiently large value of K is chosen.

It is clear that the ideal sliding dynamics simultaneously taking place on
y = 0 and e, = 0, will be independent of the perturbation input £ if, and only
if, the matching conditions (8.8) and (8.18) are satisfied, i.e. if the maps ¥ and
A are both in the range space of the control input distribution channel map &.

8.3 A Generalized Matched Observer
Canonical Form for State Estimation in
Perturbed Linear Systems

Suppose a linear system of the form (8.1) is given such that the matching con-
dition discussed in Sect. 8.2.3 does not yield an asymptotically stable reduced
observation error system (8.19). By resorting to an input-output description of
the perturbed system, one can find a canonical state space realization, in gen-
eralized state coordinates, which always satisfies the matching condition of the
form (8.18) while producing a prespecified asymptotically stable constrained
error dynamics. The state of the matched canonical realization can therefore
always be estimated robustly.

By means of straightforward state vector elimination, the input-output
representation of the linear time-invariant perturbed system (8.1) is assumed
to be in the form

Y™ kgDt kgt ky = fout frid o+ faoguY
+ 7€+ b+ +7,ED (8.23)

where £ represents the bounded external perturbation signal and the integer ¢
satisfies, without loss of generality, ¢ < n — 1.

The Generalized Matched QObserver Canonical Form (GMOCF) of the
above system is given by the following generalized state representation model
(see Fliess (1990a) for a similar canonical form)

X1 = —kixn+Pou+Pri+ 4 faciu Y 4 An
X2 = Xi1—kaxn+A2p
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Xn-1 = Xn-2=Fkn-1Xn+An-19 (8.24)

Xn = Xn—l“ann+'7
Yy = Xn

where 7 is an “auxiliary” perturbation signal, modelling the influence of the
external signal £ on every equation of the proposed system realization.

The relation existing between the signal n and its generating signal &, is
obtained by computing the input-output description of system (8.24) in terms
of the perturbation input 7. The input-output description of the hypothesized
model (8.24) is then compared with that of the original system (8.23). This
procedure results in a scalar linear time-invariant differential equation for 7
which accepts the signal € as an input.

The models presented below constitute realizations of such an input-output
description, according to the order g of the differential polynomial for § in
(8.23).

For ¢ < n — 1, the perturbation input 7 is obtained as the output of the
following dynamical system

i = 2
Z = z3
(8.25)
Zn1 = =Mz —Azg— - — Ac1Zao1 + €

n = Yoa+mnat-o+v-12

For ¢ = n — 1 the state space realization corresponding to (8.25) is simply

21 = 2
2-2 = 23
(8.26)
Zn-1 = =AMz —Aza — = AogZnay + €

= (~Mm-17M)z1+ (N —Ye-1A2)22 + -
+ (7n—2 - 7n—1An—1)zn—l + Tn-1§

Assumption 8.1 Suppose the components of the auziliary perturbation dis-
tribution channel map Ay, ...,An—1 in (8.24) are suck that the following poly-
nomial, in the compler variable s, is Hurwilz

Pr(8) =" 4+ Ano18 24 Aas + Ay (8.27)

Equivalently, Assumption 8.1 implies that the output 5 of the system (8.25) (or
that of system (8.26)), generating the auxiliary perturbation 7, is a bounded
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signal for every bounded external perturbation signal . If, for instance, {
satisfies |¢| < N, then, given N, the signal 7 satisfies || < M for some positive
constant M. An easily computable, although conservative, estimate for M is
given by M = sup,¢(o,c0)l N G(jw)| where G(s) is the Laplace transfer function
relating 7 to € in the complex frequency domain.

Remark. It should be stressed that the purpose of having a state space model
for the auxiliary perturbation signal 7, accepting as a forcing input the signal
€, is to be able to estimate a bound for the influence of £ on the proposed state
realization (8.24) of the original system (8.1).

An observer for the system realization (8.24) is proposed as follows

X = —kifn+Bou+ B+ -+ fuogu®V
+ hi(y—9) + Mo
Xa = —kaXn+ X1+ ha(y—9)+ Ao
Xnoi = —kn_1Xn 4 Xn-2+ hao1(y = §) + Anorv (8.28)
in = —kpXn+ Xn-1 +hn(y—if)+v
g = Xn

Note that exactly the same output error feedforward distribution map for the
signal v has been chosen as the one corresponding to the auxiliary perturba-
tion input signal 7 in (8.24). Consequently, the proposed canonical form (8.24)
for the system always satisfies the matching condition (8.8). The crucial point
is that the matched error feedforward distribution map can always be con-
veniently chosen to guarantee asymptotic stability of the ideal sliding error
dynamics. ‘

Use of (8.28) results in the following feedforward regulated reconstruction
error dynamics

€& = —-(kl + hl)Cn + /\1(77 - ‘0)
é2 = €1 —(k2+h2)en +A2(n—v)

€n_1 = €n-2-— (kn—l 4+ hn—l)fn + An—l(" - v) (829)

€n = e€n—1—(kn+ho)en+(n—7)
€4 = €n

where ¢; represents the state estimation error components x; — xi, for
i=1,...,n

In order to have a reconstruction error transient response associated with
a preselected n th order characteristic polynomial, such as

p(s) = 6" +ans" 1+ +azstay (8.30)
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the gains h; (i = 1,...,n) should be appropriately chosen as h; = a; — k;
(i=1,...,n).

The feedforward output error injection signal v is chosen to be the discon-
tinuous regulation policy

v = Wsign ¢, = Wsign ¢, (8.31)

where W is a positive constant. From the final equation in (8.29) it is seen that,
for a sufficiently large gain W, the proposed choice of the feedforward signal v
results in a sliding regime on a region properly contained in the set expressed
by
=0, len1| <W-M (8.32)
The equivalent feedforward signal, vy, is obtained from the invariance
conditions (see also Canudas de Wit and Slotine (1991))

n=0, €=0 (8.33)
One obtains from (8.33) and the last of (8.29)
Veg = N+ €n-1 (8.34)

The equivalent feedforward signal is, generally speaking, dependent upon the
perturbation signal 5. It should be remembered that the equivalent feedfor-
ward signal v, is a virtual feedforward action that needs not be synthesized
in practice, but one which helps to establish the salient features of the average
behaviour of the sliding mode regulated observer. The resulting dynamics gov-
erning the evolution of the error system in the sliding region are then ideally
described by

€ = =A€q-)
€2 = € — Aaeny

€ncl = €12 — An-1€n-1 (8.35)
&g = =0

and exhibits, in a natural manner, a feedforward error injection structure of the
“auxiliary output error” signal €,_1, through the design gains Ay,...,Ap_1. As
a result, the roots of the characteristic polynomial in (8.27) determining the
behaviour of the homogeneous reduced order system (8.35), are completely
determined by a suitable choice of the components of the feedforward vector,

A, Aot
An asymptotically stable behaviour to zero of the estimation error com-
ponents €y, ...,€,_y is therefore achievable since the output observation error

€, undergoes a sliding regime on the relevant portion of the “sliding surface”
€n = 0. The states of the estimator (8.28) are then seen to converge asymptot-
ically towards the corresponding components of the state vector of the system
realization (8.24).
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The characteristic polynomial (8.27) of the reduced order observation error
dynamics (8.35) coincides entirely with that of the transfer function relating
the auxiliary perturbation model signal n to the actual perturbation input
£. Hence, appropriate choice of the design parameters A;,...,A,-1 not only
guarantees asymptotic stability of the sliding error dynamics, but also ensures
boundedness of the auxiliary perturbation input signal 5, for any given bounded
external perturbation &.

Remark. In general, the observed states of the matched generalized state space
realization are different from the states of the particular realization (8.1). The
state x in (8.24) may even be devoid of any physical meaning. A linear rela-
tionship can always be established between the originally given state vector z
of system (8.1) and the state x, reconstructed from the canonical form (8.24).
However, generally speaking, such a relationship allows a perturbation depend-
ent state coordinate transformation and cannot be used in practice. Neverthe-
less, it will be shown that a suitable modification of the proposed matched
canonical form is effective in implementing a combined observer-controller out-
put feedback sliding mode regulator.

8.4 A Matched Canonical Realization for
Sliding Mode Output Feedback Regulation
of Perturbed Linear Systems

Consider a linear system of the form (8.1). It will be shown that by resorting to
an input-output description of the perturbed system, one can find a canonical
state space realization which always satisfies the matching conditions of the
form (8.8) and (8.18), while producing a prespecified asymptotically stable
reduced order state and observation error sliding dynamics. The state of the
matched canonical realization can therefore always be robustly estimated and
controlled.

By means of straightforward state vector elimination, the input-output
representation of the linear time-invariant perturbed system (8.1) is assumed to
be of the form given by (8.23). The Matched Output Regulator Canonical Form
(MORCEF) of the above system is given by the following state representation
model

X1 = =kixn+M(n+9Y)
X2 = X1—kaxn+A2(n+9)
Xn-1 = Xn-2—kn_1Xn+ /\n-l(n + 0) (8'36)

Xn-1— knXn + (T)+‘l9)
Yy = Xn

=
S
]
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where ¥ is an “auxiliary” input interpreted as a precompensator input. Note

that the auxiliary input distribution map of the proposed canonical form is
chosen to match precisely that of the auxiliary (rechannelled) perturbation
input 7. This guarantees that the realization is matched and that the sliding
mode controller will be robust with respect to such perturbations. It is easy to
see by computing the input-output representation of the matched realization
(8.36), that the auxiliary input ¥ is related to the original control input u by
means of the following proper transfer function

ﬁ(s) _ Pt D SBT3
d(s)  ba-18""14+ -+ bis+bo

(8.37)

We refer to (8.37) as the precompensator transfer function. Alternatively, a
state space realization of the dynamical precompensator is given by

G o= ¢
¢ = (3
(8.38)
Cn-? = Cn-l
. bO bl bn—a bn—2 1
— |- —— —_—trm e (g — — +_Q9
(n-1 bn—ICI bn_lCz bn_lCn 2 bn_lCnl T
b b
o= (M=)t e - )+
bn-l bn—l
bn_ : 1
+ (Aot = =2 )Cnmt + —
bn—l bn—l

The perturbation input n in (8.36) is, as before, an “auxiliary” perturbation
signal, modelling the influence of the external signal £ on every equation of the
proposed system realization. It is straightforward to verify that the signal 7 in
(8.36) is obtained from the signal £ in the same manner as it was obtained in
(8.25) (or (8.26)).

The components of the auxiliary perturbation distribution channel map
A1,y An—1 in (8.36), are such that the characteristic polynomial in the com-
plex variable s is Hurwitz. This, in turn, guarantees a truly minimum phase
dynamical precompensator (8.37) (or (8.38)). The minimum phase condition
on the zeroes of the precompensator transfer function also guarantees simultan-
eously that the the output 7 of system (8.25) or (8.26), generating the auxiliary
perturbation 7, is a bounded signal for every bounded external perturbation
signal &.

8.4.1 Observer Design

An observer for the system realization (8.36) is proposed as follows
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il = —Ic;f(n+h1(y—ﬁ)+'\1(”+*9)
XA2 = —kzin + XAI + h2(y - g) + /\2(‘0 + '9)
Rnet = —kn-ikn +Xn-2+hac1(y = 9+ Aaca(v+9)  (8.39)
)‘(n = —knin+in—l+hn(y—g)+(v+ﬂ)
¥ = Xn

Note that exactly the same output error feedforward distribution map A
for the signal v has been chosen as that corresponding to the auxiliary per-
turbation input signal # and to the control input distribution map in (8.36).
As a consequence, the matching conditions (8.8) and (8.18) are satisfied by
the proposed matched canonical realization (8.36). Use of the observer (8.39)
results exactly in the same sliding mode feedforward regulated reconstruction
error dynamics already given in (8.29).

A reconstruction error transient response may be chosen which is associ-
ated with a preselected n th order characteristic polynomial, such as (8.30), by
means of the appropriate choice of the observer gains k;, i = 1,...,n.

The feedforward output error injection signal v is chosen, as before, as a
discontinuous regulation policy of the variable structure type

v = Wsign ¢, = Wsign ¢, (8.40)

with W being a positive constant. For a sufficiently large gain W, the proposed
choice of the feedforward signal v results in a sliding regime on a region properly
contained in the set

en=0, |ena|<W-M (8.41)

The resulting reduced order dynamics governing the evolution of the sliding
mode regulated error system in the computed sliding region of the error space,
is then ideally described by the same asymptotically stable unforced differential
equation as in (8.35).

8.4.2 Sliding Mode Controller Design

We first show that the proposed matched canonical form (8.24) also facilitates
the design of a sliding mode controller when all states of the realization are dir-
ectly measurable. Once the sliding mode controller based on full state feedback
information has been obtained, a similar sliding mode controller in which all
the required state variables are derived from the observer, will be developed.

8.4.2.1 Sliding Mode Controller Based on Full State Information A sliding
mode controller may be obtained by considering the unperturbed version of
the final equation in the canonical form (8.36), (i.e. from the differential equa-
tion governing the behaviour of the output y = x, with # = 0), and the
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discontinuous regulated policy proposed in (8.3). Such a sliding mode control
policy is given by

9= koxn — Xn-1 — W sign xn (8.42)
Using the above controller in the perturbed output equation, results in the
following controlled output dynamics

Xn =n-—Wsigny (8.43)

Therefore a sliding mode controller gain W, which is assumed to satisfy W >
M, guarantees the convergence of y to zero in finite time, irrespectively of the
bounded values of the computed perturbation effect 7.

The invariance conditions x, = 0, Xn = 0 result in the following perturb-
ation dependent equivalent auxiliary control input

Yeg = —Xn-1—1 (8.44)

The ideal sliding dynamics, obtained from substitution of (8.44) in the canonical
realization (8.36), is

X1 = =AlXn-1
X2 = X1—A2Xn-1
(8.45)
X'n--l = Xn-2-— '\n—IXn—l
Yy = xn =0

The characteristic polynomial of the constrained dynamics is given again by
the Hurwitz polynomial (8.27), and the ideal sliding dynamics (8.45) is asymp-
totically stable to zero.

8.4.2.2 Sliding Mode Controller Based on Observer State Information If the
state x,—_1 is not directly available for measurement, the feedback control (8.42)
should be modified to employ the estimated state obtained from the sliding
observer (8.39) as _
9= knpy—Xn_1— Wsigny (8.46)
where the fact that the output y is clearly available for measurement, has been
used. This control policy still results in finite time convergence of y to zero as
can be seen from the closed-loop output dynamical equation

¥y = (Xn-1=Xn-1)+n~Wsigny
= €-1+n— Wsigny (8.47)

Since €, is decreasing asymptotically to zero, the output y is seen to go to
zero in finite time for sufficiently large values of W > M.

The output observation error signal ey, and the output signal y itself,
are seen to converge to zero in finite time. The combined reduced order ideal
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sliding/ideal observer dynamics is obtained from the same invariance conditions
Xn = 0, xn = 0 as before. This results in precisely the same equivalent control
input and the same equivalent feedforward signals. The resulting reduced order
ideal sliding/ideal observation error dynamics is still given by (8.35) and (8.45).
The overall scheme is therefore asymptotically stable.

8.5 Design Example: The Boost Converter

Consider the average Boost converter model derived by Sira-Ramirez and
Lischinsky-Arenas (1991)

21 = —woZz+ pwoza + b : (8.48)
Z2 = woz) —wizy — pwoz) '

where z;,1 = 1,2 denote the corresponding “averaged components” of the state
vector z where z; = IVL, 22 = V/C represent the normalized input cur-
rent and output voltage variables respectively. The quantity b = E/\/f is the
normalised external input voltage. The LC (input) circuit natural oscillating
frequency and the RC output circuit time constant are denoted by wg = 1/ VIC
and w; = 1/(RC) respectively. The variable y is the control input. The equi-
librium points of the average model (8.48) are obtained as

buwy b

ZQ(U) = @0

D) (8.49)

u=U; Zl(U)=m;

where U denotes a particular constant value for the duty ratio function. The
linearisation of the average PWM model (8.48) about the constant operating
points (8.49) is given by

215 = —(1-U)wozas + I—_b—U'#é

. bw (8.50)
236 = (1-U)wozis —wiz25 — mﬂo

with
ps®) =p@)-U ; zs(t)=2z(t)-Z;(U), i=1,2 (8.51)
Taking the averaged normalised input inductor current z; as the system output

in order to meet the relative degree 1 and minimum phase assumptions, the
following input/output relationship is obtained

S+2OJ0
s24wis+ (1 = U)"”W()2

216(8) —
ps(s)

woZ2(U) (8.52)

The controller/observer pair (8.46), (8.39) is now implemented on the average
boost converter model. For simulation purposes nominal parameter values of

R =300, C = 20uF, L = 20mH and E = 15V are assumed. The desirable set
point for the average normalized input inductor current is z; = 0.4419 which
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corresponds to a constant value U = 0.6. In order to demonstrate the robustness
of the approach, the effects of noise on both the input current and output
voltage dynamics will be considered. The system representation then becomes,
from (8.52),

—632.46225 + 265.17Tu;s + af
632.46215 — 1666.67295 — 698.77p;s + S

Z15
224

it

(8.53)

Here « and B define the noise distribution channel which is not necessarily
matched. The polynomial (8.27) which defines the auxiliary perturbation dis-
tribution map is chosen to be

pr(8) = s+ 3000 (8.54)

The rate of decay of the reconstruction error dynamics (8.30) is determined by
the roots of the following characteristic polynomial

p(s) = s + 85005 + 18000000 (8.55)

Using (8.54) and (8.55) an observer (8.39) for the system is given by

%1 = 400000%2 + 17600000(y — §) + 3000(v + ¥) (8.56)
X2 = —1666.67%2+ %1 + 6833.33(y — §) + (v + 9)

¥y = X2

v o= Wo,sign(y-9) (8.57)

The following state-space realisation may be used to determine the plant input
Hs

w = -=3333.33w+ 0.003879 (8.58)
ps = =—333.332+40.00389
¥ = —Wemsigny — x1 + 1666.67y

The magnitude of the discontinuous gain elements W,,, and W,;, were chosen
to be 120 and 220 respectively. These were tailored to provide the required
speeds of response as well as appropriate disturbance rejection capabilities.
Using a disturbance distribution map defined by o = 0.01 and 8 = —0.02,
which is clearly unmatched with respect to the input and output distributions
of the system realisation (8.53), and a high frequency cosine representing the
system noise, the following simulation results were obtained. Fig. 8.1 shows the
convergence of the estimated inductor current to the actual inductor current.
A sliding mode is reached whereby 2;(t) — Z;(t) = 0. The required set point is
thus attained and maintained despite the disturbance which is acting upon the
system. Fig. 8.2 shows the control effort p. The discontinuous nature of this
signal supports the assertion that a sliding mode has been attained.
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Fig.8.1. Response of the actnal and estimated average normalized inductor current

Fig. 8.2. Response of the control effort u
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8.6 Conclusions

It has been shown that, when using a sliding mode approach, structural condi-
tions of the matching type, are largely irrelevant for robust state reconstruction
and regulation of linear perturbed systems. The class of linear systems for which
robust sliding mode output feedback regulation can be obtained, independently
of any matching conditions, comprises the entire class of controllable (stabil-
izable) and observable (reconstructible) linear systems with the appropriate
relative degree and minimum phase condition.

This result, first postulated by Sira-Ramirez and Spurgeon (1993b), is of
particular practical interest when the designer has the freedom to propose a
convenient state space representation for a given unmatched system. This is
in total accord with the corresponding results found in Fliess and Messager
(1991), and in Sira-Ramirez and Spurgeon (1993b) regarding, respectively, the
robustness of the sliding mode control of perturbed controllable linear systems,
expressed in the Generalized Observability Canonical Form, and the dual result
for the sliding mode observation schemes based on the Generalized Observer
Canonical Form.

Sliding mode output regulator theory (i.e. addressing an observer-
controller combination) for linear systems may also be examined from an
algebraic viewpoint using Module Theory (see Fliess (1990b)). The conceptual
advantages of using a module theoretic approach to sliding mode control
were recently addressed by Fliess and Sira-Ramirez (1993) and Sira-Ramirez
in Chapter 2. The module theoretic approach can also provide further
generalizations and insights related to the results presented.

8.7 Acknowledgments

Professor Sira-Ramirez is grateful to Professor Michel Fliess of the Laboratoire
des Signaux et Systémes, CNRS (France), for many interesting discussions re-
lating to the results in this chapter.

References

Canudas de Wit, C., Slotine, J.J.E. 1991, Sliding Observers for Robot Manip-
ulators. Automatica 27 , 859-864

Dorling, C.M., Zinober,\&.S.I. 1983, A Comparative Study of the Sensitivity of
Observers. Proceedings IASTED Symposium on Applied Control and Identi-
fication, Copenhagen, 6.32-6.38

El-Ghezawi, O.M.E., Zinober, A.S.I, Billings, S.A. 1983, Analysis and design of
variable structure systems using a geometric approach. International Journal
of Control 38, 657-671



180

Edwards, C., Spurgeon, S.K. 1993, On the Development of Discontinuous Ob-
servers. International Journal of Control, to appear

Fliess, M. 1990a, Generalized Controller Canonical Forms for Linear and Non-
linear Dynamics. JEEE Transactions on Automatic Control AC-35, 994-
1001

Fliess, M. 1990b, Some basic structural properties of generalized linear systems.
Systems and Control Letters 15, 391-396

Fliess, M., Messager, F. 1991, Sur la Commande en Régime Glissant. C.R.
Acad. Sci. Paris 313 Series I, 951-956

Fliess, M., Sira-Ramirez, H. 1993, Regimes glissants, structure variables lin-
eaires et modules. C.R. Acad. Sci. Paris Series I, submitted for publication

Sira-Ramirez, H., Lischinsky-Arenas, P. 1991, Differential Algebraic Approach
in Nonlinear Dynamical Compensator Design for d.c.-d.c. Power Converters.
International Journal of Control 54, 111-133

Sira-Ramirez, H., Spurgeon, S.K. 1993a, On the robust design of sliding ob-
gervers for linear systems. Systems and Conirol Letters , to appear

Sira-Ramirez, H., Spurgeon, S.K. 1993b, Robust Sliding Mode Control using
Measured Outputs. IEEE Transactions on Automatic Control , submitted
for publication

Utkin, V.I. 1992, Sliding Modes in Control Optimization, Springer-Verlag, New
York

Walcott, B.L., Zak, S.H. 1988, Combined Observer-Controller Synthesis for Un-
certain Dynamical Systems with Applications, I[EEE Transactions on Sys-
tems, Man and Cybernetics 18, 88-104

Watanabe, K., Fukuda,.T., Tzafestas, S.G. 1992, Sliding Mode Control and
a Variable Structure System Observer as a Dual Problem for Systems with
Nonlinear Uncertainties. International Journal of Systems Science 23,1991~
2001



