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Chapter 3

NONLINEAR PULSE WIDTH MODULATION CONTROLLER DESIGN

H. Sira-Ramirez
Departamento Sistemas de Control. Escuela de Ingenieria de Sistemas. Universidad de
Los Andes. Mérida, 5101 (Venezuela).

3.1 INTRODUCTION _

In this chapter a design method, based on an infinite frequency average model,
is proposed for the specification of stabilizing Pulse-Width-Modulation (PWM)
feedback controllers for Nonlinear Dynamical Systems. It is first shown that the
infinite frequency average model of the PWM controlled system coincides with
Filippov's geometrical average dynamics of the original discontinuous PWM system.
The average model captures the essential qualitative stability properties of the
feedback controlled system and thus considerably simplifies the design task. Some
satellite control examples are provided.

Three classes of nonlinear controfled systems stand out as genuine
representatives of discontinuous feedback control strategies. These are: Variable
Structure Systems (VSS) undergoing sliding regimes, plants regulated by Pulse Width
Modulation (PWM) techniques and, finally, systems regulated by Pulse Frequency
Modulation (PFM) controllers. For a complete account on the basic results and main
applications of VSS in Sliding Mode, the reader is referred to the work of Utkin (refs.
1-3), PFM Controlted Systems will not be treated in this chapter.

PWM controlled systems constitute a class of nonlinear periodically sampled-data
control systems. The sampled output error being the difference between the desired
and the actual plant output signals, is translated into a pulse control signal whose
pulse width is proportional to the error signal. PWM controlled systems, as VSS in
sliding mode, are typically robust with respect to plant parameter variations and
external perturbation signals.

Early contributions to the study of PWM controllers are those of Nelson (ref. 4),
Kadota and Bourne (ref. 5), Jury and Nishimura (ref. 6), Tsypkin (ref. 7), Further
developments were contributed, later on, by Skoog (ref. 8), Skoog and Blankenship
(ref. 9), Friedtand (ref. 10), Min et af (ref. 11), Marino et al (ref. 12), and La Cava et
al. (ref. 13). In all these works, emphasis was primarily placed oﬁ the discrete-time
aspects of such controllers. (See also Czaki (ref. 14) pp. 591). The proposed
discrete-time analysis technique fitted the problem quite naturally due to the

inherent sampling process associated with every PWM control scheme. The method,
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besides unnecessarily limiting the considerations to the case of linear plants, also,
generally, led to quite tortuous calculations which usually resorted to a not afways
easily justifiable approximation scheme.

In recent papers, however, Sira-Ramirez (ref. 15-17) has explored a different
design approach by using the geometric properties of average PWM controlled
responses (obtained by an infinite duty cycle frequency assumption). The results,
asids from allowing a simpler analysis of nonlinear PWM controlled systems through
their average responses, also found that actual PWM controlled responses exhibit
sliding mode trajectories about integral manifolds of the average PWM controlled
system model.

Roughly speaking, two classes of PWM controlfled systems can be studied; those
corresponding to an ON-OFF controlled switch (the control variable can be made to
take values in the discrete set (0,1)) and those including a control variable taking
values in the discrete set (-1,0,+1) ( herein addressed as an ON-OFF-ON controlled
switch. See, for instance, (ref. 9) and (ref. 13)). Typically, DC to DC Power Converters,
switch controlled networks, such as Switched Capacitor Circuits, spacecraft vehicles
equipped with a main thruster controlling a smooth vertical descend on a planet, and
focal quantizers of the type used in Delta Modulfation Circuits for analog signal
encoding, correspond to the ON-OFF class of switch-controlled systems. On the other
hand, symmetric gas reaction jets controlling reorientation or detumbling maneuvers
in satellites, some torque actuators, used for control of joint positions in robotic
manipulators, and input-relief arrangements of fluid control valves, are expressible
as switched controlled systems of the ON-OFF-ON class.

In this chapter, it will be first shown, in full generality, that in a VSss,
undergoing structural changes according to an ON-OFF PWM scheme an infinite
sampling frequency assumption reduces the feedback system model precisely to a
Filippov's Geometric Average model of the discontinuous PWM system.
Fitippov's scalar function defining the average vector field, as a convex combination
of the intervening structures, is shown to be coincident with the prescribed duty
ratio function of the original PWM scheme. It immediately foilows that a
corresponding sliding regime is exhibited by the actual PWM controlled system
trajectories about integral manifolds of the Infinite Duty Cycle Frequency Average
PWM model (hereinafter referred to as the Average PWM model, or Filippov's
average model). The equivalent control (Utkin, (ref. 18)) associated with the
corresponding Ideal Sliding Mode is none other than the duty ratio itself. Hence,
the Average PWM mode! has the primordial characteristic of entirely capturing all
the relevant qualitative features of the actual discontinuous PWM controlled system.
This fact being much in accordance with the manner in which the Ideal Sliding
Dynamics captures the essential qualitative features of the actuval (chattering) stiding

motions about a switching surface.
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The above results are extended to a well known class of output error feedback
ON-OFF-ON PWM switched-controlled plants (ref. 9) and a design method is proposed
for controlled systems of this nature. The specification of the PWM controller is made
on the basis of the Average PWM model. The average mode! is obtained by formally
replacing the discontinuous PWM regulator by a nonlinear, memoryless, piecewise
smooth controller of the saturation type. It is claimed that the stabilizing design tasks
for the actual PWM controller are much easier to handle on the basis of such average
model.

Section 3.2 contains a general theory of VSS of the ON-OFF PWM type and its
connections with Filippov's geometrical averaging technique. It also considers an
extension of the obtained results to a general class of ON-OFF-ON PWM systems. The
results are then specialized to a rather typical representative of output error
ON-OFF-ON PWM controlled systems (ref. 9). A high-gain design approach, entirely
based on the average model, is proposed for that particular class of PWM systems.
Examples related to satellite control are presented in Section 3.3. Section 3.4 contains
the conclusions of the chapter. while general results, relevant to VSS in sliding mode,
are collected in the Appendix.

3.2 DEFINITIONS AND BASIC RESULTS
3.2.1G Liti Noali ON-OFF PWM C lled §
Consider the nonlinear discontinuously controlled system, described by:

filx)  for txctstes tx(t) T
X . f(x) - (3.1)
de fa(x) for tectstes tx(t) T

where f{(x) and fp(x) are smooth vector fields defined on R?. The ty's represent
regularly spaced instants of time where an ideal sampling process takes place and by
means of which the value of the duty ratio function, T(x), is determined in
correspondence with the value of the sampled state vector, x(ty). This duty ratio
function is assumed to take values in the bounded interval (0,1] of the real line. The
regions where T(x) is fixed at either 0 or 1, constitute the saturation regions of the

PWM controller. The sampling period T, also known as the duty cycle , is assumed to
be constant, and sufficiently small as compared with the time constants associated
with the dynamics of the controlled system. Unless otherwise stated, it will be

assumed that our considerations are restricted to a region of the state space where the
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duty ratio function is not saturated i.e., T(x) takes values in the open interval (0,1).

In terms of an ideal switching function u, taking values in the discrete set {0,1),

the above system can be equivalently represented as :

X .y fi(x) + (1-0)M(x) (3.2)
dt

with a switching control policy of the form:

f 1 for tict<teslx(tdlT

u-
\0 for tx<t<tp+ tlx(te)] T

The following lemma is a straightforward consequence of the Fundamental
Theorem of Calculus.

Lemma 1 Let f be a smooth vector field and let Ig(t) := Jot f(x(s))ds. Then for any

smooth, strictly positive, function p(x):

“f (te + 2lx(t)] T - Ig (tk)) - 2lx(t)] f(x(1) (3.4)

limT_ 50, ty—t I

The next theorem determines the smooth character, and the nature, of the
infinte-frequency average dynamics of (3.2),(3.3) under nonsaturating conditions.

Theorem 1 In the regions where the PWM controller is not saturated, as the
sampling frequency 1/T tends to infinity in system (3.2),(3.3), the discontinuous
system is substituted by Filippov's average model (See the Appendix ):

dx/dt = ©(x) £1(x) + [1-2(x)]f2(x) = [5y(x) (3.5)

with a corresponding convex combination function u(x) represented by the duty ratio

function T(x). Moreover, in such a region, a sliding regime is exhibited by the actual
PWM controlled system ( 3.2),(3.3) about an integral manifold S: - { x e R :s(x) - 0)
of (3.5).

Proof From (3.2), (3.3), the state x at time ty + T is exactly computed as:
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tertlx(t)] T e+ T

X(te+T) = x(ty) + th fi(x(c))do + tes tlx(tk)]fZ(X(c))dc
te+tlx(te)| T te+ T e+ T
- x(t) + [ filx(o))do + [ "fa(x(o)do (£ (o falx(0))do

assuming that T(x) is neither 0 or 1 in the region of interest, and using the result of

lemma 1, one has :

[x(tk + T) - x(t)]

“mT——)O, kot T

tk+T|x(tk)] T ty+ T tg+ T
' ltx fi1(x(c))do + ]tx f2(x(c))do —LH t[x(tk)]fz(x(c))dc
= lmr_y0 5t T
= o(x(t) ) (x(t)) + [1-2(x(t)]f2(x(t))
or:
%lf = 2(x) f1(x) + [1-1(x)]f2(x) =: fay (x) (3.5)

i.e., the infinite frequency model of (3.2)-(3.3) coincides with Filippov's Average
model (See Appendix) in which the convex combination function u(x), defining the
average vector field fay(x), is precisely taken as the duty ratio function T(x).

From the results of theorem A.2, and the assumption that the duty ratio
function is locally bounded in the open interval (0,1), it follows that a sliding regime
exists locally on the manifold S for the VSS (3.2),(3.3). The equivalent control vEQ(x),
associated with such a sliding regime, is simply obtained from the invariance

conditions (3.A.6) of the ideal sliding mode taking placeon S:

ds/dt = < ds, uEQ(x) 11 (x) + [1-uEQ(x) | f2(x) »
- uEQ(x) < ds, f1(x) > + [1-uEQ(x) | < ds. fp(x)>- 0

The corresponding equivalent control is then obtained as :

uEQ(x) - - < ds, £2(x) > /] «ds, [{(x)-12(x) > |
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It follows, from the uniqueness of the equivalent control and (3.A.7), that :

uEQ(x) - 1(x) (3.6)

i.e., the equivalent control of the sliding motion associated with (3.2),(3.3) is then,
precisely, constituted by the duty ratio associated to the PWM control scheme. The
corresponding ideal sliding dynamics is then represented by :

dx/dt - uEQ(x) £ (x) + [1-uEQ(x) | f2(x)

= a(x) f(x) + [1-1(x)] f2(x)

which is just the Average PWM model (3.5).
The region of existence of a sliding motion is determined by the region on S
where conditions (3.A.3) are satisfied. From the results of Theorem A.2 the portion of §

on which T(x) satisfies :

0 < t(x) - uEQ(x) < 1

determines such an existence region. The duty ratio evidently satisfies the above
condition, along the integral manifold S, in all regions of the state space where the

PWM controller is not saturated. ®

Corollary 1 Provided 0 < T(x) < 1, Filippov's average model corresponding to 2 PWM

controlled system of the form:
dx/dt - f(x) + g{x) u, (3.7)

with u given as in (3.3), is obtained by formally substituting the discontinuous control

variable u by the duty ratio function T(x). i.e.,

dx/dt = [(x) + g(x) 1(x) = fay(x) (3.8)

Moreover, in such a non-saturation region, the actual controlied system (3.7),(3.3)
exhibits a sliding motion about an integral manifold S - { x : s(x) = 0 ) satisfying the

condition < ds, fay(x) > = 0.
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Proof Immediate upon letting f(x) - f(x) + g(x) and f2(x) = f(x) and using the results

of Theorem 1.

3226 Liti I ON-QFF-ON PWM € led $
Consider the nonlinear PWM controlled system:

X - f(x) =
dt

f1(x) + f2(0x)signle(ty)]  for txct<te+ tlx(te)] T
(3.9)

f2(x) for tect<te+ tlx(t)| T

where {1(x) and f2(x) are smooth vector fields and e(x) is a known smooth scalar

function of x.
The above system can be expressed, in terms of a switch position function u
taking values in the discrete set { -1,0, +1 ), as:

dx/dt = £1(x) + u f2(x) . (3.10)
with :
signle(tg)]  for tectSty+ tlx(te)] T
U - PWMc [e(tx)] - (3.11)
0 for tectSter tx(u)l T

Notice that for e(x) > 0 and e(x) < 0 the PWM controlled system is, in each case, an
ON-OFF PWM controlled system of the form (3.7). It is easy to see, from the results of

Corollary 1, that the Average PWM model of (3.10) (3.11), in the region where 0 < T(x) <
1, is simply described by :

dx/dt - f1(x) + f2(x) ©(x) signle(x)] (3.12)

Corotlary 2 In those regions of the state space where 0 < T(x) < 1, the state trajectories

of the ON-OFF-ON PWM controlled system (3.10)-(3.11) exhibit a sliding mode behavior
about integral manifoids of the Average PWM model (3.12).
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3.2.3 An output error feedback PWM Controlled Svstem.
Consider a nonlinear PWM feedback controlled system defined in RP, and

described by (figure 3.1):

dx/dt - f(x) + g(x)u

y = h(x)
e=yq(t)-y
U = M PWM¢ le(ty)] (3.13)

with f and g being smooth vector fields, while h is a smooth scalar output function.
The control input u is a discontinuous scalar control function obtained as the output
of a Pulse-Width-Modulator excited by the output error e. The error signal e is

obtained, at each instant, as the difference between the desired output value yd(t) and

the actual output value y(t). The sampling process associated to the PWM process is
assumed to take place at regularly spaced time intervals of fixed duration T, i.e., tg, =
ty + T. M is a positive constant gain representing the maximum allowable input
magnitude. The cases in which M is a static nonlinear operator, representing an
amplitude modulation block, or a linear dynamic "shaping fifter”, or a compensating
network, can be treated with little additional effort by the techniques used in this
chapter.

— » pwWM ¥ M

x = f(x) + ug(x) »  h(x) >

\ 4

Figure 3.1. Nonlinear PWM controlled system

The PWM control operator, PWM¢ le| , characterizing an ON-OFF-ON switch is

defined as in (3.11) (See refs. (9,12) and (ref. 13)), with tle(tg)]l as the error

dependent duty ratio function defined by
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Ble(tg)l  for le(ty)l< 1/B
tle(tg)] - (3.14)
1 for le(tg) > 1/B
with B being a positive constant. Notice that :
Be(ty) for le(t)l < 1/B
tle(ty)]signle(ty)] - satle(ty) Bl :- (3.15)
signle(tg)] for le(tg)i> 1/B
A variety of other interesting PWM models can be found in (refs. 12-13)
The basis of a design technique for the above class of PWM controlled systems, is

given by the corollary befow which immediately follows from the results of Section
3.22.

Corollary 3 As the sampling frequency 1/T tends to infinity, the description of the

nonlinear controlled system (3.13) coincides with :

dx/dt - f(x) + g(x)v

y - h(x)

e=vyqlt)-y

v = M sat(e.B) (3.16)

yd . el v X Y
Q’%* M =] %-f(x)+ vg(x) h(x) >
y B

Figure 3.2. Average Model of ON-OFF-ON PWM Controlled System

Remark The behavior of the infinite frequency sampled system is described by a
nonlinear system which includes a continuous piece-wise smooth control v,

generated as the output of a2 memoryless nonlinear function of the saturation type.
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The saturation function, in turn, is excited by the output error signal e. In other
words, to evaluate the average behavior of the PWM controlled system, the PWM
controller is simply substituted by a nonlinear memoryless saturating controller.

The fundamental qualitative stability characteristics of the actual nonlinear
PWM controlled system (3.13) are entirely captured by the average mode! (3.16). This
result follows immediately from the sliding mode considerations related to the actual
PWM controlled system. In particular, a necessary condition for asymptotic stability
of the actual PWM system (3.13), toward the state space manifold represented by e = 0,
is given by the asymptotic stability of the average model towards the same manifold.
The actual PWM controlled response can be made to follow, arbitrarily closely, in a
sliding mode fashion ( See (ref.17) ), the response of the average model. This is
accomplished by suitably increasing the sampling frequency of the PWM controller.
It then follows that if the response of the average model {3.16) is asymptotically stable
to the zero error manifold, then the actual PWM controlled system trajectories slide
around the average trajectories toward such a manifold. The amplitude of the
chattering motion decreases as the sampling frequency increases. Thus, modulo
sufficiently large but finite sampling requency, the following theorem holds true :

Theorem 2 The closed loop PWM controlled system (3.13) is asymptotically stable
toward the manifold e - 0, if and only if the average PWM system (3.16) is
asymptotically stable toward such a manifold.

Proof For simplicity we assume that in (3.13) and (3.16), ygq(t) = 0 for all t. The

average model of the PWM controller establishes three disctintive regions in the state

space of the system. These are : the saturation regions S,1 - (x:e - -h(x)> 1/B}

and S_y -{x:e=-h(x)<-1/f ) and the linear, or boundary fayer region Sp - {x

:-1/Bse--h(x)s1/B).

On the saturation regions the actual PWM controiled system (3.13) coincides with
the average model (3.16). Hence, under the same initial conditions, the actual PWM
system trajectories and those of the average PWM system coincide. By virtue of the
continuity of solutions in the initial conditions, it follows that for arbitrarily small
perturbations in the initial states, the state trajectories of the actual and the average
PWM systems remain arbitrarily close to each other locally in such regions.

Within the boundary Iayer region the actual PWM system is described as if being
governed by a two position switch ( i.e., one of the ON-OFF type). Depending on the
sign of the error signal, the PWM controlled system is described as follows:
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Fore>0:
+1 for tp ct<ty + t(e)T

“dx/dt=f(x) +ug(x) ; u- (3.17)
0 for tpt(e)Tctsty+T

fore<0:
-1 for tg<t<tgp + Te)T

dx/dt-f(x) +ug(x) ; u- (3.18)

0 for tpt(e)Tctstp+ T

Model (3.18) can be described in the same form as (3.17), simply by letting -g;(x)
- g(x) and substituting -u by u;. The above ON-OFF systems were shown to exhibit

sliding motions about integral manifolds of the average PWM controlled system (
which in fact corresponds to the ideal sliding dynamics of the equivalent sliding
motion) in the non-saturation regions of the PWM controller. It follows that, within
the boundary layer region, the trajectories of the average PWM controlled system are
followed arbitrarily close by the actual PWM controlled responses, in the same
manner that a sliding motion follows, on a given switching surface in the state space,

the trajectories of the corresponding ideal sliding dynamics model.

It will be now shown, under mild assumptions, that the fundamental qualitative
stability characteristics of an actual nonlinear PWM controlled system (3.13) are
entirely captured by the average model (3.16). For this, the nature of the error
between the open loop state trajectory responses of both systems will be analyzed
when starting from arbitrarily close initial states.

Let e*(ty) = x(tg) - z(tg) be the difference, at the sampling instant ty, between
the state x of the PWM controlled system (3.13) and the state z of the average model
(3.16). It will be assumed that the vector field {(x) is globally Lipschitz and that the

vector field g(x) is globally bounded on R™, i.e., there exist constants L{ and M such

that [{f(x)-f(2)ll < Ly lIx-ell and |lg(x)Il < G for all x and z in RD.

Theorem 3 Under the above assumptions on the vector fields f(x) and g(x), given a
small positive constant € , there exists, for any arbitrary finite time interval, [ONT], a
sampling frequency Fg = 1/Tp such that, if the initial difference e*(tg) = x(tg) - z(tg).

of the initial states of systems (3.13) and (3.16) is norm bounded by a small positive
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quantity 3, then e*(tg+NT) is norm bounded by (1+ €) 3, for any sampling frequency
F > Fyp
Proof According to (3.13) and (3.16) one has :

te+[v{(te)] T~
t

te+T

x(tg+T) = x(1g) + jtk f(x(o))do + M[ g(x(a)) sign eilt,) do (3.19)

2t T) = 2ltg) + j::” flzlo))do + M [[¥* T 4(2(0)) satl ealo, Bl do (3.20)

with eq(tg) - yq - h(x(tg)) and ep(ty) = yq - h(z(ty)), subtracting (3.20) from (3.19),
one obtains :

e (tg+T) - etg) + [::T [f(x(a)) - f(z(c))] do +

M

[::+IV(tk)I U g(x(o)) sign e((t,) do - [::+ T g(z(o)) sat| ez(c, B)| do

Hence:

tx+T

- Il e¥(o) Il do +

Fex(tg+T) Il < Il ex(ughl + Lt |

::ﬂ[v“k)] U g(x(o)) sign e (tg) dc—ItPT g(z(o))sat(ez(s).Bldo ||

Ml j o

t;
< Il et + Lt | T | ex(o) | do + M [‘**T Il g(x(s)) lldo + j‘**T Il g(z(o)) Il do )
ty tx tx
< Il ex(t)ll + L1 j::*T lle*(o) lldo + 2M TG
By the Gronwall-Bellman lemma ((ref. 19), pp. 134, see also (ref. 18) pp. 47 ) one
has :
lle*(tg+THI < | Il e*(ty) Il + 2 M GT J exp (L T) (3.21)

Using iteratively (3.21) for k=0,1,..., N-1 , the following loose estimate for the

norm of the discrepancy e*(tg + NT) is easily obtained,

Il e*(tg + NT) l s [ 2MNGT + Il e*(tg) !/l  exp (LyNT) {3.22)

i.e., at an arbitrary finite time tg + NT, the error between the actual open loop PWM
state response and that of the average system remains bounded by an amount
determined by the initial states discrepancy, the system constants L{ and G and the

sampling interval T. The following transcendental equation, which is directly
obtained from (3.22)
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[2MNGT + 8] - (1+8) Sexp (-L{N T) (3.23)

has a unique solution for some T -~ T > 0. This is due to the fact that the left hand side
term monotonically increases with T from the value & at T - 0, while the right hand
side term monotonicaily decreases with T from the value (1+€)8 > & at T - 0. Hence,

given an initial error bound, |l e*{tg) | < 8, and a small positive constant €, a
sampling frequency Fg = 1/Tg exists for which a preassigned bound of the form (1+€)d

can be obtained such that | eX(tg+NT) || < (1+€)3. It follows, according to (3.22) that

for any sampling frequency F > Fg (i.e.,, T< Ty ) the states error e*{t+NT), is strictly

‘bounded by (1+€)8.

Remark Equation (3.23) may be solved iteratively for T ( or for NT) once all its
parameters have been identified from the system model. Since (3.23) does not depend

on B, the task of finding an appropriate sampling frequency is thus independent of

the problem of finding a stabilizing parameter b for the PWM controller.

3.2 High-Gaj i PWM_C Lter Desi
The design tasks are reduced to determining the average PWM operator gain, B, and

an appropriate sampling frequency. The gain b is sought which stabilizes, toward the
manifold e = 0, the response of the average closed loop system. The appropriate
sampling frequency must be such that it makes the actual PWM controlled trajectory

follow arbitrarily close that of the designed average model. We assume that, within

the boundary layer region around e = yq -y = 0, which is uniquely specified by B, a

sufficiently large sampling frequency may be used, so as to make the actual PWM
response and that of the average system sufficiently close to each other.
It is evident that a Lyapunov-based design approach suffices to determine, in

any particular case, the value of B that accomplishes the zeroing of the average model
error signal. However, we shall state a high gain result ( closely related to the results
in Marino (ref. 20) ) that allows one to establish a design method for the average

PWM controller gain B.
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Theorem 4 If the control law u - M sign(e) creates a sliding regime locally around

the manifold e = yq -y = yq - h(x) = 0, then there exists a sufficiently high gain [ of

the average PWM operator such that the state trajectories of the average PWM system
stabilize toward e = 0.
Proof Suppose such a sliding regime exists locally on e = 0 and, for the sake of
clarity, let yg = 0. Then, it follows that, locally,

-
limg_, .o de/dt = limg_,,. g -<dh, f+Mg> <0
limg _,_q de/dt = limg_,_g -«dh, f-Mg>> 0 (3.24)

Subtracting these inequalities on e = 0 one obtains < dh,g > > 0 locally on the zero
ecror manifold. It follows from the smoothness assumptions on h and g that there

exists a boundary layer of width 2€ around e = 0, with € arbitrarily small, where locally

<dh,g >> 0. Taking B > 1/¢ the control law u - fe - -Py yields a controlled error of the

form :

de/dt = -¢ dh, f{x)> + Py «dh.g > (3.25)

It is evident that for sufficiently high P the controlled error dynamics exhibits a

time scale separation property. Indeed, dividing by B and letting § -> = one sees that

since < dh,g > > 0 then e - -y - 0 is a stow manifold of the controlled system. The

corresponding fast subsystem, described in the fast time scale 1 - Pt is given by:

de/dt-y<dh, g> - -e<dhg> (3.26)

which is locally asymptotically stable toward e = 0. It follows from Tihonov's thecrem
(See (ref. 20)) that e = -y = 0 is an asymptotically stable manifold for the high gain
controlled system.

This result immediately suggests a method for the design of PWM controllers, as

far as the parameter P is concerned. One simply verifies the existence of a local

sliding regime on the manifold y - 0 and then finds a high gain replacement for the
discontinuous controller. This entails the finding of an appropriate boundary layer
along the sliding manifold. The slope of the linear portion of the high gain controiler

coincides with the needed stabilizing parameter B of the PWM system.
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3.2.5 PWM C {ler Desiza for Li Pl

For the case of linear controlled plants, a vast amount of classical input-output
design methods can be directly used for the design of PWM controllers based on the
average PWM model. For ON-OFF-ON controlled switchings, the design problem is

reduced to finding the stabilizing gain B corresponding to the linear part of the

saturation block in the classical feedback configuration shown in figure 3.3.

4 y
d + e 1 V— v
—— » »
g Z G(s)
y B

Figure 3.3 An Average PWM Controlied Linear Plant.

Among the many methods available to solve such a design problem one finds :
the Small Gain Theorem, the Circle Criterion, Describing Function methods, Nyquist
stability criterion, the Popov criterion, etc. All these design techniques, readily found
in the literature (See MacFarlane (ref. 21) ), are based on well known sufficient
conditions for stability and asymptotic stability of linear feedback controlled plants.

3.3. SOME AEROSPACE APPLICATIONS
3.3.1 Examole |,

Consider the kinematic and dynamic model of a single-axis externally controlled
spacecraft whose orientation is given in terms of the Cayley-Rodrigues
representation of the attitude parameter (Dwyer and Sira-Ramirez, (ref. 22)), denoted

by &.

dé/dt = 0.5(1+82) ; do/dt- T/1 (3.27)

The angular velocity is denoted by 0, while I is the moment of inertia , and T is the

applied external torque, restricted by T€ {-T,,.,0, T, ).
Given arbitrary initial conditions, a slewing maneuver is required which brings
the attitude parameter to a final desired value &g and the angular velocity to an

equilibrium. For feedback purposes, the following output is made available :
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y-—- o+ 2A(E-Eq)/(1+2) (3.28)

with A < 0 . Notice that if the output function is ideally driven toy = 0, in finite

time, and the controlled state trajectory is ideally made to stay in such a manifold,
then, ® = 2A(E-Eq)/(1+E2) and the equation governing the attitude parameter
evolution ideally becomes linear, df/dt = A(5-Eq) . The controlled trajectories, thus,
asymptotically converge to £=&3 with exponential decay rate set by A.

Simultaneously, ® would tend to zero as desired. Without loss of generality we shall
assume that &g = 0.

A PWM stabilizing controller is proposed whose average model is represented by

a saturation block with limit values + T . and a linear (boundary layer) region

characterized by a slope value of B 1 ( in the notation of equation (3.12) Mf(e) =

max
tmax for all e ). In order to apply the high gain design method of sections 3.2.3 and
3.24, the following paragraphs consider the existence conditions for a sliding regime
on y = 0 for the nonlinear discontinuous controlled system (3.27) , (3.28).

The transversality condition (3.A.4) takes, in this case, the simple, global, form:
<dy, g>=-1/1< 0. From (3.27),(3.28) it follows that:

dy/dt = -(1/Du + A (1-82)(1+£2)" L@ (3.29)

The invariance conditions (3.A.5), y = 0 and dy/dt = 0, yield the equivalent

control that ideally keeps the state trajectories constrained toy = 0,

WEQ(x) - A1 (1-82)(1+82) oo (3.30)

The region of existence of a sliding regime , on y - 0, are easily found from the

intermediacy condition (3.A.9) of the equivalent control, which in this particular case

takes the form ( ref. 18) : Ty, <uEQc 1 . ie.:

A1 (1-82)(1+82) | <1y, (3.31)

The region of existence of a sliding regime is thus given by:
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o | < (Tgh,,/A 1) (1+£2)I(1-82)i71 (3.32)

The region defined by (3.32) is depicted in Figure 3.4. Notice that a sufficient
condition for avoiding intersection of the sliding manifold, y - 0, with the boundaries

of the computed region (3.32), is simply given by Ty, /Al I\l . This condition may be

strengthened by computing the actual distance between the manifold y = 0 and the
corresponding boundary of the region defined by (3.32). To do this, however, a fourth

order polynomial equation must be solved.

\active constraint
for the region of
sliding mode existence

2ero error manifold

/

A g
i”mmHmuunu

N

boundary layer

il

nonactive
constraint

Figure 3.4. Linearizing Manifold and Boundaries of the Region of Existence

of a Sliding Mode for the Attitude Control of a Single Axis Spacecraft Model.

Provided that the sliding manifold, y = 0, does not intersect the region defined by
(3.32), a sliding regime thus globally exists on such a zero error manifold. It is also
easy to see by Lyapunov stability considerations that y = 0 is globally attractive.

Theorem 4 can therefore be applied and a high gain parameter B can be prescribed
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which guarantees asymptotic stability of the average PWM controlled state

trajectories toward y - 0. For a high gain parameter B the average state response
slides on the small boundary layer and quickly adopts y = 0 as a sliding surface. Ony -
0 the controlled motion can be regarded as nearly linear and an estimate of the
Lipschitz constant Ly is simply given by the quantity | A . The rest of the parameters

needed to find an estimate of the required sampling frequency, as given by theorem

3,afe: G=-1/1, M= Tmax + and € and S are chosen sufficiently small. For instance,

they may be chosen as 0.3/ and 0.5/B , respectively.
A simulated state response of the average and the actual PWM controlled systems
is shown in Figure 3.5. For this simulation, the following values were used: |1 - 94

Kg-m2 ,A~-0.11s"1,1 - 155 Kg m2/s2, Ed = 0. A sliding regime is guaranteed to

max

exist globally on y = 0. The gain parameter was chosen as B - 50 . The sampling
frequency of the error signal, in the actual PWM controlled system, was set to |
sample per second.

-0.01

yo-

T

-0.02 T
0 0.05 0.1

Figure 3.5. Phase trajectory response of Average and Actual PWM Controlled
Response of Nonlinear Single Axis Spacecraft Model

The simulations clearly verify that the actual PWM controlled motions slide,
very closely, around the shown average model trajectory.

3.3.2 Examole 2

Consider a single axis pitch angle attitude control system for a linearized model
of a satellite plant (See Howe and Cavanaugh (ref. 23)) shown in Figure 3.6.

The model includes fast rate and position sensors, as well as a first order model
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preceeded by a small pure time delay to represent the gas jet reaction control system.

The pitch angle, 8, and the pitch rate, @, are used in a PWM feedback control scheme
designed to control the satellite orientation to track a pitch command angle 64. For

simplicity, the commanded pitch angle is taken as zero.

Reference CONTROLLER
Pitch Angle 9 [} 8
ot N -0.025s| ¢ 2 1 0
W PWM e e H— L
o, 0.050s + 1 100 s s
ACTUATOR
Pitch
- 8882.6440 Angular Velocity
2 -
s +131.9468 s + 8882.6440
Angular Velocity Sensor
Pitch
8882.6440 Angle

2
s +131.9468 s + 8882.6440

Position Sensor

Figure 3.6. A PWM Satellite Attitude Feedback Control System

According to Sandberg's circle criterion for linear time invariant systems (See
(ref. 21)), the average PWM closed loop system is guaranteed to be asymptotically
stable, if

-1/B < inf Re G(jw) (3.33)

where G(jw) represents the complex transfer function of the single-input
single-output open loop system (including the actuator and sensor dynamics). Figure
3.7 shows a plot of the real part of the transfer function in terms of the frequency w.
The average PWM controlled motion is guaranteed to be stable for any positive value
of the controller gain f smalter than 35. However, the sufficiency of the criterion
does not conclude instability for larger values of such a design parameter.
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Figure 3.7. PWM gain parameter design using the real part of Nyquist Plot of the Open

Loop System Trasfer Function
Simulations of the state trajectories corresponding to the actuator and

orientation and velocity variables are shown in figures 3.8 and 3.9. Also, the pure time
delay block was simulated using the approximation:

(3.34)

e-Ts _[T2/8]52-[T/2]s+1
[12/8]s2+[T/2)s «1

The average and actual closed loop PWM controlled actuator state trajectory
responses of the spacecraft model are shown in Figure 3.8. A sliding regime of the
actual PWM trajectories about the average PWM response curve is clearly depicted in

this figure. Here § - 20 and the sampling rate was chosen as 8 samples per second.

At
20 4
0 4
-20
time (sec)
0 1 2 3

Figure 3.8. Average and actual PWM State Trajectory Response
of Controlled Spacecraft Model (actuator state)
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Figure 3.9 shows the actual and average responses of the pitch angular position
and the pitch rate. The chattering motions are significantly smoothed out due to the
several integrations undergone by the PWM block output signal through the actuator
and the linear system approximation prescribed for the pure time delay block. The
average and PWM controlled trajectories are seen to coincide practically over the

entire simulation interval.

0.151
0.1
0.05 1
0 4
Be
time (sec)
-0.05 = T T 5
0 1 2 3

Figure 3.9. Average and Actual PWM Controlled Trajectories Response
( Pitch angular position, Pitch rate and angular position error )

3.4. CONCLUSIONS

In this chapter a design procedure was proposed for the specification of
stabilizing feedback PWM controllers. It was shown that, under an infinite sampling
frequency assumption, an average model, of the Filippov type, can obtained for PWM
controllers. The average model simply replaces the discontinuous PWM switching
control function by a duty ratio function. The average model was shown to capture
the basic qualitative ( i.e. stability ) features of the actual PWM controlled system. for
sufficiently high sampling frequency. Estimates of such sampling rate are easily
found from the Lipschitz constants associated with the state space model of the
controlled system. A design based on the average model allows to treat the PWM
design problem in a more exact fashion ( i.e., without discrete-time approximations)
For the design task one may resort to, for example, well known Lyapunov stability
theory, or else use a high gain design approach as described in this chapter. It should
be noted that dealing with the average model one totally circumvents the technical
difficulties associated with the fact that PWM operators are, indeed, unbounded
operators on the Banach space of absolutely integrable functions. For the case of a
PWM design problem in the particular context of linear controlied plants, classical
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sufficient conditions, based on frequency domain criteria for asymptotic stability,
are readily applicable to the average model. The results were applied, through simple
design examples, to PWM controller specification for tinear and nonlinear plants.
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3.5 APPENDIX
Consider the n-dimensional variable structure system:

dx/dt = u f1(x) + (1-u) f2(x) (3.A.1)

1 fors(x)>0
u- (3.A.2)

0 fors(x)<0

with S - { x :s(x) - 0} being a smooth n-1 dimensional manifold defined in the open
set N of R, with gradient vector ds/dx = O, for all x in S.

Definition A.1 A sliding regime is said to exist focally on the manifold S
whenever the following conditions are satisfied (ref. 18) (See also Sira-Ramirez (ref.

24)) :

limg_,, ¢ ds/dt =: lim g_, , o< ds, f1(x)>< 0
limg_,_q ds/dt =: lim _, _g< ds, f2(x) 5> 0 (3.A.3)

with «ds,f> being a shorthand notation for the chain rule [9s/9xIT f;(x) .

Proposition A.1 (ref. 24) If a sliding regime exists locally on S then, necessarily,
for all x ¢ S where the sliding regime exists, the following transversality
condition is satisfied:

<ds, f1(x) - fa(x)>< 0 (3.A.4)

Proof Obvious upon subtracting the expressions in (3.A.3) evaluated on S.
Being a necessary condition, (3.A.4) determines the extent of a region which
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properly contains the region of existence of a sliding regime on the surface S.

If a sliding motion exists locally on S, the state trajectories undergo a chattering
motion about the switching (sliding) manifold. An idealized version of such a motion
is obtained by assuming that the trajectories smoothly evolve on the sliding manifold.
To describe such an ideal sliding dynamics two general methods have been
proposed: Utkin's method, based on the Equivalent Control Method (ref. 18) , and
the method of Filippov's Geometric Averaging (ref. 25).

The Equivalent Control method is based on defining a control function,
called the equivalent control, and denoted by uwEQ(x), locally defined along S, for
which the following invariance conditions are satisfied:

ds/dt=0 ons=0 (3.A5)
Using our shorthand notation, these conditions are expressed as:

¢<ds , uEQ(x) f1(x) + [1-uEQ(x)] f5(x) > =0 on s=10 (3.A.6)

The geometric interpretation of (3.A.6) should be clear: the smooth vector field

wEQ(x) f1(x) + [1-uEQ(x)} f2(x) must be locally orthogonal to the surface gradient at

every point X € S located in the region of existence of the stiding mode. From (3.A.6)

one finds the unique value of the equivalent control, for x ¢ S, as :
vEQ(x) = - «ds fa(x) »/| «ds, £1(x) - f2(x) 5] (3.A.7)

To see that uEQ(x) is indeed unique (ref. 24), assume u(x) is a different function
also satisfyieg (3.A.6) i.e. < ds, p(x) f{(x) + [1-p(x)] f2(x)} > = 0. Subtracting from (3.A.6)
the obtained expression with u(x), one would get : «ds, [WEQ(t)-p(x)] £ (x) -[uEQ(x)- 11(x)]
f2(x)s = [uEQ(x)-pu(x)leds,f1(x)-f2(x) > = 0. Since necessarily < ds, f1(x)-f2(x) > <0, it
follows that uEQ(x) - u(x) which is a contradiction.

When (3.A.7) is formally substituted in place of the discontinuous control u in

(3.A.1), the obtained dynamics, constrained to evolve on S, is known as the ideal

sliding mode. Its explicit expression is readily obtained as follows:
dx/dt = [-«ds fo(x)>f (%) + «ds,f1(x)>Ep(x)]/[<dsf{(x)-[2(x)>] ; xe§S (3.A.8)

Theorem A.1 (ref. 16) Let the transversality condition (3.A.4) be locally satisfied on
S. The necessary and sufficient condition for the local existence of a sliding regime of
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(3.A.1),(3.A.2) on S, is that the equivalent control uEQ(x) satisfies:
0 < uEQ(x) ¢ 1 on s(x) =0 (3.A.9)

Proof Suppose (3.A.9) is locally valid on S. Inverting then the expression in (3.A.7)

and according to (3.A.9) one obtains :

- [«ds, fy(x) - fo(x) 5] / <ds.fp(x)>> 1, xeS. (3.A.10)

ie.,
—cds fi(x) s/<ds, fa(x)> > 0 (3.A.11)

Hence, < ds,f{(x) > and < ds.,f2(x) > have opposite signs on S. According to the validity of
the transversality condition (3.A.4), the numerator of expression (3.A.10) is positive,
then <ds,f2(x)> is also necessarily positive and hence (3.A.11) implies that «ds,f{(x)> <0,
locally on S. It follows that there exists locally an open neighborhood surrounding S
where conditions (3.A.3) remain valid. A sliding regime exists locally on S.

To prove necessity, suppose a sliding regime exists locally on S and conditions
(3.A.3) are locally valid on S. Then, there exists a positive function 0 < u(x) < 1, such
that p(x) «ds,fy(x) > + [1-p(x)]<ds,fo(x)> = 0. Solving for u(x) we obtain the same
expression as in (3.A.7) for u(x). By virtue of the uniqueness of the equivalent control
u(x) - uEQ(x) and the result follows.

Filippov's Geometric Averaging method (ref. 25), as applied to sliding mode

existence conditions, can be phrased as in the following theorem.

Theorem A.2 A sliding regime exists locally on S for system (3.A.1),(3.A.2) if and
only if there exists a scalar function 0 ¢ u(x) < 1 defined on S such that S is a local

integral manifold for the average dynamics:

dx/dt = p(x) f1(x) + [1-p(x)] f2(x) =: f4y(x) (3.A.12)

One immediately concludes that Filippov's convex combination function u(x) is
none other that the equivalent control and that, therefore, Filippov's Average
dynamics coincides with the Ideal Sliding mode.

Remark The above result is not generally true for systems of the form dx/dt = F(x,u) ,
as it was shown in Utkin ((ref. 18), pp. 26-27 and pp. 62 ). The procedure by which a
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general VSS of the form dx/dt = F(x,u) is written in the form (3.A.1), (3.A.2) ( with
F(x,1) = £1(x) and F(x,0) - f2(x) ) is known as “artificial” control-linearization
(elsewhere called "pre-linearization” ). For the artificially control-linearized system,
both Utkin's and Filippov's approaches yield the same results concerning the ideal
sliding mode. However, it is clear that if a control uEQ(x) can be found for which
p(x)F(x,1) + [1-p(x)] F(x,0) - F(x.uEQ(x)), it does not necessarily follow that uEQ(x) -
u(x).

-



