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ABSTRACT

This paper presents a Carleman's linearization based method for obtain-
ing arbitrarily close approximations to the feasible region of non-linear
time-varying feedback control systems. The set of feasible states is charac-
terized as a Generalized Polyhedron [15] whose support vectors evolution
equations are explicitely established. Examples and implications of the re-
sults are included.

I INTRODUCTION

The set of feasible states for dynamic unforced systems is defined as
the set of all possible solutions of the systems differential equation, at
certain prescribed instant of time, arising from every initial state con-
fined within the bounds of a compact set in the state space of the system.

Thus far, the studies dealing with the feasible set have been restric-
ted to the linear case ( Witsenhausen [1], Podchukaev [2], Sira-Ramirez [3])
and as initial state sets only ellipsoids and polyhedra have been considered
{Schweppe [41, Hnyilicza [5], Bertsekas [6]). As applications of the feasi-
ble set concept, authors ([4],[5],[61, Schlaepfer [7], Sira-Ramirez [8])
have defined estimation and control problems from a non-probabilistic frame-
work whose importance in applications is the basis of currently on-going re-
search ( Barmish [9],[10]1,[111,[12], Schmittendorf [13], Chukwu [14]).

This work tries to lift the linear case, as well as the ellipsoids and
polyhedra,restrictions on set-theoretic uncertainties evolution problems by
proposing the use of Carleman's linearization technique for feasible set
computation on a class of non-linear amnalytic feedback systems. The techni-
que allows arbitrarily close approximations to the feasible region of the
non-linear system by considering the feasible set of a high-dimensional 1i-
near system with sparse system matrix.

Section II presents some basic definitions related to tensor powers of
n-dimensional vectors, families of tensor powers, their use in defining Ge-
neralized Polyhedra (GP) as well as some other basic results regarding asso-
ciated tensor systems to basic linear systems. (See also Brockett [19],[20])
This section contains a basic theorem due to Loparo and Blankenship [18]
which constitutes the essence of later results about feasible regions of
non-linear analytic feedback systems.

Section IIT deals with the basic problem treated in this paper, namely
to determine the feasible region of a non-linear analytic system whose ini-
tial state is characterized by a GP ( See also [15], [16] ). This problem is
readily solved using Loparo's and Blankenship result. The evolution equa-
tions for the Generalized Support Vecotrs (GSV) defining the feasible set
are obtained via standard linear techniques.

Section IV discusses the implications of the results in set-theoretic
estimation and control problems for non-linear systems. Some suggestions for
further research are given at the end of this section.

1T BASIC DEFINITIONS AND RESULTS

In this section we present some definitions which can also be found in
[151,116], and [19]. ip]

If x is an n-vector with components Xy,X,,...X, we denote x*'° the
(mp_l)-dimensional vector of p-forms in  X4,X;,...X, (i.e the elements of

of §[p] are of the form : o H.11=n1 xipi withZp; =p:i pi 20 and
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If y = A x then y[p]= A[plg[p] is verified and A{‘ ]denotes the infi-
nitesimaI version of X[p]’ i.e d/dt x(t) = A(t) x(t) iglplies d/dt ilp](t)
= A o (t) x[p](t) . Some useful properties of these ''tensor powers' are :

1) an) Ple aPIEIPY: 5y (a8 TB). (A1P1Y yhenever AQ is defined and q
is an integer. 3) (A')[p]= (A[p])'

Lemma 1 d/dt ¢A[p](t,t0) = A[p]“’A[p](t’to) whenever 9, (t,t;) is the state
transition matrix associated with A(t) .

A proof of this simple fact can be found in [15].

We denote 5(2) (notice the vector charaéter of p ) the (m'p)-dimensio-
nal vector ( X (_35[2])',...,( g[p])' )' (We also call this vector the p-th
family power of x ). By extension of the above definitions if y = A X then
y(_p.) = A® 5(2) where A® is a block-diagonal matrix of the form:

Eiag [ A, A[Z], ceey AlP! 1. It is easy to see that if d/dt x(t) = A(t)x
then d/dt x® (1) = A (1) xB) (1) where A (1) is the infinitesinal
version of AP (t). — L

The following lemma extends the previous one to the case of p-th family
powers of state transition matrices for linear systems.
Lemma 2 d/dt <1>A(E) (t,tg) = Ag,y ® ¢A(E) (t,tg)

Definition 1 A Generalized Polyhedron (GP) is a set of the form:

{xeR? :<hy, 3(_2) >< 1:i=1,2,....M }
h; is called a generazlized support vector (GSV). The set {hy: di=1,2,... M}
is the generalized support set. Note that a GP may well represent a non-
convex, not necessarily bounded set. Polyhedra, spheres, ellipsoids, zo-
noids, etc. may be viewed as particular cases of GP
Definition 2 Given the linear system: d/dt x(t) = A(t) x(t) we denote by
£(t,xq) the trajectory starting from X, . A state x(T) is said to be x4-
feasible if _!_-;_(T,)_(O) = x(T) for a certain T>0 . Let 20 be a closed set in
Rn, we define the Zo-feasible set (region),for the given linear system, at
time T the set @ {xeR': x = £(T,x;) for some X, e I, } . We denote
this set by - &(T, ):0) . The Zo-feasible set at time t is then the set of all
X,-feasible states at time t for all x e I '
Proposition 1 The I,-feasible set for the linear system d/dt x = A(t) x
is a GP characterized by the support vectors hi(t) s i=1,2,...,M", whene-
ver I, is a GP characterized by the GSV h., . Moreover h; (t) is given,
for each i , by the unique solution at time t of the linear vector differen-
tial equation: d/dt }—li(t) = - A'(p) (1) h_i(t) with b_i(to) = }_110
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Proof The form of the I,-feasible set follows from the affine classifica-
tion theorem [10]. The computation of the GSV of £(t,Z,) is as follows :

é(t,Zo) = {EeRn tx=9% (t,to))_(o for all x4 e ZO 3= {g(_sRn: ¢A(t0’t)5EZO}
=4 {xeRn:<(<I>A(t0,t)5 )(3 » hyg > <1 ; for all i }. Letting h,(t) =

@1'\@ (to,t) -}lib we have  E(t, Zy) = {xe g <§(R), Lli(t)> <1 forallil
The result follows from the definition of hi(t),lexm\a 2 and well known pro-
perties of time derivatives of an inverse matrix.

Definition 3 Let f(x,t) be an R'-valued uniformly bounded analytic func-

tion of x and piecewise continuous in t. Then we can express f(x,t) as an
infinite series in terms of the tensor powers of X . Furthermore if £(0,t)

= 0 for all t, then the series takes the form £(x,t) =Zk°=°1 Fk(t) 5[ ]
Definition 4 Let d/dt r(t)= ) O_fz Fk(t) .r[k] (t) then for any k>0 we have:
d /dt _‘I_"[k] v =7 52ke1 Rkj z[J (t) and thus Rkj are implicitely de-
fined.
Theorem 1 (Loparo and Blankenship {18])
n

Consider the non-linear system d/dt x(t) = f ( x(t), t ) with xjeR
with f as in definition 3,and let e> 0, T < be given. Then the non- inear
system has a unique continuous solution and there exist an integer p =
p(E,T,)_(O), a linear map Ap such that the unique solution of the linear

differential equation:

% Zp(t) =Ap(t) Xp with Z_p(0)= )_c(()E) and :
F, (t) Fz(t) F3(t) ..... F (t)
0 F1[2](t) st(t) Rzp(t)
% = [ 0 F1[3]f_t).... RSp(t)
0 [ F t)
i 1lpl(

satisfies the property:

sup || x(0) - X, (Ol < ¢
0 <t<T

where §p(t) =[Imm:Q] Xp

Proof The proof of this theorem can be found in [18] in complete detail.

In essence the theorem guarantees that for a large class of non-linear
analytic systems, we can always find a sufficiently close approximation by
finding the solution of a high dimensional linear system whose parameters
are computable in terms of the coefficients of the Volterra series expan-
sion of the non-linear map. The forcing initial state is related through a
tensor power to the original initial state of the nion-linear system. The
projection of the trajectory solution, for this high dimensional system, into
the original state space produces the desired approximation. Loparo and
Blankenship [18] utilize this result for estimating the domain of attraction
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of non-linear feedback systems.
II1 FEASIBLE REGIONS FOR NON-LINEAR SYSTEMS

In this section we make use of Loparo's result to approximate arbitra-
rily close the feasible region of a non-linear system whose initial state
is bounded by a compact GP. The theorem given in this section is a simple
generalization of theorem 1 and follows from the results in section II.

Consider the non-linear system:
X = £0x(®), t) with xge 5 (3.1)
where Zo is a compact GP defined by:

po=ixeR: <x @ cniim2, M (3.2)

Then the I,-feasible set at time T can be approximated to within a desired
error by “utilizing the result of theorem 1 since each and everyone of
the feasible trajectories arising from an initial state in Z, can be appro-
ximated. The set of all the approximating solutions at time T, constitutes
an approximate representation of the feasible set originated by Iy

Theorem 2 Consider the non-linear system (3.1) with f as in def1n1t10n 3
and the initial state x, confined within the bounds of a compact set des-
cribed by (3.2). Then set:

(xef: <x® 5 .M> < 1;4=1,2,..., M } (3.3)

where (T) is given by the unique solution at time T of the linear dif-
ferentﬁi equation :

S50 =- AW B with B0 =lhi5 01 (3.0)

p= p(e,T,ZO) (with € a prespecified approximation error) > q
p=q if p(e,T,I)) <q

approximates to within a desired € the I,-feasible set of system (3.1) sub-
ject to initial state constraints of tvpg 3.2).

Proof T’heorem 2 is a direct consequence of Theorem 1 established by Lopa-
70 and Blankenship. It should be noted however that because of the possible
difference that may arise among the parameters p(e,T Zo) and q, one should
always choose the greater,so that (3.4) always makes sense and the spe-
cified error can even be made smaller. Notice that p can also be considered
as a function of each index i. It is not difficult to see that among all
possible support vectors defining the initial state set, one should choose
as a value of p that which is rendered maximum as a function of the support
vectors considered one by one.

Even if the initial state set is not a GP, as often occurs when tras-
cendental functions are used to define such sets, it can be shown under
certain mild conditions that these can also be approximated by a GP to
within an e. Obviously in such cases our approach would require a. - se-
cond approximation to the problem of finding a description for the ZO-fea-
sible set.

We now present some simple examples which underline some of the sa--
lient features of non-linear maps, induced by non-linear systems, on com-
pact, convex sets. It will be seen how convexity is destroiedby the action
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of a non-linear map.
Example 1 Consider the following simple non-dynamic example given by the
action of a non-linear map on a convex polyhedron.

Let: 2 and the set:
V15X 4% » °3 .
y, =2 x, { xeR": . <x, hp> <15 i=1,2,3,4}

with: h'l = (1,1 ; hi (1,-1)
h';

G, D By = (1,-1)

Fig. 1 shows the first and second order approximations to the set into which
the polyhedron is mapped by action of the mon-linear relation defined above.

The above example clearly shows how convexity of a compact set is eli-
minated by a non-linear map even in the simplest case of non-linearity .
The Carleman linearization approach for this example rapidly renders an ima-
ge which is practically impossible to differentiate from the actual exact
image set.

Example 2 Consider the Van der Pol differential equation:

X'+ x - (1-x2)x'=0

which can also be written in state space form in the usual way :
i !
5 2
X, = - X+ (1- X] )x2
Suppose we are given a set of initial states represented by the umit

circle:
2 2
xp v x; <1

which is a Generalized Polyhedron in R2 with support vector given by:
hj = (0,0,1,0,1)

The feasible set can then be easily computed using our preceeding ap-
proach by succesive approximations, i.e with p= 2,3,.. , for a certain
prespecified terminal time T. The first approximation to the reachable set
(p=2) turns out to be an ellipse while from the third approximation on, we
obtain a figure closely resembling the limit cicle contour. The procedure
is easily implemented on a digital computer given the linear nature of the
equations. Figure 2 gives an idea of the shape of the feasible set for the
Van der Pol system. The non-connectedness of this set is clearly shown in
this figure.

The above examples show how convexity and simple connectedness of a
compact initial state set are lost by the action of non-linear maps either
generated or not by a non-linear differential equation. However, it should
be emphasized that this need not be the case in every situation. The follo-
win example indicates that in certain case these two important features of
some sets, could be preserved by the action of the non-linear system.
Example 3 The second order equation:

y"+ay+by3=0 R with a>0, b >0
can be rewritten as a system :
y' =x 3
x' = -ay - by
It is easy to see that the initial state set x2 + yz < 1 generates ,
afeter a sufficiently large time, a feasible set represented by the region:

nou
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x2+ay2+ %—by4 < X

which is a convex, connected region closely resembling an ellipse.

IV CONCLUSIONS AND SUGGESTIONS FOR FUTURE
RESEARCH

This paper has examined an approach for computing the feasible regions
of a non-linear analytic system. The approach is based in a Carleman's 1i-
nearization technique and it only involves computations associated with
linear dynamic systems for which a vast amount of computer based resources
are readily available. The drawbacks of the method rely on the fact that a
high dimensional linear system has to be solved for obtaining the required
approximation, On the other hand the computations associated with this lar-
ge sistem are substantially facilitated due to the sparse nature of the sys-
tem matrix (tipically a 20x20 matrix generated by the procedure, contains
only about 70 non-zero elements ). o

The results outlined in this paper have implications in several areas
related to the study and control of nori-linear systems. First of all, the
computation of the domain of attraction for non-linear systems{[18]) can be-
nefit from the introduction of the idea of starting directly with a genera-
lized polyhedron as an intial guess for this region. This paper has shown
that the hansling of such sets is mathematically convenient and requires no
substantial extra effort.

The feasible set concept has, by itself, a number of implications in
set-estimation and set-control problems. This paper simply widens the range
of applicability of the theory by demonstrating that closely enough approxi-
mations can be worked for "modified target sets', "attainability sets'' etc.
(See [ 6] ) related to set-reachability problems associated with non-linear
systems.

The method allows for research into the field of target set reachabili-
ty problems by non-linear feedback systems. Approximate control strategies
can be obtained by considering parametric control of the linear approxima-
tion system when the feedback map is included explicitely in the original
non-linear equations. ( See [18] for this simple extension ).

The idea of utilizing Generalized polyhdera in some of the existing
problems related to set-theoretic estimation and control should be persued
further due to the flexibility that these sets offer for the handling of the
mathematical equations.
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