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Abstracts

In this peper we deal with a new approach to model Set~Theoretic uncer-
tainties with the use of p-tensor forms associated with n-dimensional
vectors, This generalization allows amputation of reachable sets,for
linear systems,arising from highly non-linearly defined initial state
constraint gets. The paper represents a unifying effort within the Set-
Theoretic technique for uncertainty modeling heretofore wnnecessarily
restricted to ellipsoids and polyhedra. The paper also introduces a new
class of bi-linear systems related to the reachable set camputation for
forced systeams. These new systems have explicit solutions and they are
of independent interest. Some examples are included. )
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INTRODUCCION

The study of set-theoretic uncertainties and their evolution through
linear dynamic systems has been restricted, so far, to two types of sets:
ellipsoids and polyhedra (Schweppe!® and Hnyilicza®). Within this line of
thought, authors?have defined estimation and control problems that pro-
vide an alternative to the stochastic-probabilistic formulation of
such problems. The set-thgoretic modeling of uncertainties constitutes a
practical alternative in the study of control problems where an intuitive
knowledge of the uncertainty is available, This knowledge, usually in the
form of bounds on the variables of interest, can be exploited to obtain a
"mini-max" type of design. )

The set-theoretic technique has alsd been of valuable assistance in
minimum time intercept problems ( Athans and Falb! ), vhere knowledge of
the set of reachable states and the fact that optimal trajectories stay
at the boundary of this set ( Principle of Optimal Evolution, Halkin”)
rapidly provides a geometric answer to the problem. This usually results
in' a need of invoking Pontryagin's Maximum principle H0

In this paper we shall treat the computation of the reachable set
for a linear, time-varying system by means of a new technique which is
based on tensor p-forms associated with n-dimensional vectors® and the
initial state set (uncertainty) evolution®. It will be seen that the ge-
nerality introduced by this technique allows one to compute te reachable
set for even non-convex, unbounded and non-conne;:ted initial state sets.
At the same time ellipsoids and bolyhedra become only ‘ particular cases
of our method. ) '

We begin our treatment by introducing a ‘set of definitions which
are commonly used troughout the paper. Next we develop some theory con-
ducent to the computation of the reachable vsvet for § linear dynamic sys-
tem subject to initial state uncertainty in the form of a convex polyhe~
dron!3This issue allows us to set the stage for the generalizations to
be introduced lafe_r. At this point a new kind of bi-~linear systems and
their relation with the reachable set computation is established. We,
then, briefly summarize the background related to tensor p~forms closely
following Brockett>’?, Sira!! and Sandor and Williamson'®, Next we pre—
sent a new technique for modeling initial state set uncertainty and com-
pute the reachable set within the permissable generality. The paper ends
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‘with some conclusions and discusions of general nature regarding the re-
sults and future research topics.

DEFINITIONS

Here we present some of the definitions that will be used in the se-
quel, A convex get in R™ is a set vhich contains all the intermediate
bointu connecting, in a straight line, any two points of the set, A
closed set in R® is a set which contains all the limit points of the seét,
A bounded set in R® is a set such that the quantity sup d(x,y) (see fi-
nal section) is finite for all x end y in the set. We ghall usually re-
fer to closed, convex, bounded sets by "ccb" set. A hemispace is defined
as the unbounded set of points in R® which satisfy the linear inequality
defined by: <x, h> < 1. The vector h is known as the gupport vector of
the hyperplane <x, h> = 1 defining the hemispace. A polyhédron is a
cch set defined as the non-empty intersection of a finite number of hemi-
spaces. i.e; a polyhedron is described as: {_x_ e’ <_§,h_i> <1 3 i=1,2,...
N >n } ( Notice that the.condition N > n on the number of support vec=
tors is only a necessary condition for boundedness ). We refer to the set
{Ei; i=1,2,,..N } as the support set for the polyhedron, The support set
completely characterizes the polyhedron. All the polyhedra we deal with
contain the origin as can be easily infered from the defini‘tion.

Given the linar system:

L x(t) = A(Ox(®) + B(D)u(®) (1

we denote its uniqge solution,starting at some time to from the initial
state x and using a forcing function u(t), 0 < t < T, by $(t; :_:o,g(t)).
By  ¢(T; X u(t)) we mean the value of this solgtion at time t =T,
Let }:o be a ccb set in R, We define the reéachable set at time T from

Zo for a given u(t) the set:

o(T; L, _l_l_(t-)) ={ x eR" 1 x = §(T; x ,u(t)) for some x €I }

In other words the reachable set from Xo corresponding to’ u(t) is the
set of all states generated by the dynamic action of the 'systemu on the
set Zo. We ghall simply refer to the "reachable set" when we mean the
definition just presented.

PROBLEM FORMULATION
In this section we define the reachable set computation problem for
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systen (1) vhen the sit I_ is giwen by a polyhedron. This serves two pur-
poses; first we motivate the need for a more general formulation to be
introduced in the next section. Secondly this allows us to call stten-
tion t& a new class of bi-linear systems which bave explicit solution and
surely are systems of independent interest.

Problea 1 .

Given the linear system (1) and a polyhedron 20 given by its support
set { b0} (4=1,2,..0,8 2 n) find the reachable set &(T; I ,u(t)) where
u(t) is a given piecewise continuous function taking values on K and de-
finedon 0<t<T,

8 olution to Problem 1

In connection with the solution of problem 1 we first establish the
following theorem related to the golution of certain bi-linear system.
Theorem 1. Lat £(t) be a piecewise continuousbounded function in R" and
3, known vector.Then the non-linear (bi-linear) system:

e a® = KO0 + <0, LB > a3 ale) =g,

)
has a unique solution at time t given by :
a®) = (- 1L <, 0, )8 @ et )g, (D)
* where.#(t,t ) is the :tnu transition matrix associated with F(t) and '
denotes transpose,
Proof The proof is easily done by direct computation of the time deriva-
tive of i(t) in (3). We shall prove uniqueness by considering the change
of variables z(t) = D(to,t)i(t) . This reduces system (2) to the form
d4/dt z(t) = <z(t), h(t)>z(t) with z(t ) = q(t)) and h(t) = &'(e,t )£(¢)
Uniqueness of 2(t) implies uniqueness of q(t) due to the non-singularity
of the transition matrix. From the Boundedness of h(t) and some elementa-
ry manipulations the function w(z,h) = <z, h> z 4is shown to be a
Lipschits function. Uniqueness follows from well-known results®,
Corollsry 1 The non-linear system:

470 = P (O30 - <x(v), gO> 3 3 y(e) =3,

with g(t) a piecewise continuous bounded functfon has a unique solution
given by:

£ o<y, 0 (080> do )L &
(o) = (1+ t p A €98 (0 ) (t,,t) pA



Proof. Tha proof easily follows from well-known properties of transition
matrices of adjoint systems and some simple calculations.

‘Thegres 2 The reachable set &(T; Zo,gﬁt)) in Problem 1 is a polyhedron
characterized by the support set { gi(r) } (4= 1,2,,..,§ > n ) where
Ei(T) is given by the unique solution at time T of the bi-linear system:

T = - N Oy - < By, BOUD> by(®
By(e)) = by, %)
for all i.

Proof. The solution of (1) has the well known form x(t)= o(¢e,t )x +
Q(t 0)B(0)u(c)do where ¢ (t, t ) is the state transition matrix asso=-
ciated with A(t). At every f1xed moment of time this equation establishes
an automorphism between the set of initial conditions Zo and the set of

states x(t) %, This indicates that the initial state set is affinely
equivalent to the region of reachable states of system (1). This confirms
that these regions belong to the same class i.e; the form of the reacha~-
ble set is uniquely determined by the form of the initial state set Zo.

® the reachable set

Then according to the affine classification theorem
is a polyhedron. Moreover, the interior points of the initial state set
become interior points of the reachable set. The computation of the sup-
port set is as follows: from the variation of constants formula we have
x(t ) = x = ¢(t yDx(T) - fto ¢(t ,G)B(c)u(c)dc . Substituting this va-
1ue in the equatxon for the i-th hemiapace defin1ng the polyhedron E

we obtain the equation which determines the i-th boundary for the reacha-

ble set at time T :

<x(T), 0'(: T)h S 1+ <h, f o(to.o)n(o)u(c)d0> 4 n(T)

using the bi-linear property of inner products we obtain after some other
manipulations:
' K T

< x(1),? (r.o.‘l‘)gio /(¢ 1+ fto< b »8(t ,0XB(0)u(0) > do)> < 1
The result follows from the corollary to theorem 1,
‘Note when 1 + f§° < By ,0(t ,0)B()u(@) > do =0 for some i, this
implies that the i-th hyperplane defining the polyhedron contains the
origin. This hyperplane, however, is still orthogonal to the support
vector O'(to.T) gio « Notice that under the assumption that our pely-
hedra contain the origin, the pessibility mé[) < 0 is precluded. In
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such a case, howsvar, wve can use =(Z) = sgn %(T) |m(T)|. In general, it
is easy to show that the differential equation satisfied by the support
set is: ( sgn m(t) stands for signm function )

%‘:‘31") = =A'(t)h, (t) - sgn m(t)< h,(t),B(t)u(t)> b, (t)

Byt = by
The reachable set is then described by:{ x ¢ 2"t <, b ()> < sgnn(t)
for all 1 } . In this manner we have,thus, relsxed the condition of having
a polyhedron that contains the origin for all time t> ty o
Corollary 2, The reachable set &(T; :o’ 0 ) of system (1) is & polyhe-
dron whose support set {-l-‘—i(t)} (i=1,2,,..N> n) is the unique solution of
the lineay system

—-1.,1(:) - -A'(t)l_li(t) with hi(tp) - 1:_10 )

for each i,

Proof Immediate from the preceeding theorem upon making u(t) = 0, 0<t<¥.
Comment :The corollacy establishes the dual character of the support set
description for polyhedra and their dynamic evolution through linear (un-
forced ) systems., This character,however, does not hold in the general
(forced) case where the governing equation for the support set avolution
is clearly bi-linear, ’

Exssple
Consider the linear system !1 =-=x, !2 - -:1+ u with u(t) =1 for

all te(0,B) and u(t) = -1 for all te (8, T]. Te initisl state

set Eo is characterized by the support set:
h'-(l 1).1\_ -(-l 1), h' = (-1,

(see figure l(n) ).

The reachable set at time T is a polyhedron characterized by the support

set:

-1, hlg= (1,-1)

cosT + gin T = gin T

B (Eonﬂlinmos'r-ain‘t U 2(colB + -:[nB) —cout Setat !
08T + sinT 8inT + cosT

E;(T) = osB olainB)+co|'l\-|in'r b 2-2kosB ¢ l1n8)+cosi-;£n1 )

~cosT ~-ginT 8inT = cosT

osB+ sinf)+cosT™einT * 2- E(coo8+|1nﬂ+ coaTéginT

h"('l‘) -( cosT = 8inT =ginT = cesT )
) Z{cosB -sinBj—-cosT+ sinT * 2(cosf -sinB) —cosT +aial




The representation of this set is given in figure 1(a) for several values
of T. We also represent in fig, 1(b) the reachable set for a fixed value
of T and several values of the switching instant B. Some of the features
indicated in the preceeding note are present in this example,

GENERALIZATIONS

We now present some definitions closely following references °*“?

a3 gg x is an n-vector with components X1sXyseae,X W denote x[p]the
(n+p- ) dimensional vector of p-forms in xl,xz,...,xn (i,e; the elements

[p P,
6f the vector x Jare of the form o TI 38 ST I =P P- >0 and

a= APHICPY o O, ;"'pn-l ) ) 1fy = Ax then y(Ta al1M
1 2 n
is verified and A is the infinitesimal version of A[] ,i.e; A 5 -

1 (] 3 o) impli
™ a0 ((1+ ha) V4= T¥)), Thus d/dt x(t) = A(t)x(t) implies that d/dt

(p] (t) = p (t) x[p (t). Some ugeful properties of the so-called p-
tensor powers are: 1) (AB) (. A[P)B[p] 3 2) (Aq) L ( AU'.’.S)‘:l for q inte-
ger and A% defined; 3) (A')[p]- (A[p])'.

Letma 1 d/dt QXP] (t,to) = A . (t) &Xp] (t,to) whenever iA(t’to) is
the transition matrix associated with the matrix A(t).

Proof x(t) = &(t,t )x then x[p](t) - tb(p](t t ) x[p] Now, z [-P](t)-

d
dat
—6["] (t,t,) ,JP] - Appf® %Plee) = Agf®) ["](t t) xm The result
follows.

Ep n+3—1

Ve denote x(p) ( notice the vector character of p ) the

dimensional vector (1 , x', (x[Z])' H0a00 (x[p]). )'. By extension of the
@ . ,®, 0 (p) &,

above definitioms if y= A x then y where A'Z""is a
block-diagonal matrix of the form diag(1, A, ATZ] [3} 8000 A‘pl). It
is easy to see that if d/dt x(t) = A(t)x(t) then d/dt _:g( P . A( )(t)!_(ﬂ)
where A( is the infinitesimal version of A(-E) and is clearly seen
to be equal to diag ( 0, A, A[z], sy A[p]). We can thus obtain the
following lemma:

Lemma 2 d/dt 0(-2) (t,to) - A( )(t) 0(2) (t,to) whenever Q(t,to) is the
transition matrix associated with A(t).

Proof:The lemma is a clear consequence of the definitions and Lemma 1.

* This motation is not to be confused with the notation for compound ma-
tricesd’® which are defined as the matrices built up of all their pxp
minors ordered lexicographically. This is the reason why we give p a vec-
tor character,



Befinition. A generalized polyhedron is a set of the form:

{za™: q, 285 <1, 1e1,2,00.m)

b, is called a gerieralized suppert vector. The set (31} is the generalized
support set . Note that a generalized polyhedron may well represent a non-

convex, not necessarily bounded set ( even non-connected sets may arise )
in R°, Polyhedra, spheres, ellipsoids, zonoids etc. may be viewed as par-
ticular cases of a generalized polyhedron as we have defined it.

We now formulate an extension of problem 1 with u(t) = 0, The forced case
is not treated here for reasons of space.

Given the linear system i(t) = A(t)x(t) and a generalized polyhedron
I, characterized by the generalized support set {hio }(i=1,2,00., M)
find the reachable get &(T; Eo, 0).

The solution to problem 2 requires use of the definitions and lemmae
previously given, The following theorem is a consequence of this back-
ground material.

Theorem 3

The reachable set &(T; I ,0 ) for problem 2 is a generalized polyhe-
dron characterized by the genetahaed support set { h (T) } (i=1,2,...M)
where l\i('r) is given by the unique solution at time 'l‘ of the linear sys-
tem:

It __l(t) = -A' y (&) hi(t) 5 Bi(e) =h; (6)

Proof: The form of the reachable set is justified by the arguments given
~ in the proof of Theorem 2 in the previous section. The computation of the
‘ generalized sup,aort set is ag follows: &(T; I ,0) ={x eR™: x -O(t,to)_:_to

for x € I, } ={x er” -¢(t°.t)x eI )= {x eR™: <(¢(t Lt)X) ® » by > <1 for

1 1,0,000 M} = {x eB® 1< x® o'(B)(c WO o> < 1 1m1,2,.00M). Let-

ting h (t) = O'G) (t t)h , the result follows from Lemma 2 and well-

known propert:.es of tme denvative of an inverse matrix.
The preceedihg theorem is a useful generalization that we illustra-
te by means of the following example:

Example

Congider the linear system: il- x, 3 ;2- u, with u restricted to-be
zero after some given time T and also [u(t)] <1 for 0 <t < T, As=
suming x1(0) - x2(0) = 0, we are asked to find the reachable sgt for all

t> T,

684



Applying Pontryagin's Maximum principle“ it is easily found that the
reachable set at time T is a parabolic zonoid ( intersection of two para-
bolic regions ) which we can characterize as a generalized polyhedron of

2 (2)

thefom:{gekxgi,r,z > <1 ;i=1,2}) where:

by = @17, -2/1, 0, 0, 117 ) ; hl.=(054/17,2/T,0,0,1/1%)

T=
The set of reachable states for t > T is also a parabolic zonoid charac-

terized by t}{e support set:
b1, =(0,6/7 fo/TX1-0)-2/1,0,0,1/1%) ;
By, =(074/T% k-4 /TT-£)42/1,0,0,1/1%)

Figure 2(a) and (b) show the reachable sets before and after t = T

The following'is a particularization of Theorem 3 :
Corollary3 If the set Zo is characterized by a homogeneous p-degree
form in the state variables: {xe " <%y i[p]>£ 1; i=1,2,,,M} = Eo,
then the reachable set is also characterized by an homogeneous p-degree
form with support set hi(t) given by the unique solution of the system:
d/dt _Ili(t) - -Aipl(t) hi(t) with _b_i(to) = 1\_10 for all i,
Comment: Notice that for the ellipsoidal case in which these sets are
usually represented by {xe R": <x, F x> < 1 l}*there is only one generali~
zed support vector of dimension n(n+1)/2 obtained from the matrix F. For

this we define a lexicographic map A : R Rn(n+1) /2 determined by
£ ) then

AP = (fll’flz""'fln’f22'f23""’f2n'""fn-l n-1 *"n=l n’ nn

the ellipsoid is also characterized by {xe R2 : <A(F), 1‘2]>;<_ 1},

Comment: One of the difficulties of the set-theoretic approach in charac-
terizing uncertainties in the form of ellipsoids is constituted by the

fact that the intersection of two e1lipsoids is not an ellipsoid. Approxi-

mations are then necessary'® in the form of ellipsoids. Our approach
allows us to deal with this reallistic fact without approximations, The
intersection of two ellipsoids E1 = {E t <x, Fl x> <1} and E2 ={ x @
<, F,x >< 1 } is simply expressed by { x i<h, ,x><1 3 1=1,2}

where hl - A(Fl) and hz = A(Fz) .

CONCLUSTONS

In this paper we have introduced a new technique for uncertainty
modeling in a set-theoretic fashion. The generality allowed by the method
makes it no longer necessary to restrict the uncertainty sets to ellip-.

* F is a symmetric,positive definite matrix,
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soids and polyhedra., Possibilities for modeling a larger class of sets
are thus open vhile mantaining the inherent linearity characterizing the
system under study. It has been shown that the evolution of the initial
state set uncertainty represented by a rather general set can be computed
in terms of the evolution of its “generalized support set" through a
linear "p~tensor" system associated with the dynamical systems where the
uncertainty has to be considered. The paper also introduced a new kind of
bi-linear systems of independent interest but here adscribed to reachable
set computation for a forced linear svstem with set-constraindd initial
astate,

A generalization of theorem 3 for forced systems has been worked out
by the author in an unpublished manuscript. The forced case entails a
good deal of definitions which could not be presented here. Extensions of
these results to discrete time-linear svatems appear to bring a simply-
fying development into the picture, Another useful generalization to the
results here presented is represented by the inclusion of generalized

bounds on the forcing term u(t) (i.e; generalized polyhedron ).

IST OF SYMBOLS

——

{} denotes @ A get
€ belonging to...
<, > Inner product
¢(t.t°) Transition matrix
o(T; Eolg(t)) Reachable set at time T from the ini-
tial state set Zo with forcing func-
tion u(t)
M Transpose of the matrix M
) definition
1 l Absolute value
é Time derivative of x
(:) m! / ni(m-n)\
ELP] p-tensor form associated with x
.5(2) family of j—tenéor forms associated
with x for j =0,1,...,pP
sup a(x,y) suppremum of the distance between X

am Y
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