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ABSTRACT

Fuzzy sets are considered as a modeling device
for initial state uncertainty in linear dynamic sys—
tems. Several linear operations on fuzzy sets are
considered and their influence on the membership
function. Linear dynamic systems with fuzzy initial
states are then analyzed and the membérship function
evolution equation is derived for the characteriza-
tion of the fuzzy state at some final time, Fuzzy
inputs are also considered and their influence in
the set of feasible fuzzy states is established. We
obtain a characterization of the set of possible
fuzzy states and the implications of this result in
fuzzy objectives (targets) reachability problems.

I INTRODUCTION

The purspose of this paper is to introduce and
develope the fuzzy set philosophy within the context
of linear dynamic systems analysis and design. We
use fuzzy sets as a modeling mechanism by which ini-
tial states, external signals and objectives of im-
precise nature can be conveniently’ expressed. This
article constitutes a sort of generalization of the
set-theoretic technique for uncertainty handling (
Schweppe [1], Bertsekas [2], Witsenhausen [3], Sira-
Ramirez [4]) and set-valued objectives approach to
control problems. We utilize fuzzy sets as a way of
expressing a subjective knowledge of the initial
state variables and external signals affecting the
system (i.e statements of the form: " the first
state variable, displacement, is rather small while
the second, velocity, is too big at the starting
time..." or, " we propose to use most of the con-
trol power at the final phases of the manuver..”
are frequently used in practice to describe the sys-
tems state or the control policy ). We compute the
evolution of the fuzzy initial state set through
the state space, i.e we obtain the description at
some time t, of the fuzzy state set generated by
the dynamic actiom of the system on the initial
states whose only description is represented by a
fuzzy set. The membership function of the set of
feasible fuzzy states is characterized in terms of
the system dynamics and the non-fuzzy (i.e "crisp"
) influence of external control signals. This simple
‘characterization of the feasible states is the ba-
sis for further developements in the area of fuzzy
estimation and reachability of fuzzy objectives in
linear dynamic systems subject to the action of
signals specified only by its membership value func-
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tion in a fuzzy set. Although fuzzy sets have been
introduced with the purpose of describing impreci-
sion rather than uncertainty, (Zadeh [5],[6]) it is
however important to realize that a large class of
"uncertainties" affecting the performance of linear
dynamic systems belong to the one describable by
means of fuzzy sets. An experienced designer or
plant engineer has always an intuitive feeling for
the noisy signals and values of the state at a par-
ticular pont In time of the operation of the system.
It is therefore possible to prescribe a fuzzy set as
the only available knowledge of the external per-
turbation signals and initial states.

In a large class of systems described by dyna-
mic equations, the objectives at a given point of
the planning horizon is better expressed by a gene-
ral and vague statement. This 1s particularly fre-
quent in systems where human actions are included,
i.e socio-economic systems, ecological systems, etc
Rather often a policy maker establishes a desired
goal of, say, the economic system with statements
such as : " We are trying to keep inflation £ow for
the next ten years" or., " this policy will in-
crease labor supply hather abuuptly at the end of
the economic term.,." etc. Even in mechanistic sys-
tems, it is often desired to keep certain variables
within qualitative bounds expressed by objectives
which are best modeled by fuzzy sets at certain
point in time of the systems evolution. A typical
example would be: " For pipe capacitances small e-
nough we want exit benzene temperature fow for
naplid variations of toluene flow rate..." etc.

It is noteworthy that fuzzy theory has rapidly
evolved in directions out of the control systems
discipline ( Cognitive processes, Grammar, Graph
theory, Risk Analysis [7] ) while the question of
utilizing fuzzy sets as a way of describing ill-de--
fined (poor) knowledge of variables, signals and
objectives for dynamic systems has been largely un-
explored., This paper represents initial steps in
this direction.

In section II we introduce some of the basic
definitions, notation and results to be used in the
rest of-the paper. One of the modest comtributions
of this part is the introduction of the concept of
"vector sum" of fuzzy sets as a generalization of
the counterpart operation for "crisp" sets. In this
section we present all the appropriate algebraic
machinery concerning operations on fuzzy sets. This
operations will arise in the processing of the fuzzy
information available by the dynamic action of the
gystem., f.e linear transformations, crisp transla-
tions, fuzzy translations, addition etc. of fuzzy
sets (See also [8] for other types of operations).
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Section III presents some results related to
the evolution of fuzzy sets through linear dynamic
systems. It is also analyzed here, how the formulae
can be exploited to treat fuzzy estimation problems
fuzzy objectives reachability and perturbed reacha-
bility of fuzzy objectives. It 1s concluded that a
fuzzy set reachability problem generates a crisp set
reachability problem for which a good amount of 1i-
terature is already available ( Bertsekas and Rho-
des [9], Delfour and Mitter [10], Sira-Ramirez [4]
[11],[12] ) .

Section IV presents some simple examples of

fuzzy sets evolution through linear dynamic systems. ,

Section V provides some conclusions and sugges-
tions for future research. Some works related to
this article and references here cited are listedat
the end of the paper.

IT DEFINITIONS AND BASIC RESULTS

In this section we introduce the basic notation
and definitions which will be used throughout the
paper. Some of the basic results are also gtated in
the form of propositions.

Definition 1 We denote a fuzzy set A with member-
ship function y,( ) defined over the universe of
discourse U in tﬁe n-dimensional euclidean space R
as:

A= Sy @/u (2.1)
U

A non-fuzzy set will be térmed "crisp". Its mem~
bership function has value 1 over the whole domain
of the set.

A straightforward application of the "extensim
principle"” [6], allows us to define linear transfor-
mgtions s crisp tramslations, etc. of fuzzy sets in
R,

Definition 2 We define a crisp translation of a
fuzzy set A in the direction of the vector v, asthe
fuzzy set given by:

J
AD

AD1/v (2.2)

B (u-v)/ u
Vi

where A stands for the support of the fuzzy set A
(i.e the set of points where the membership function
of A is not zero ).'"®' denotes vector sum [1].

As a generalization of the preceeding defini-
tion, consider the fuzzy singleton v with member-
ship function W, (v) 1.eB ="{1,(W/ v 1.

Definition 3 A fuzzy translation of the fuzzy set
A in the direction and extent of the fuzzy singleton
B defined above, is defined as a fuzzy set described
by:

A @ (/v} = A@fv[uA(g-x)A v Vo
- (2.3)

where the -symbol "A" stands for the minimum of the
two function values specified to its sides.

As a further generalization of the previousde-~
finitions we introduce now the difect sum or "vec-
tor sum" definition of two fuzzy sets., This defini-
tion genmeralizes that of the vector sum of twocrisp
gets. (We define the vector sum of two crisp sets M
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and N as the set of elements which can be expressed
,non-uniquely, as the sum of elements in the sets M
and N respectively )

Definition 4 Let A be a fuzzy set with compatibili-
ty function yu, ({.e membership function) and simi-
larly, let B Abe a fuzzy set characterized by Vg *
We define the vector sum ( or direct sum ) of A

and B as the fuzzy set specified by:

J
A®B

ADB = supl W, (w-w) A 10 1y
y

(2.4)

whera A @ Bdenotes that the universe of discourseis
the vector sum of the crisp sets that serve as sup-
ports of the fuzzy sets A and B respectively.
The "sup" operation is necessary to eliminate the
possibility of having ill-defined membership values
for those elements that can be expressed in a non-
unique fashion as sum of elements in A and B. This
supremum operation usually results in a maximiza-
tion operation. "

The above formula (2 4)constitutes a natural "
convolution operation" on the membership functions
of two fuzzy sets. Naturally, this definition in-
cludes the case where A and B are crisp sets.
The formula (2.4) is, not surprisingly, reminiscent
of that which establishes the probability density
function of the sum of two independent random va-
riables. Note also that the roles of u and v can
be interchanged.

Remark 1 It is a basic principle that the result
can never be more precise than the data. Equally
true, the sum of two fuzzy sets can not be a crisp
get. This obvious fact is easily established by ins-
pection of formula (2.4) .

Definition 5 Let A and B be two fuzzy sets with
membership functions Wy and uB. The Pontryaguindif-
ference of A and B 18 = defined as a fuzzy set C
such that B@C = A , We often refer to this set C
as the difference of A and B and denote it by A(©B.

Remark 2 Note that according to remark 1 it is not
always possible to define the Pontryaguin difference

of two sets. For instance suppose A is crisp and
B is fuzzy. There is no fuzzy, or crisp,set C which
added to B reproduces A. As a simple example consi-
der the question of finding the set of numbers such
that when added to those cfose £o zero result in the
set of numbers exactly between zero and one. It is
therefore a necessary condition for the existence
of A B the existence of the support set C=AQ® B,
but it is not sufficient.

As a simple application of the extension prin-
ciple introduced by Zadeh [6], we define now the
direct and inverse images of a fuzzy set A in RD
under a linear transformation.

Definition 6 Given a non-singular linear transfor-
mation P , and & fuzzy set A with membership func-
tion Uy, We define the direct image under P of the
fuzzy set A, the fuzzy set given by:

P = Sl u) /e (2.5)
P(A)

This simple result allows for the characteri-
zation of fuzzy initial state set evolution in 1li-
near dynamic systems. )



Definition 7 The inverse image of a fuzzy set A,
with membership function u,, under a linear map Q,
not necessarily invertible, is the fuzzy set des-
cribed by means of: ;

-1
) = f u(qw (2.6)
QM) A

The inverse operation above on the linear map
Q 1s only notational. Sira[4],[11],[12] shows that
the actual inverse never needs .be computed for the
case of crisp sets such as ellipsoids, polyhedra
and Generalized Polyhedra.

I FUZZY SETS AND LINEAR DYNAMIC SYSTEMS

In this section we shall analyze the evolution
of initial state fuzzy sets due to the dynamic ac-
tion of linear time-varying continuous systems
whose state is described by a vector differential
equation of the following type:

d

e X(6) = A(D)x(t) + B(t)u(r) 3.1)
with X € Xo

where "¢ " denotes fuzzy membership to the fuzzy
set Xo characterized by Mo -

We shall study the structure of the setof pos-
sible fuzzy states at a later time t > t, and infer
from this structure a possible way of cogtrolling
a system to attain a fuzzy objective prescribed at
some time T in the planning horizon.

Proposition 1 Given a linear dynamic system des—

cribed by (3.1) with X, a fuzzy set as above, re-
presenting all availablé knowledge of the initial

state x(t,) = x,. Then the set of feasible states
at time t, is a fuzzy set characterized by a mem-
bership function ut given by:

M = Hg (0 HE, £ mv)) (3.2)°

where ve ftt ¢(t ,0)B(0)u(0)do
0

i.e the set of fuzzy states gt time t is a linear
transformation of a translation of the initial
state fuzzy set, The transformation is determined
by the state transition matrix ¢(t,t0) and the
translation {s defined by the history of the con-
trol signal u(t) in the interval [¢t.,t].

The proof of the above propesition is an in-
mediate consequence of the definitions in the pre-
vious section and the fact that the solution of
(3.1) is given by the variation of constants for-
mula (Brockett [13]. !

The open loop control signals wu(t) are seen
to affect only the position of the set of fuzzy
final states of the system. The signals do not in-
fluence the shape of the membership function u,.
This fact is important in establishing a relatgon-
ship among fuzzy objectives reachability problems
and target get reachability problems. We shall deal
with these problems later in this section.

As a corolary to the above proposition, if the
1linear system 1is: )

d .
3 X(t) = A(t) x(t) with x5 € ¥,y

then the set of possible states X(t) is given by:
X(©) = S ug@ e, ex) /x (3.3)
T
R

We shall now treat the problem of obtainingthe
description of the fuzzy set of final states when
the signals affecting the behaviour of the system
are of imprecise (fuzzy) nature,

Consider the system described by (3.1) with
u(t) being a vector at time t, whose only descrip-
tion 1s given by the fact that it belongs to certain
prescribed fuzzy set ( . If additionaly our dynamic
system has an initial state described by a fuzzy set
then the set of fuzzy reachable states at time t is
also characterized by a fuzzy set. Let L(u) denote
the linear operation defined by:

L@ = 7, o(t,00B(0)u(0)do (3.4) -
0 :
where &(t,0) is the state transition matrix asso-
ciated with A(t). Brockett {13] shows that the ran-
ge spaceé of L( ) coincides with the range space of
a so-called Gramian matrix W(t ,t). The null spaces
of both operators also coincide. We can construct
then a matrix V whose columns constitute an ortho-
normal basis for the range space of W(t,,t). There-
fore the solution of (3.1) can also be éxpressed in
terms of the matrix V(t) as:

x(t) = (r,epdx, + V(t) y

where y 1s uniquely determined by wu(t) whenever the
Gramian matrix W(to,t) is invertible (i.e the sys-
tem is controllable ). Corresponding then to the
set of fuzzy controls § we can find a set ¥ of
fuzzy character where the variables y exist. The
problem of computing the fuzzy reachable set is
then reduced to compute the support and membership
function of :

X(t) = <1>(t,t0)x0 @ v(t) ¥ (3.5)
This can be done by using the formulae developed in
the previous section for linear transformations and
vector addition of fuzzy sets. Formula (2.5) should
use the pseudo-inverse of the matrix V(t) for the
case we are treating.

The following proposition summarizes and con~
cludes the discussion above for the case of control-
lable linear systems.

Proposition 2 Let Xy be a fuzzy initial state set
and Q a fuzzy set of external influences to the
linear dynamic system (3.1). Then the set of reach-
able fuzzy states X(t) is expressed, whenever the
system is controllable, as:

(3.6)

X(t) = 8(t,£0)X) @ 8, £ IW(E, )8 (t,t)0

Where O is the Inverse image fuzzy set of  under
the linear map B'(t). W(to,t) is given by:

W(ty,t) = s (t(,0)B(0)B' (0) 0" (t,0)d0
t

0 (3.7
Proof The proof of the proposition follows from
the preceeding discussion and the fact that the
reachable set for (3.1) can be expressed by elements
of the form &(t,t )30 + Q(t,to)w(t »t)n where 1
is related to u by means of u & B'( )¢'(t0,t)ﬂ (See
[13] ).



We now turn to the formulation of fuzzy target
(or fuzzy objective ) reachability problem for a
linear system such as (3.1).
Formulation of Fuzzy Objectives Reachability Problem

Suppose we are given a linear dynamic system
described by a vector differential equation (3.1),
with a fuzzy description of the initial state repre-
sented by a fuzzy set X .. We are also given g fuzzy
set specified at a particular time T>t,. We
are asked to find conditions which will ensure the
existence of a control signal, or at least a fuzzy
set to which it may belong, such that the fuzzy ob-
jective is reached by the system state at time
T. The control signals are bounded by a crisp set Q.

We understand that the reachability of a fuzzy
objective by an essentially fuzzy state means that
the fuzzy set containing the fuzzy state is included
in the fuzzy objective. i.e from a fuzzy set-theore-
tic viewpoint, the membership function of the set
of fuzzy states has to be less or equal than the mem-
bership function of the fuzzy target set.(See [6] )

Let u, be the mewbership function character-
izing X, and let y . be the corresponding function
for the fuzzy set . Then the application of a
control policy wu(t) on the system renders a set of
feasible states of fuzzy nature at time T which is
expressed as @

X1 = a0 T,e) x -v(D)/x (3.8)
RN
where v(T) is the unique solution at time T of the
differential equation:
22 9(0) = AD) ¥(©) + B(Ou(e)
¥(tg) =0
Consider the crisp set:

3.9

R(D = (veR™ w00 (x-v) < w® }
The following proposition establishes that a
fuzzy objective reachability problem for a linear
system generates an equivalent target set reacha-
bility problem.

Proposition 3 The fuzzy objective reachability pro-
blem defined above has a solutfon if and only if
there exists a control signal u(t) in Q , such
that the target set R(T) 1s reached by the state
of system (3.9) at time T.

Proof The proof of the proposition is immediate
from the preceeding discussion and definitions.

The preceeding Target Set Reachability problem
has been treated by several authors. (See for exam-
ple Delfour and Mitter {10], Barmish and Schmiten-
dorf [14], Barmish, Flemming and Thorp [15], Chukwu
and Silliman [16] and others [4],[9],[11] and [12])

Notice that the existence of a crisp set R(T)
as defined above is a necessary condition for the
existence of golutions to the fuzzy objectives
reachability problem (FORP).It is clear that such_
condition is non sufficient due to the fact that
(3.9) might not be controllable to the target R(T)
in case the set exists.

Consider now a perturbed system described by
the vector first order differential equation:

= x(6) = ADX®) +BOUE) + 6(Ou(®)
(3.10)
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with x, € X, and w(t) € @ for all t. A problem
similar to tge FORP can bé defined for this per-
turbed case. The signal w(t) acts as a noisy input
to the linear dynamic system whose only description
is represented by the fuzzy set Q  with membership
function ug. As before we set as an objective for
the perturbed system (3.10) the reachability of a
fuzzy set XE at certain time T. The control signal
u(t) is bounded by a crisp set Q .

It 1s not difficult to see that the above pro-
blem, which we shall refer to as the perturbed fuzzy
objectives reachability problem (PFORP),can be re-
duced to a simple FORP where the fuzzy objective
has to be modified by the influence of the fuzzy in-
put signals in the final reachable set.

Suppose we denote by Rw(T) the fuzzy feasible
set of the system:

2 20 = AR + cOu®)

~ 3.11
R =05 wle) e o S5
then the PFORP is equivalent to the following FORP
(unperturbed) :

Find a control signal within Qu such that the
fuzzy state of the system:

32 x(t) = AR(E) + B(D)u(t)

x(tg) £ X

(3.12)

belongs to the fuzzy set L0 Rw(T)'

In turn then, a PFORP is reduced to a Target
Set Reachability problem. The Pontryaguin differen-
ce set of the sets X, and R (T) has to exist for
the problem to make sénse, we suppose that the dif-
ference set exists i.e the fuzziness present in the
noisy signal w 1s not as large as to totaly pre-
clude the state objective to be recognizable. As
before the fact that the modified objective is re-
cognizable does not guarantee that it is reachable.

Since the PFORP is equivalent to a FORP we
shall indicate how to find a fuzzy set of control
strategies for a FORP. First let us introduce a de-
finition.
Definition 8 Let V(t) be a matrix whose columms
form an orthonormal basis for the range space of
the linear operator defined in (3.4), Then the set
of fuzzy feagible translations for the FORP defined
above is given by:

t= VI x00mex, 100 (3.13)

i.e the set of fuzzy feasible translations is the
inverse image under V of the difference of the
fuzzy objective and the initial state evolution.
The translatiors must also be permissible as (3.13)
establishes by the intersection operation. The com~
putation of the fuzzy set 7 allows the prescrip-
tion of fuzzy policles for the operation of the
system. This type of answer is of importance in the
control of humanistic systems where general quali-
tative controls are useful to the designer since
they serve as a guide to asses behaviour of the
system in the future.

Fuzzy estimation problems arise when either
the state of the system is fuzzy or the measurements
performed on the state are fuzzy. Both situations
frequently arise also at the same time. In such



cases a fuzzy state set 1s obtained as an estimate
of the state of the system. Fuzzy estimation can be
considered as a generalization of the so-called Set-
theoretic estimation discipline within the control
systems literature. A good amount of work has been
carried in the past on problems of this nature (See
Schweppe [1],[17],[18], Schlaepfer [19], Schlaepfer
and Schweppe [20] ). Little has been explored,how-
ever, in the fuzzy set context. We shall only deal,
briefly,with estimation problems defined on fuzzy
systems of discrete nature rather than continuous.

Suppose we have a linear system described by
(3.10), with fuzzy initial state set X, and noisy
signal w described by a fuzzy set . Suppose we
measure the state of the system in afl imprecise fa-
shion. i.e we observe the system state through a de-,
vice which introduces an error whose only descrip-
tion is given by a fuzzy set. We assume that the
measurements are performed at discrete instants of
time and it is our interest to extract all possible
information regarding the state at those particular
instances.

(e ) = H(e)) x(e) + v(t) (3.14)
where y , the measurement has p components and H
has the appropriate dimensions. The perturbation
vector v(t,) can be supposed to belong to a fuzzy
set which specifies the imprecision of the measure-
ment device. We denote this fuzzy set as Q.

Due to the nature of the measurements , the
dynamic system can be expressed as:

2ty g) = ¥ g, t)x(E) + Fleule)

+ 8t ulty) (3.15)

We are also assuming that the control signals re-
main constant during the sampling period. F and G
are easily computed in terms of B, G and the state
transition matrix.

The estimation procedure is accomplished in two
basic steps:

1) Prediction step. The available information
at time t. 1s propagated through the system
dynamics to obtain the set of possible
states at time tk+1 . The state at time t
is introduced in the system equations
as an entire fuzzy set and transformed by
means of the state transition matrix. The
reachable set at time teel computed in this
fashion will be denoted = by X(k+l|k).

2) Update step. Measurements are performed at
time t on the system state via measure-
ment program (3.14). The fuzzy set of sta-
tes compatible with this measurement is
then computed. .

Below we give some of the formulae (in a fuzzy

set-theoretic fashion) that need be used in the
above steps.

Xty 1) = 8Ce, e R() OF (e ulty) }
®o(t) 9

R gt ) = X, le) n-He) 0, @ ~y(t)]

(3.16 -17)

The estimation process is started with the condi-
tion :

M

X(tolto) =X, (3.18)
We shall not present the specific formulae in

terms of membership functions since these can be

easily infered from standard concepts and operations

on fuzzy sets available in the existing literature,

Zadeh ‘[6].
' IV EXAYPLES

In this section we shall give some simple exam—
ples of the academic type.

Example 1 Consider the linear time varying system:

T (O = A x(0) 4.1

with the initial state fuzzy set expressed as:

—x'Q-l

Xo= Lex0 X /x (4.2)

. R -

where Q0 is a positive definite symmetric matrix.
The set of fuzzy feasible states at time T is

easily seen to be characterized by :

: -1
(1) = fne'l' M=,y 4y
R

where Q(T) is the unique solution at time T of the
matrix differential equation:

am = A®a®) + A (®)

(4.4)
with
Q(to) = QO

_The matrix Q(t) is simmetric and positive definite

for all t>t, . It is interesting to note that with
this class og examples a parallel to the set-theore-

. tic technique can be established by considering the

a~level sets (Zadeh [6]) of the membership func-
tions. .

Example 2  Consider the linear system:

2 x(0) = AOX®) +BOu®) (4.5
with the initial state characterized by the fuzzy
set: 1 :

- x'0"
o EYG Xy

Rn

(4.6)

Consider the fuzzy objective set at time T.

vl
X, = I o m'Ss T(zm) / x (4.6)

R
A control policy u(t) in the interval [to,T]
renders a fuzzy set of feasible states:
-1
X(T) = fn e‘(z-l)Q (T) (E‘!) /_’_‘, “.7
R

where Q(t) satisfies (4,4) and v is the solu-
tion at time T of the vector differential equation:

T2 ¥(6) = A(®)¥(E) + B(t)u(t)

¥ty =0
It is easy to show that the fuzzy objective is



whenever the solution of (4.4) at time T satisfies
QT) > 8 (4.9)

and the system (4.8) 1is controllable to the state
m in a finite time T-t,. In this case the set R(T)
is reduced to a singleton of non-fuzzy character
represented by the vector m. If u(t) is somehow
restricted the problem is reduced to a constrained
controllability problem which is readily solved

using the results of [14].

Y CONCLUSIONS

Initial steps have been given in the utiliza-
tion of fuzzy set theory in the analysis and de-
sign of linear dynamic systems. It has been shown
that set. objectives reachability problem for 1li-
near systems,as well as estimation problems can be
set in a fuzzy environment and qualitative analy-
sis be carried out by using standard concepts al-
ready developed within the fuzzy theory. We have
shown that a fuzzy objective (i.e qualitative) rea-
chability problem reduces to a crisp set reachdbi-
lity problem. This kind of problems have been éx~
tensively treated in the past by many authors and .
a good number of results and techniques are avai-

lable in the existing literature. The fuzzy philo—“

sophy of systems design could therefore greately
benefit from those results. Some of the develope-
ments parallel those of the set-theoretic techni-
que (ellipsoidal uncertainties ) for certain class
of membership functions ( exponential quadratic ).
Some simple examples have been presented for illus-
tration purposes.
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