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ABSTRACT

Thls paper considers a new approach in the
modeling of set-theoretic uncertainties. P-temsor
forms associated with n-dimensional state vectors
are used as a modeling mechanism for the represen-
tation of polynomic constraints on initial states
of the unknown but bounded type. This allows a
straightforward computation of the set of possi-
ble states for linear systems with uncertain ini-
tial state. It 1is also possible to approximate
arbitrarily close the set of reachable states
by using the technique developed in this paper.
The significance of the results in Set-Theoretic
estimation and control problems is discussed.

I INTRODUCTION

The study of set-theoretic uncertainties and
their significance in linear systems analysis and
design has been restricted,thus far, to two types
of sets: ellipsoids and polyhedra (Schweppe [1],
Hnylicza {[2]).Within this line of thought, authors
(Bertsekas and Rohdes [3],Sira-Ramirez [4],[5])
have defined estimation and control problems that
provide an alternative to their stochastic —proba-
bilistic formulation. In connection with these
problems,from a set-theoretic framework, the com-
putaiton of the set of posaible states is a most
important and basic problem to be solved. Witsen-
hausen thus recognized this issue in an earlywork
[6] that has triggered muchof the ongoing reserach
in this field (See also [7],(8] ).

In this paper we treat the problem of computa-
tion of the set of feasible states for linear systems
,0f a time-varying nature,whose initial stateis
unknown but bounded by a set described by a finite
number of polynomic type of constraints on the ini-
tial state variables.It is shown that an appropriate
modeling technique for such sets is represented by
linear restrictions on a family of p-tensor powers
of the n-dimensional vector adscribed to the Eu-
clidean space where theuncertainty is being model-
ed (See Brockett [9]). By consideringan associa-
ted p-tensor system the evolution problemis trans-
formed into a simple linear problem. We obtain lin-
ear evolution equations on adual associated tensor
space which describe the ""generalized support vec-
tors" evolution characterizing the state set.

Ellipsoids and polyhedra become only parti-
cular cases of "generalized polyhedra" . This in
turn, constitute a powerful approximation mechaniam

by which reachable sets of linear systems can be con- *

veniently described. -

The paper constitutes a unifying effort within
the set theoretic technique for uncertainty modeling
,hertofore,unnecesarily restricted to ellipsoids
and polyhedra for the sake of mathematical convenien-
ce.

Some illustrative examples are presented as

. state bounded by aGP.

well as indications on how the results canbe used in
set-estimation and set-control problems (Target set
and target tube reachability problems [3]).

Section IT presents some definitiouns about p-
tensor powers and "Generalized Polyhedra" (GP).In
this section we also formulate the main problem. Sec-
tion III deals with the characterization of the set
of possible states for linear systems with initjal
This section contains some
examples and comments. Section IVdiscusses the re~
sults in terms of set-estimation and set control
problems. Section Vcontains some conclusions and
suggestions for future research.

1T DEFINITIONS

We now present some definitions closely follow-
ing Brockett [9].1f x 18 an n-vector with compo-
Nents Xg,Xp,.ss,Xy We denote x!P) the (“+B' ) -
dimensional vector of p-forms in X 3,X3,...,X, (
i.e the elements of the vector _:5[1)] are of the
form aﬂi‘:l xipi with Zpi = p; pi_>=0 and

o ®YCP)... (PR R el )
n

If y = Ax then y[p] - A[p]i[p] is verified and
A[ ']‘ 1s the infInitesimal version of AlP], 1.e

Pl /e f(t)- A(D)x(t) implies d/dt x[Pl(t) «
Al (t)x[P1(r). Some useful properties Yf tlfe 80
caﬂed YeTaor p?wTra are: 1)(aB) [p] = alplglp)
2) (A1) Pl = (AlPI)T whepever A9 18 defined and
q is an integet.[Bi @ rl « alp )i
Lemma 1 d/dt QA P (t,to) - A[p]¢A P (t,to) when~

ever @A(t,t ) is the state transition matrix as-
gociated wigh A(t). [p]
Proof : We have gg(t)ztbA(t,to)_:go then x'P7 () =

¢A[p](t,t )x[p]. Taking deri‘iatives in this_ex -
pfession we obtain: d/dt x[Pl(c)= fd/de p](t.tP
))3_(‘61’ On the other hand d/dt x[PI(t) =% A ](t
2pi(e) - OIN pl(e,e)xfPl . -n[ae?,
(p] (] pl .
(d/ded, P (e, t0)-Ar 1 ()9, 1PI(E, 60) ) xp7" = 0

for all X, The result follows.

We denote E(P-) (notice the vector character
of p ) the (2}P)-dimensional vector ( 1, x , (

_:_:_[2])',...,(5[1’])')‘ (We also call this vector
the p-th family power of x ). By extensio?—?f
the above definitions if y = A x then P .

A(R)_:_c_(g) where A(B) is a bltfck diag?nil matrix of
the Form : diag [ 1, A, al2h ..., alPl ), 1t 18
easy to see that if d/dt x(t) = A(t) x(t) then

a/at x® (e = Apy(®) P (t) where Ay () 18
the infinitesimal version of the matrix A(E) t)

The following lemma extends the previous one to
the case of p-th family powers of state transi-
tion matrices of a linear system.
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Lemma 2 d/dt %(R)(t,to) = 5t) o (®)(e,t o

Proof: The lemma is a clear consequence of the
definitions and the previous lemma.

Definition A Generalized Polyhedron (GP) is a
set of the form:

{xeR": <h, x x® 51 ga1,2,.00,m)

h is called the generalized support vector, The

set {h 3 1=1,2,..., M} 1s the generalized sup-
port sét Note that a generalized polyhedron may

well represent a non-convex, not necessarily
bounded set. Polyhedra, spheres, ellipsoids,zo-
noids, etc. may be viewed as particular cases of
generalized polyhedra.

Comment An ellipsoid E = {xeR" : x'Qx <11}
‘can be expressed as a generalized polyhedronwith
one generalized support vector defined by A(Q) :

E={xer" :< A(Q),52] ><1 1}

where X(:) 1s a vector valued lexicographic map

defined on the set of all symmetric matrices and

determined by:

MQ) ;_

[qlll qlzi/_ql:,},"7‘/_qln)q22!/—q23"")'/_qn ln
aqnn 1

where q,.'s are the elements of Q. The map (.)

establishes a one-to one relationshig among the

set of symmetric matrices and gn(n+l)/
Definition Given the linear system

33 x(0) = A(D) x(6) (1

we denote by E£(t,x,) the trajectory starting
from the state x,. A state x(T) is said to be
x.-feasible {if §7T;§0) = E(T)nfor a certain T >0
Let T, be a closed set in R, we define the [
—feasigle set for system (1) at time T, the set:

. n
{xeR : x = E(T; 3(_0) for some x,€ I, }

(2)

We denote this set by £(T,Z.). The I _-feasible -
set at time t is then the seg of all _O—feasible
states at time t for all §€FZO'

The basic problem to be considered in this
paper is the following:

Given the linear system (1) and a GP 20 cha-~
racterized by the generalized support set{hio; i
=1,2,..., M }find the Zo—feasible set.at any time
t, §(t,£0).

[T MAIN RESULT

The solution to the proposed problem re-~
quires use of the definitions and lemmae previous
1y presented. The following theorem is a conse-
quence of this background material.

Theorem The Zo-feasible set for system (1) is
a GP characterized by the generalized support
vectors h (t) ; 1=1,2,,..,M where h (t) is gi-
ven by the unique solution at time t ol the
linear vector differential equation:

d '
;i—thi(t) = - A(B)(t) h,(e)

with h (t,) = h for all i.

Proof : Tge form of the I.-feasible set follows
from the affine classificagion theorem [10]. The
computation of the generalized support vectors of
E(t; 29) is as follows: E(t; ZO) - {xs R": x =

tb(t for all xez}-{ -¢(:,
x _O{XER :<(0(t g % 01
for a?l 1}= {xeR™ : (B @'(2)2 t?hj

1 for all 1}. Letting h (t) 801 e 0,:9 B

, the result follows from = lemma 2 and well
known properties of time derivative of an inversa
matrix.

The preceeding theorem constitutes a useful
generalization that we illustrate in the follo-
wing fixed shwitch-off time problem:

Examgle Consider the linear system il= X, 3

Xo= -w'x, + u(t) with Ju(t)| g1 for ~all” t in
[O T/w] , T <7, and u(t) = 0 for t>T/w . If
we denote by the reachable set at time T/w,
of the system, for all possible control functioms
satisfying the above restriction, it is clear
that the reachable set after time T/w is identi-
cal with the R -feasible set E(t; for t>T/w

Application of Pontryagin's Maximum Princi-
ple [11] ylelds an ellipsoidal zonoid for the
reachable set ( i.e the intersection of two
ellipsoids ). The characterization of Ry as a
generalized polyhedron is simply:

RT={§€R2: <x(—2~) ho.>< 1;1=1,2}

iT
where: 2 2 4 2

1

1

hjp = [3(1+cosT) ,3(1-£cos'r),- 3 sinT, T ,4 , %2]
1

héT - [5(1+cosT), (1+4cosT), % ginT, % ,O,% ]

This set is represented in Fig. 1 for seve-
ral values of T <,

The Reachable sets
Ry for Diferent
values of T< TT

figure 1

The RT-reachable set for all time t> T/w is

then a GP of the form {x¢ RZ: <x(2), n (t)> <1
1= 1,2 } where hi(t) satisfies the differen-
tial equation:
o 0 0 0 0 O ;
o 0 1 o o0 op
0 -1 0 o 0 0
Sn®=lo o o o vz ofh®
0 0 0 -1 0 1
0 0 0 0-2 0



whose unique solutions, taking as initial condi-
tions respectively h and h, r 8re:

hi(t) -[ (1+cosT%w cos%cos( -wt),wcoslsin(z-wt),
4

Z , 0, 'z ]
hé(t) =[%(l+cosTL—w2cos%cos(%—wt),-wcos%sin(%-wﬂ
’ 2’_4: 0, "2]
4 4

The RT-feasible set is shown Iln Figure 2 for some
value of t >T/w.

{r 2w

’l'v S x1
‘
’
SN2

R -Feasible set
attime t>Thv

Figure 2

Coroldary 1 Consider the linear system x(t) =
A(t)x(t) + B(t)u(t) with u(t) a known piecewise
continuous function of time taking values in R,
If the set Iy is characterized by a GP centered
around some vector 99 and described by :

Zo ={xeR": <(x-q)(P—) 10>=§1~Vi}

then the L -feasible set 1s characterized by a
generalizeg support set h ¥ i , and a "general-
ized centroid" q(t) which are, respectively, the
unique solutions of the differential equations :

I _i(t) = - A'( y(£) B (t) with b (t)=h,,

and
2 q(0)= At)a(t) + B(O)u(e) with g(tg) = g,

Proof The proof of this corolary is straightfor-
ward and constitutes an extension of theorem 1 to
the case of forced systems.

Corolary 2 If the set Zo is characterized by a
homogeneous p~degree form 1? The initial state
variables; = {xcR® : <x!'P > <1 ; i=1,...
M} then the geasible set of the f%rced system is
also characterized by a set of homogeneous p-de-
gree forms with support vectors h (t) and cen-
trold q(t) given, respectively, by the unique so-
lution of the differential equations:

T h(6) = - AT L6 By(®)  wieh

¥ 1

hi(ey) =hy,

and :
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3 a(t) = A(Dg(1) + B(D)u(t) with g(tg) = 0

Corolary 3 Given the linear system i(t) = A(t)
x(t) + B(t)u(t) and an ellipsoid I, = {xeRD :
< x, x > <1} . The set of feasib?e states is
the el?ipsoid g

{xeR® <(x-gm )2 s <1}

where g(t) satisfies the same equation as in Co-
rolary 2 and h(t) on the other hand satisfies:

32 h(®) = = AL () h(B) @)

with  h(ty) = hy = A(Qy)
with A(.) being the lexicographic map defined in
Section I.

The evolution equations for an ellipsoidal
set-theoretic uncertainty in the initial state,
not making use of tensor forms of second degree,
have the following form:

—% Q(t) = ~ A'(t) Q(t) ~ Q(t)A(t) (5)
with Q(t) = Qo

The centroid equations remain the same.

Coument Let -A = P, comparing (4) and (5) and by
virtue of the Comnent in the introduction, we
have:

1) h(t) = A(q(t)) and

2) X(PQ+QP)-P[2 (o))

It can be shown that implication 2) is complete-
ly general with A defined as in Section T .
This fact constitutes a useful formula in direct
solution methods for algebraic and differential
Lyapunov equations

Comment One of the difficulties of the set~
theoretic approach in modeling uncertainties in
the form of ellipsoids 1s constituted by the fact
that the intersection of two ellipsoids is not an
ellipsoid. Approximations are then necessary to
mantain mathematical tractability offered by the
ellipsoids equations. Our approach allows us to
deal with this fact without approximations at the
expense of some data storing. The intersection

of two ellipsoids E, »={xeRD ;1 <x , Q, x> <1}
and E, = {xeR?: ¥x,%x><ﬂishmh
eXpressed as {xeRM : <h > <1 4i=1,2}
where h = A(Ql) and h = A(Q2

It 1is a well-knowm fact that iso-crone sur-
faces can be computed in terms of the reachable
set of an associated negative time linear system
easily obtainable from the original system on
which the time-optimal problem has been defined.
The following example shows that p-tensor forms
can be conveniently used to arbitrarily approxi-
mate iso-crone sets (i.e reachable sets )

Example Consider the linear system : Xy=- x1+
u(t) 3 X,= - uyX, + u(t) where u(t}l 511

The isocrone set for some time T is characteri-
zed by :

{x:

el A R L B W LS
2 2



If ul/u2 iy rational then the isocrone set is

eastily characterized as the boundary of a GP. The
description is then exact. On the other hand if
the quantity ulluz is irrational then the isocrme
set can be approximated arbitrarily close by the
boundary of a GP. The higher the dimension of
the support vectors the better the approximation

P-tensor forms are easily seen to constitu-
te an efficient mechanism for initial state un-
certainty modeling regardless of the non-convex
or even non-connected, unbounded nature of the
set. The following example shows how to charac-
terize sets of this nature in terms of CP's.
Example

Consider the time-varying linear system:

a[* -1 £(t) %, [0
E[x2]=[o -1 % R B B

with the initial state unknown but bounded by the
set:

ZO={x€R g |x1le <1 |x1|=<2; ]x2|n§2 ;
2 2
%) + Xy 21 }
and let f(t) = u(t) specified by:
+1 for tel[0,B)
u(t) =
-1 for te(B,T]

It is required to compute the set of possible
states at time T. The set 20 , shown in Figure 3
can be expressed as a GP.

FIGURE 3

(2)

Q{ECRz: <x= 1,2,...,7 }

EO

with:

hio =(0,0,0,0, 2/2,0 ); héo=(0,0,0,0,— 2/2,0)

héo =(0,1/2,0,0,0,0 ) ; EL0=(0’—1/2’0’0’0’0 )

héo =(0,0,1/2,0,0,0 ) ; h€0=(0’0"1/2’0’0’0 )
3502(2’0’0’_1’0’-1)

the centroid is located at the origin.

At time T , the set of possible states is a
GP with the support set given by the vectors
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hi(D) = (mn,meT,eT[m(T-zs)m],o,/'_g. 2T, 2T (r-20)
By (T) = ~h, (T)

b_é(T) = (n/2,(eT/2) (Tr-28),0,0,0 ) ; ha(T)= -33(T)
(T = (m/2,0,e1/2,0,0,0 ) 3 h (T) = ~h.(T)

o 2 2 1 .10 5 ar
E;(T) = (2-(n"+m"),-2e n,-2¢" [(T-2B)n+m] ,,~e" ",

V2 T (1-28),e” T [14(1-28)7) )

8 n=1 + eT(T—l)

The centroid at time T is given by:
ql(T) - mT-n-ZB(l—eB) : qz(T) = ~me’

Figure 4 shows this set for T = 0.69

where m = 1 + eT-2e and

T

THE Xo- FEASIBLE SET
FIGURE 4

We shall now examine a simple extension of
the main result in this paper to the case of
forced systems in which the input function takes
unknown values, bounded at each instant of time
by a GP. This GP, however, is assumed to arise
as the output of a linear dynamic system whose
initial state is also a GP. We shall characterize
the set of feasible states as the sum of two GP's
(vector sum ). i

Consider the linear system:

22 x(0) = AR(D) + Bu(D) with xge Iy (6)

and w(t) is an unknown but bounded signal con-
tained at each instant of time t by a GP which
we denote by Q(t). We assume that w(t) ia given
by:

w(t) = H(t) z(t) 7
where
D20 = F©) 2()  with zeg, (8

The set Q(t) is the direct image under H(t) of
the set Z(t) obtained as the -feasible set

of the dynamic system defined = by F(t). w(t) is
an m-vector and 2z(t) is an r-vector: H and F
have the appropriate dimensions. The following
proposition characterizes the feasible set for
all possible forcing functions w(t) restricted
instantaneously by Q{t).

Proposition Let }, and be GP's characte-
rized respectively gy the support sets hjo and

=
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and centered around the origin:
:<_:5(P-), ><1 ¥#4ieM}

@’ 10
1<z, 8. > <1 ¥ieN}

—=10
(M and N denote the sets 1,2,..., M and 1,2,...,
N respectively ). Then the set of all possible
states at time t of systém (6) subject to (7)
and (8) is given by:

I(e) = 5 (6) @ I,(0) )

240 ¢ :
Iy = {xeR

g w{zeR"

=

where @ denotes set-~theoretic vector sum of
the involved sets, and :

<5(..), h(0)><1 ¥ieM}

£,(e) < {xeR" :
with bi(t) being the unique solution at time t
of

d
3t (0 = 'A'(B)(t) hy(e) 5 hy(eg) = hyg ¥ 1

and 3

I,(e) < {xer" : <5(3),gi(t)>=< 1%1eN’}

where gi(t) satisfies

Mt (S.)(:,to) o) = 56 ¥i

and gi(t) is the unique solution of :

d , i .
dt & = 'F(g)(t) 8,(t) 3 8,(tg) =85 ¥ 1

M(t,to) is given by :
t
M(t,to) -fto0A(t.E)B(E)H(E)OF(CJNE

$, and ¢F are the state transition matrices as-
sociated * with A(t) and F(t) respectively.

The sum of two sets as in (9) 1s definedby:
231@22 o {zeRn ty=x+z ¥xel, and
}

zel,

Proof: The proof of the proposition is readily

. made by standard state augmentation techniques
and some straightforward manipulations. We re-
mark here that the vector sum of two GP 1s also
a GP whose generalized support set is related to

. the support sets of the involved GP's through
somewhat complex optimization problems. It is an
important fact that ,generally, in (9) 22 is a
degenerate GP (i.e one lying in a propef sub-
space of ).

IV SET-ESTIMATION AND SET-CONTROL PROBLEYS

In this section we examine the signifiance
of the results in the previous section in pro-
blems of set-estimation and set-control nature.

We have seen that GP's can be effectively
used in modeling reachable sets for linear dyna-
mic systems. A set-estimation problem generally
consists of a reachable set computation prdblem

and the computation of the set of compatible
states in light of the measurements. The estima-
tion of the state is then carried by intersecting
the reachable set with the set of states compati-
ble with the measurements.

Assume we perform continuous measurements on
a linear system state which is set-theoretic un~
certain, The measurements are assumed to be cor-
rupted by noise of unknown but bounded nature:

y(t) = c(e)x(t) + y(t)

where ye€ Rk and v(t)e ¥(t) , a GP for each t,
and centered around the origin with generalized
support set Ei(t)

(o) = {ver® :<v(®, 5,(t)> <1 %4¢ep}

Then, the set of states compatible with the mea-
surement y(t) obtained at time t from the sys-
tem 18 also a GP given by :

xeR® i <(x-0@ () > <1 ¥tep)

where x*(t) satisfies C(t) x*(t) = y(t) and
(6 = (D% oz, .

The estimate set at time t is obtained by
intersecting this set with the reachable set at
time t. The intersection of two GP's is obviously
a GP whose support set is computed as follows:

Suppose we have two GP with descriptions

Iy -'{EER“:<5(£),33,§1 ¥ 1eM)
22-{5€Rn:<§g%3851 ¥ 1eN}

with p>q then :

L0z, = {xe R® <5(_),£1> <1 ¥ 1e(uen) )
where

4 = Ei s i=1,2,..., M

= [0 ,8,]" 1=M, W2,..., M.

The dimension of the vector 0 above depends on
the value of p-q inthe obvious manner. Some of
the constraints defining the intersection set
may turn out to be redundant. A simplification
of the number of constraints has to be carried
to obtain the most "economical” description of
the intersection set.

Notice that the generalized support set of
the set of compatible states is precomputable.
Only the centroid of this set has to be computed
on-line according to the measurements obtained
from the system.

The basis for the analysis of Target set
and Target Tube reachability problems defined on
continuous time systems subject to set-theoretic
uncertain initial states is constituted by Coro-
lary 1 in the previous section. If we dasume
that A(t) 1s of the form:

m
A(e) = A, +21=1 v, () A
where A, and A, are constant, then the evolution
equatiogs of tﬁe initial state uncertainty for
any control function u(t) take the form:
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' d [ m '
Te 2y () = -[ Bopy * Xi=1vi(t)Ai(g) Ib, ()
hi(eg) = by, ¥1
and

.d_‘:. a(e) = a(r) g(e) + B(ult) ;5 g(tg) = g4

i.e the external additive signals u(t) only in-
fluence the centroid evolution equations,having
nothing to do with the "spread” of the uncertain-
ty set at any time. On the contrary the structu-
ral signals v (t) affect both the centroid and
the support sét evolution equations. The struc-
tural variables could (whenever possible ) be
conveniently manipulated to obtain desired final
values for the support set at some time T. Whe-
ther or not such functions exist is a controla-
bility problem defined on a bi-linear system for
which a good amount of results is available in
the existing literature. Even if the desired va-
lues of the support vectors are not attainable,
it still makes sense to define an optimal contrdl
problem on the bi-linear structure which asks
for the optimal signals v*(t) for which a wheigh-
ted sum of differences among desired final va-
lues of the support set and the final state of
the bi-linear system is to be minimized. Once
this structural signals are determined, one can
formulate a standard optimal regulator problem
on the centrold equations to obtain a close va-
lue of the centroid to some pre-specified de-
sired centroid of the Target Set. .

Target Tube Reachability problems can also
be treated by using this sort of "independence
result" among the evolution equations for the
set of possible states. In this class of problems’
a Target Tube (modeled as a time varying GP) is
given and control signals are required which keep
the state of the system within this tube for a
certain period of time. A reasonable approach to
handle this problem is to define optimal control
problems on the above equations. For the first a
quadratic regulator philosophy with either boun-
ded structural controls or penalties on v, (t) cam
furnish a meaningful "“engilneering solutioﬁ" to
the problem of minimizing the lack of intersec-
tion among the target tube and the tube of pos-
sible states. Once the parametric coatrols have
been found by either controllability or optimal
control results, a second optimization problem
can be formulated on the centroid evolution equa-
tion. A tracking regulator problem represents a
reasonable approach which completes a solution
method for Target Tube Reachability problems de-
fined on linear systems with variable parameters.

V' CONCLUSIONS

In this paper we have considered a new tech-
nique for set-constrained uncertainty modeling.
The generality allowed by the method makes it no-
longer necessary to restrict the uncertainty scts
to ellipsoids and polyhedra for the sake of ma-
thematical convenience. Possiblities of modeling
a larger class of sets are thus open while man-
taining the benefits of linearity characterizing
I
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the system under study, Initial state uncertain-
ty evolution has been computed in terms of the
evolution equations of 'generalized support vec-
tors" through a linear p-tensor system associated
with the linear dynamic system where the uncer-
tainty is being considered. The implications of
the results has been examined in set-estimation
and get-control problems. It has been established
that target set reachability problems are meaning
fuly treated by considering the set of possible
states evolution. The variable structure systems
offer special interest due to the possibilities
of uncertainty dispersion control. Several exten-
sions of the results to energy-type of uncertain-
ty modeling could be attempted. The more general
problem of characterization of the reachable set
for linear systems with controls bounded by a GP
is still unsolved.
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