


CHAPTER 10

On the Adaptation Algorithms for Feedforward
Neural Networks

Stanislaw H Zak®
Hebertt J. Sira-Ramirez**

Abstract. In this paper new training algorithms are proposed for a class of feedfor-
ward neural networks with differentiable and nondifferentiable nonlinearities. The class
of neural networks considered in this paper can be viewed as generalized single and
multi-layered perceptrons. The learning parameters in the proposed algorithms are
adjusted to force the error between the actual and desired outputs to satisfy a stable
difference equation.

1. INTRODUCTION. An artificial neural network is a large-scale nonlinear cir-
cuit of interconnected simple circuits called nodes or neurons. These networks resemble
patterns of the biological neural networks hence the term artificial neural networks. One
of the reasons for studying such circuits came from attempts "to understand how known
biophysical properties and (the) architectural organization of neural systems can provide
the immense computational power characteristic of the brains of higher animals” (Tank
and Hopfield, 1986, p. 533). Another reason of interest in neural networks is the low exe-
cution speed of conventional computers which perform a program of instructions serially
or sequentially. In contrast, neural networks operate in parallel. The ability to be inter-
connected in a regular fashion results in higher computation rates. Furthermore, regular
interconnections of the same basic cells lead to easier design and testing of a chip. Poten-
tial applications of neural networks are in such areas as speech and image recognition,
linear and nonlinear optimization, automatic control, and in highly parallel computers to
mention but a few.

In this paper our interest is in the class of feedforward neural networks which can be
viewed as generalized perceptrons.

The development of the perceptron can be traced back to the early days of pattern
recognition (See Grossberg (1988), Lippmann (1987), Pao (1989), Widrow and Winter
(1988), Widrow and Lehr (1990), and Haykin (1984) for more details). Its application as
an adaptive system to the control of many degrees of freedom robotic manipulators was
‘proposed by Albus in 1975. More recently, Widrow and Winter (1988), and Widrow and
Lehr (1990) discussed numerous applications of perceptrons for adaptive filtering (See also
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Astrom and Wittenmark (1989), and Haykin (1984)}, adaptive pattern recognition, and
adaptive signal processing.

The central role in advancing the practicality of perceptrons, and neural networks in
general, are played by adaptation algorithms. In the case of the single perceptron one of
the most well known algorithms that minimizes the mean square error between the
desired output and the actual output is due to Widrow and Hoff. For the layered percep-
tron the central role is played by the back propagation algorithm (see Widrow and
Winter (1988) for historical remarks, Rumelhart, MeClelland et al. (1986) and Pao (1989),
for the derivation of this algorithm and Rumelhart, McClelland et al (1986) and
Rangwala and Dornfeld (1989) for its applications). For an interesting discussion of the
back propagation in the context of the control of dynamic systems see Narendra and
Parthasarathy (1990). One of the drawbacks of the back propagation algorithm is the
requirement that the nonlinear activation functions be differentiable.

In this paper we propose a2 new class of adaptation, or training, algorithms for gen-
eralized single and multi-layer perceptrons. Our proposed algorithms, unlike the back-
propagation training algorithm, do not require differentiability along the network’s signal
paths. On the contrary, we include activation functions which are not only
nondifferentiable but also discontinuous like saturation functions and/or hard limiters.
Another feature of the training algorithms proposed in this paper is that the learning
parameters are adjusted in such a2 way so that the error between the actual and desired
outputs satisfies a stable difference equation. This is also characteristic of the celebrated
Widrow-Hoff algorithm for single-layer perceptrons.

The paper is organized as follows. In the next Section we briefly review the
Widrow-Hoff adaptation rule. This rule constitutes a nice starting point in our develop-
ment. In Section 3 we propose a new adaptation algorithm for the single perceptron.
The proposed algorithm is a generalization of the Widrow-Hoff adaptation rule. In Sec-
tion 4 we present a new training algorithm for generalized two-layered perceptrons. In
Section 5 we are concerned with a new adaptation algorithm for generalized three-layered
perceptrons. Algorithms presented in Sections 4 and 5 are generalizations of algorithms
of Sira-Ramirez and Zak (1991). The conclusions of the paper are found in Section 6.

2. BRIEF REVIEW OF THE WIDROW-HOFF ADAPTATION RULE.
The single perceptron as an adaptive threshold element is shown in Fig. 1.

One can use the Widrow-Hoff delta rule (see Widrow and Winter (1988) or Widrow
and Lehr {1990) for its discussion) to adjust the weights w; (i = 1,2,...,n). The algorithm

=2 )

Fig. 1. Single perceptron

can be written as follows:

Wik +1) = W(k)
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where

k = the time index or the adaption cycle number,

W(k) = [WI(]? ., wn(K)]T is the value, at time k, of the weight vector,

X = [x;,..,Xp| " is the present input pattern,

e(k) = yg — y(k) is the present error,

o = the reduction factor whose practical range is (0.1, 1.0).

After some manipulations, one can conclude that the error is reduced by a factor of

« at each new learning iteration as the weights are changed while holding the input pat-
tern X fixed. More specifically, the error obeys the following difference equation

v ek +1) = (1 — o) e(k) . (2.2)

As one can see from the above equation, the choice of & controls the speed of conver-
gence towards zero of the learning error signal e(*).

In this paper as in Widrow and Winter (1988, p. 34) and Widrow and Lehr {1990, p.
1424) we analyze only the case when the same input pattern X is presented in successive
iterations and no other input pattern is being presented, that is, X(k) = X(k-+1) = ... =X.
We thus reduce the error while holding the input pattern fixed. The new input pattern
would start the next adaptation cycle. We do not analyze how much the responses to
previous input patterns are disturbed when adapting to respond to a new training pat-
tern.

3. NEW ADAPTATION RULES FOR A SINGLE PERCEPTRON. We
present the new adaptation algorithm in the following theorem.

Theorem 1. Let ©: R®—IR be an operator, then if the weights w; of the single
perceptron, shown in Fig. 1, are adapted according to the rule

aelk) OX] gt

aax) O (xTeX) #0), 3.1
S e <0 @)

with 0 < o < 2, then the error e(k) tends asymptotically to zero with the rate of conver-

gence (1 — a).

Wik +1) = W(k) +

Proof. Note that
e(k + 1) —e(k) =yq —y(k + 1) ~ [ya — y(k)]
== 3 fealk + 1) = ()] x

i=1

= —XT[W(k + 1) — W(k)] .

We can now use the proposed update rule to obtain:
ek + 1) —e(k) = — X2 OX] iy i XTepx] 20,
XT ox]
Hence
ek +1)=(1—0a)elk).
Thus, if 0 < a < 2 then
lim e(k) =0

k—r00

O

Note that in the new adaptation algorithm, as well as in the Widrow-Hoff algorithm,
the error is reduced by a factor of o.
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Observe that if © is the identity operator then the new algorithm (3.1) is the same
as the Widrow-Hoff adaptation rule. If on the other hand,

sgn x;
X
o] = =" ™| =saN X,
sgn x,

then (3.2) is the same as the algorithm proposed by Sira-Ramirez and Zak (1991).

Example 1. (System Identification) This example deals with the problem of system
modeling as shown in Fig. 2 (See Widrow and Winter (1980), p. 26, for more details).
Our problem is to identify the behavior of an unknown dynamical system. In the simula-
tions, the "unknown” dynamical system is described by the following equations

X =Xy
).iz = -— 2x1 - 23(2 +u (3.2)
Y =Xy .

We take O[X] = SGN X.

input signal gynn?;wwgl
u System

Z

—— > Perceptron

I Adaptive [

Algorithm

Fig. 2. Scheme for identification of the behavior of an unknown dynamic system.

The input vector to the perceptron is provided by means of the delay elements
arranged in a transversal filter scheme as depicted in Fig. 3.

The input signal to the system u(t}, the output y(t) of the unknown system, the out-
put y;(t) of the perceptron and the tracking error e(t) are shown in Fig,. 4.

The adaptation time history of the perceptron weights is shown in Figure 5.

We shall next present new adaptation algorithms for the multi-layer perceptrons.
The proposed_algorithms are an extension of the training algorithms presented in Sira-
Ramirez and Zak (1991).

4. ADAPTATION ALGORITHMS FOR TWO-LAYER GENERALIZED
PERCEPTRONS. In the next two Sections we will be concerned with generalized
multi-layer perceptrons which are feedforward networks with one or more layers of nodes
between the input and output nodes. It is generally acknowledged that the applicability
of multi-layer neural networks is highly dependent on the efficiency of the training algo-
rithms. One of the best known training algorithms for multi-layer perceptrons is the
back propagation algorithm. A disadvantage of the back propagation algorithm is the
inherent requirement of continuous differentiability of the nonlinearities. Our proposed
algorithms, unlike the back propagation training algorithm, do not require
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Adaptation | _ emor signal
Agorithm [

Fig. 3.  Structure of the perceptron used to identify the behavior of the unknown
system in Example 1.

u(t)

y(t),ul(t) f
e(t)
eaZC P,

é 10 28 timelsecyy
Fig. 4. Time history of u(t), y(t), y1(t), and e(t).
9.2
wi(t); i=1,...,6
V.
z
time (sec)

18 28 10

Fig. 5.  Adaptation of the perceptron weights.

differentiability along the network’s signal paths. On the contrary we include activation
functions which are of the hard limiter type or saturation type. In the back propagation
algorithm one presents an input to the network and calculates the output corresponding
to the current set of learning parameters. One then compares the actual network output
with the desired output and calculates the Euclidean distance between the actual and
desired outputs, called the error function. The learning procedure aims at minimizing the
error function by suitable adjustments of the learning parameters. One calculates the
gradient of the error function with respect to the learning parameters starting at the
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output nodes and working back towards the input nodes through the hidden layers. Once
the gradient is calculated, the learning parameters are adjusted using the gradient descent
method. A substantial departure from the back propagation procedure is proposed in our
new training algorithms. Here, the learning parameters are adjusted to force the error
between the actual and desired outputs to satisfy a stable difference error equation, rather
than to minimize an error function. This approach allows one to better control the sta-
bility and speed of convergence by appropriate choice of parameters of the error difference
equation.

We shall start our analysis by considering a two-layer adaptive neural network as
depicted in Fig. 6.

INPUT ®1mn HIDDEN OUTPUT
LAYER m=12...n; LAYER LAYER
n=12...ny Ope Yo
j=1.2,...n4 ©=1,2,..Ng
x=12....Rg
Zh1
LT
Xq
——
z Y Yot
T |2
Yo
z ri
Xny
< Hi
Ty
Adapiive [<—Y41

Algorithm 4—@4—:Yan°

Desired

Fig. 6. A two-layer adaptive neural network with a diagonal nonlinear operator I in the
hidden layer.

Notation and definitions. Before presenting new training algorithms we shall
introduce some notation and definitions.

Let T': IR“—IR’ denotes a nonlinear operator with the following property

L rx1=-rx | (4.1)

The operator I' can have, in particular, the following forms

sgnx,;
MX]=| ¢ ,
sgn x,
where
1 if >0
e :{—1 if % <0.

Another possible form of the operator I' is
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sat x;
X} =
sat x¢

where
41 if x>1
sat X; =19 Xj if XiG[—l,l]
-1 if X <1 y
or
sig x4
X} =
sig x,
where
. 1—e ™
sSig X; = =as
1+e™

Observe that T does not have to be a "diagonal” operator. However, we require that
' is an odd operator, that is, it satisfies (4.1). Notice that T’ can also be an identity
operator.

The k-th output of the network in Fig. 6 is obtained as the weighted sum of the hid-
den neuron outputs, that is

ny
ok = E ijlc(k)ij(k) k=12,.,n,
=1

where ny is the number of hidden neurons, n, is the number of outputs, and zy; are the

hidden neurons outputs. The gquantities wy;(k) represent the interconnection weights
existing between the hidden neuron layer and the outputs. Thus, in vector notation

YOK( )= [WH( )]TZH( ) k=1,2,..,n,

where
“)lec(k)
2»ck
i) = | =]
WHn (k)
and
1 (k) alym (k)]
Zul) = Zﬂzs(k) _ ’Yzz[)’?z(k)] T [Yy(K)] -

anH(k) ’YanH[YHnH(k)]

If we denote by Wy the matrix of column vectors Wi, then the vector Y (k) of the out-
put components y..(k) can be represented as

rY = [Wr(k)]"Z5 (k) J

Furthermore
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Yra(k) = i wlmn(k)xm

m=1

= [WIK)TX , n=1,2,..,ny

where
Wit (k)

wigg) = | ="

]

o)

and

Denoting by Wy the matrix of column vectors W} we obtain the vector Yy(k) of the
components yg, (k):

| Ya(k) = Wy(k)’X |

A schematic representation of the two-layer adaptive generalized perceptron is depicted in
Fig. 7. Observe that the nonlinear operator I' does not have to be a diagonal one. How-
ever, it must satisfy (4.1).

Let Y4 denotes the desired output vector with components. yq4, £ =1,2,...,n,. The
error vector E(k) at time k is

ey(k)
E(k) ={ =Y, — Y, (k)
en, (k)

Adaptive
Algorithm

Fig. 7. Schematic representation of the two-layer generalized perceptron.

The weights updates are represented by the following equations:
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whje(k+1) = wie(k) 4 ugge(k) , € = 1,205, j =1,2,..,0,
Wimn{k+1) = Wimp(k) + Upma(k) , m =1,2,..,nr, n=1,2,..,ny4
or, in matrix notation
Wy (k-+1) = Wy(k) + Ugn(k) ,
Wi(k+1) = Wi(k) + Uy(k) ,

where Ug(k) € R™™ and Uj(k) € R"™" are the correction matrices, with column vectors
Ufi(k) and UP(k) respectively, updating the weight matrices at time k. Such column vec-
tors age given by:

-qun(k)
ugax(k
Ugi(k) = Hz:( ) . k=1,2,..,0,
anHK(k)
and
uIln(k)
ugo,(k
Uf(k) = lz?( ) ; n=12..,ng

ulnln(k)

Description of the Algorithm. The following lemma will be needed in subsequent
considerations.

Lemma 1. The error vector E(k) satisfies the following difference equation as a
function of the input layer and hidden layer matrix update weights Uy(k) and Uj(k):

E(k-+1) — E(k) = [Wg (k)] "{T[Yx(k)] — [[Ya(k) + [Ui(k)]"X]}
- [Un(K)*T[Yg(k) + [Ug(k)]"X] . (4.2)

Proof. We have

E(k+1) — E(k) = Yo(k) — Yo(k+1)

= [Wa(k)]"Zu(k) — [Wa(k) + Un(k)]"Zn(k+1)
= [Wa(k)]" (Zu(k) — Zu(k+1)] — [Un(k)]" Zn(k+1)
= [Wa(i)) ™ {T(Yar(k)] — F[Yaa(k-+1)]} — [Un(R)] " T[Yn(k+1)] .

Since
Yar(k+1) = [Wi(k+1)]TX = [Wy(k) + Up(k)]TX = Ya(k) + [Uy(k)]"X
we have that
E(k-+1) — E(k) = [Wr(k)]™{T[Yu(k)] — T[Ya(k) + [Ui(k)]"X]}
— [Un(k)]"T[Ya(k) + [Uy(k))"X] .
0

The new training algorithm for the generalized two-layer perceptron is presented in
the following theorem.
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Theorem 2. If the weight correction matrices Uy(k) and Ug(k) are respectively
chosen as

~26; [X][Yu (k)"

Ul(k) = XT 81 [X] )

(X764 [X] = 0) (4.3)

and
_ ©ulZu(k)] {AR(K)T
(25 (k)| €, [Zn(k)]

where ©; and O, are operators, then the learning error vector E(k) satisfies the following
asymptotically stable difference equation:

Ug(k) = — 2 Wy(k) (2862(Zx] # 0) (4.4

E(k+1) = (I — A) E(k) {4.5)
where A is an n,xn, diagonal matrix given by
(e 3] 0 vee 0
0 (62 0
A= 4.6
30 (4.6)
0 0 .. o

such that |1 —a,] <1 k=1,2,..n,.

Proof. Note that the transpose of the weight correction matrix Uy(k) is given by

_ —2Yg(k){6[X]}T
[Ui(K))T = T Xex|

Substituting this last expression into the error difference equation (4.2), of Lemma 1,
and taking into account (4.1) one obtains .

E(k-+1) ~ E(k) = 2[W (k)] T{Yx ()] + [Un(I T[Yn(k)]
= 2[Wi ()] Za() + [Un(l)| " Z(K)
= [2 Wi(K) + Un(K)]™Zu(k)

Substituting (4.4) into the above error vector difference equation yields the following
asymptotically stable error dynamics

E(k+1) = (I — A) E(k) .
m|

Notice that A may also be chosen as an arbitrary nondiagonal matrix such that the
matrix (I-A) has its eigenvalues in the open unit circle of the complex plane. A particu-
larly simple form of (4.3) and (4.4) is obtained when ©; and ©, are chosen to be the iden-
tity operators.

Observe that the proposed expressions for the weight correction matrices are
nonunique. Thus it is left to a designer to select formulae which would be most suitable
for the problem at hand.

Example 2. In this example we test the proposed adaptation algorithm of Theorem
2 for a two-layer perceptron. The two-layer perceptron used in the following simulation
experiment is depicted in Fig. 8. Here we take I'X] = SGN X, ©,(-) = 6,(-) = SGN(-).
The weights of this perceptron will be adjusted according to the laws (4.3) and (4.4).
Specifically:
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Wimn{k+1) = Wimn(K) + Ugma(k) m =1,2,3,4

yu, (k) sgn(x i n=12
u (k) —_2 H ( ) ( m) )
Imn _24 — | . | —
je1 1
whje(k+1) = wyje(k) + uge(k) j=1,2,
aelk) zgek) ' k=1.
uﬂjx(k) = -2 wﬂjlc(k) — _2—"_
@gmn Yima
input ‘,?‘-’7

g
ldelayl L N Oyt Unjt
4 : YH1 ZH1 -
o]
delay L_

L

N

YH2 Zg2 =

Y, ‘u..q)'n._ LR AR L)

& Adaptation | @ QD
Algorithm y

Fig. 8. A two-layer perceptron used in Example 2.

Our problem, as in Example 1, is to identify the behavior of an "unknown" dynami-
cal systems (3.2) using the configuration shown in Fig. 2, where the structure of the per-
ceptron in this simulation experiment is depicted in Fig. 8.

The input signal u(t), the output y(t) of the unknown system, the output y(t) of the
two-layered perceptron and the tracking error are shown in Fig. 9.

2

u(t)

Y30 /- \
0 [ elt) ,

time (sec)
1 1 1

€ 1e 26 30
Fig. 9.  Time history of u(t), y(t), y;(t), and e(t).

The weights adaptation time history of the two layer perceptron used in this experi-
ment is shown in Fig. 10.
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A substantial improvement over the single perceptron of Example. 1 is obtained in
reducing the error when the two-layer perceptron is used.

Fig. 10. Adaptation of the two-layer perceptron weights. .

5. ADAPTATION ALGORITHMS FOR THREE-LAYER GENERAL-
IZED PERCEPTRONS. In this Section we shall utilize similar type of arguments to
those used in the previous Section to devise training algorithms for the three-layer feed-
forward neural networks. An example of such a network is shown in Fig. 11.

Notation and Definitions. The #-th output of the network in Fig. 11 is obtained
as the weighted sum of the outputs of the first hidden layer

01H

Yo = E lejK(k) zlﬂj(k)r K= 1)21'"1no
j=1
where n;y is the number of neurons in the first hidden layer, n, is the number of the net-
work outputs, and z;y; are the outputs of the neurons in the first hidden layer. The
quantities wyy;, represent the interconnection weights between the ﬁrst hidden layer and
the outputs of the net. In vector notation

Yox = [WIH( )]T ZlH k) K= 1,2,---,110
where
leln(k)
wipz«(k)
Wha(k)=| |,
leanrc(k)

and
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®)

SECOND HIDDEN  FIRST HIDDEN
LAYER LAYER

OUTPUT
D2Hmn LAYER

R — Adaptive

Algorithm | ©1 RV,

(©

Fig. 11. (a) Model of a single neuron
(b) Symbol for a single neuron
(¢) A three-layer adaptive perceptron.

Zml(k) M1y (k)]

Zus(k) = zm:g(k) _ 722[y1:m(k)]

lenm(k) ananH[YIHnm(k)]

= I'[Yyu(k)] .

If we denote by W, the matrix of column vectors Wiy, then the vector Y, (k) of the out-
put components y,«(k) is obtained as (see Fig. 12)

| Yo(k) = [Win(k)"Zun(k) |

Note that Wy € RMHe,
The signals y g, of the neurons in the first hidden layer are given by
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D24

ylHn(k) = Z wZHmn(k)zﬂ'lm(k)

m=1
= [Wa(k)]"Zau(k), n =1,2,...,n15
where
[ wania (k)
Wi = | <) |
Wt ()
and .

r 231 (k)
zzﬂg(k)

_Zzﬂnm(k)

Denote by Wyy the matrix of column vectors W3y. Then the vector of the neuron signals

r ZzH Y1y I

Zou(k) =

Fig. 12. Schematic representation of the three-layer adaptive feedforward neural
network.

Y;u of the first hidden layer is (see Fig. 12)
[ Yin() = [Wn ()" Zon(k) |

Note that Wyy(k) € R"#*™®. Observe that

Zou(k) =T [You(k)] .
The components of the vector Yoy(k) are given by

Yo (k) = :ij writ(k)x;
= [W}(k)]TX ’ i= 1,..,nzg

where

wm (k)

<A)In;.l(k)

and
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If we denote by W the matrix of column vectors W}(k) then

| Yon(k) = [(Wi)["X_|

whe;e
Wi(k) € R*

Let Y4 denotes the vector of desirable output values with components, yg,; £ = 1,2,...,D,.
The error vector E(k) at time k is then obtained as

el.(k)

Let the weights update law be represented by the following equations:
winje(k+1) = wipgje(k) + wmge(k) ,

w2Hmn(k+1) = w2Hmn(k) + u2Hmn(k) ’

wii(k+1) = wpi(k) + ug(k) ,
or, in matrix notation
Win(k+1) = Wig(k) + Un(k) ,
Wan(k+1) = Way(k) + Uzn(k) ,
Wi(k+1) = Wi(k) + Uy(k)

where Ujg(k) € R™W™, Uy(k) € R™* ™", and Uy(k) ER"™* are the correction
matrices updating the weight matrices at time k. In Fig. 12 we represent schematically
the generalized three-layer adaptive perceptron using the above notation. Note that the
nonlinear operator I' does not have to be a diagonal one.

Description of the Algorithm. The following lemma will be used in the subse-
quent considerations

Lemma 2. The error vector E(k) satisfies the following difference equation as a
function of the input and hidden layers matrix update weights Ujn(k), Upu(k), and Uy(k):

E(k-+1) — E(k)

= [Win(k)]T{T [Ym(k)] = F{[Wm(k) + Ug(k)}TT (qu(k)+[Ux(k)]TX)}

~ [Un(k))* T {[wzn(k) + Um(k)]TF(Yzﬂ(k)f[Ux(k)lTX)} (5.1)

Proof. We have
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E(k+1) — E(k) == Yo(k) — Yo(k+1)
= [Win(k)]"Zm(k) — [Win(k+1)]"Zm(k+1)
= [Win(k)])" Zin(k) — [Win(k) + Un(k)]T Zig(k+1)
= [Win(K)]T {L[Y(k)] — T[Yn(k-+1)]}
— [Uan(k)]" T[Yyu(k+1)] - (5.2)
Note that
Yin(k+1) = [Wan(k41)] " Zog(kc+1)
= [Wan(k) +Uan(k)]™ T[Yau(k+1)]
= [Wan(k) + Upn(k)]T T([Wi(k) + Uy(k)]"X) .
Substituting the above equation into (5.2) yields
E(k-+1) — E(k)

= [Win(k)]™ {T[Yin(k)] — F{[Wzn(k) + Usn(k)]T T([Wy(k) + Ux(k)]TX)}

~[Um(k)TT {[Wzﬂ(k) + Upn(k)] T T([Wi(k) -+ Ul(knTX)} :

The last equation is equivalent to (5.1).
O

We shall now present the new training algorithm for the generalized three-layer per-
ceptron (see Fig. 12) in the following theorem.

Theorem 3. If the weight correction matrices Uy(k), Usg(k), and U;y(k) are respec-
tively chosen as

{6 XD You(k)T

0 = - ZPEEL | xreux +o) (53)
T
Upn(k) = — 2{251,,)(23[}2?&)] , (ZhOslZan] # 0) (54)
and
V(i) = Selln®DA BT o o 7o) (5.5)

ZTu(k) ©3(Zn(K)]

where ©;, ©;, O3 are operators, then the learning error vector E(k) satisfies the following
asymptotically stable difference equation

E(k-+1) = (I—A)E(k) ,

where A is an n, x n, diagonal matrix chosen as in (4.6).
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Proof. Note that the transpose of the weight correction matrix Uy(k) is given by
2 Yau({0y[X])"
{& X)X

Substituting this last expression into the error difference equation (5.1) and utilizing (4.1)
gives

E(k+1) — E(k)

[Ui(k))" =

= [Wn(k)" {Zm(k) + I(Yu(k) + [UZH(k)]TZZH(k))}

+ [Upn(k))"T {Ylﬂ(k) + [Uzﬂ(k)]TZZH(k)} . (5.6)
Upon substituting the transpose of the weight correction matrix Ugg(k) into (5.6) yields

E(k+1) — E(k)
= — [Una(K)]T P[Yiu(k)] = — [Un(k)] " Zim(k) - (5.7)

Finally, substituting the transpose of the weight correction matrix Upy(k) into (5.7) we
obtain E(k-1) = (I — A) E(k).
0

Notice again that A may also be chosen as an arbitrary nondiagonal matrix such
that the matrix [I - A] has its eigenvalues in the open unit circle of the complex plane.

A particularly simple form of the weight correction matrices’ Uy(k), Usn(k), and
Uyn(k) is obtained when ©;, ©, and ©; in (5.3)-(5.5) are chosen to be the identity opera-
tors.

Observe that the expressions for the weight correction matrices are not unique.

8. CONCLUSIONS. In this paper training procedures have been presented for a
class of feedforward neural networks. The class of neural networks we have considered
can be viewed as generalized perceptrons. The learning parameters are adjusted is such a
way so that the error between the desired and actual outputs satisfies a stable difference
equation. Research is now underway to apply the proposed adaptation algorithms to the
control of nonlinear dynamic processes.
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