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Abstract

This paper considers the Target Tube Reachability problem (TTRP) for dis-
crete-time linear systems with set-constrained perturbation inputs and set-
bounded parametric uncertainty in the state transition matrix. We present ne-
cessary and sufficiency conditions for target reachability and develop aback-
wards recursive algorithm for the determination of robust attainability = re-
gions at each instant of time. Explicit formulas are presented for two impor-
tant closed convex bounds on the uncertain variables and parameters, namely :
ellipsoids and polyhedra. Some important computer-oriented algorithms are al-
so included for the effective characterization of polyhedral bounds of inter-
mediate sets in the proposed backwards recursive scheme leading to target ac-

cesibility ascertainment.

1. INTRODUCTION

The majority of engineering problems are
influenced by uncertainty. This inescapable
fact demands the development of adequate mo-
dels that take into account the uncertain
quantities and give a satisfactory answer to
the design problem. There are, generally spea
king, two basic alternatives to choose from
when such modeling is required:

1) The uncertain quantities may be assumed
to have known probabilistic behaviour
as random variables or random proces-
ses.

2) The unknown quantities may be assumed
to lie within specified bounds but
otherwise completely unknown.

The first modeling technique has been exten-
sively treated in the literature and more
often than not, it reflects the desire of
making available to the designer a mathemati-
cally tractable formulation for which an e-
nourmous field of knowledge already exists.
The solution achieved by using this modeling
rhilosophy guarantees an average behaviour
optimal type of design.

The second modeling technique has been
_explored by fewer authors, but has already
provided an extensive set of results and ap-
plications in areas where it is less appro-
priate to use statistical modeling of the
uncertainty, i.e processes and plants where
it would be extremely expensive to conduct
experiments aimed at determining the statis-
tics of certain variables and rather the ad-
vice of an experienced operator may lead to
determine rough estimates (bounds) of the
variables and their perturbations.

The mathematical machinery used in this
technique is set-theoretic in nature and re-

presents a conceptually straightforward and
practical approach to the design problem un-
der uncertainty. ’

The first steps of a theory of unknown
but bounded signals in linear dynamic systems
appeared in Schweppe (1968); in this formu-
lation, ellipsoidal bounds were defined on
the uncertain quantities in reference to the
recursive state estimation problem for linear
dynamic systems. Schweppe and Knudsen (
1968) developed a theory of amorphous cloud
trajectory prediction based in the bounding
ellipsoid technique. Subsequent work by
Witsenhausen (1966,1968) led to a more gene-
ral set-theoretic formulation of the estima-
tion problem using general convex bounded
sets. .

The reachability problem of target sets
in state space using set-theoretic modeling
of the uncertainty appeared by the first time
in the work of Delfour & Mitter (1969). Their
approach is rather general and constitutes
the basis for subsequent work in the area by
Bertsekas & FRhodes (1971), ' Glover §
Schweppe (1971) and Glover (1971). Glover
makes an extensive application of this . tech-
nique to the Load Frequancy Control problem
in Electric Power Systems. Hnyilicza (1967)
gave the first steps in the use of general
convex polyhedra to model uncertainty in the
estimation problem.He developed general al-
gorithms for the case of linear dynamic sys-
tems. Schlaepfer (1970) used the set-theore-
tic approach to study estimation problems in
Distributed Parameter systems. A set-theore-
tic methodology for the study of the steady-
state security regions was developed as a
powerful tool in a variety of Power Systems
operation and planning applications by Hnyi-



licza & Lec & Schweppe (1975). Yared (1970)
gave an interesting application of the set-
theoretic technique to the Average. Frequency
Control problem in Electric Power Systems un-
der normal mode of operation.

There has also been some effort in com-
putational issues related to the general rea-
chability problem as well as relations to
more sophisticated mathematical approaches.
For an account of the first efforts see for
instance Morris § Brown (1976), while for
the second see Barmish (1977,1979)

This paper deals with the Target Tube Rea-
chability problem (TTRP) for linear dynamic
systems evolving on a finite time set and

subject to wncertainty,n the initidl state, pertur-’

bation inputs to the plant and the measure-
ment program,as well as in some of the para-
meters defining the state transition matrix
of the systems equation. All the uncertain-
ties considered in the various signals and
parameters correspond to set-valued uncer-
tainties i.e only set bounds are known as a
model for the uncertainty of the variables
under study. :

The robust reachability of targets is a
basic and realistic problem due to the fact
of parameter variations in control of proces-
ses of almost any kind. Mathematical simpli-
fications such as slowly varying parameters
and other type of models ( white noise ) for
parameter uncertainty are either naive or
exaggerated approaches to the problem of de-
sign  under this type of frequent impreci-
sion. Experience does tell the range of va-
lues wich one is to expect in a particular
design problem.

Section II of this paper formulates the
Robust TTRP for a linear discrete time system
in complete generality regarding the involved
sets. Section IIT presents the solution to
the problem and the establishing of a back-
wards recursive algorithm for the determina-
tion of target reachability. Section IV par-
ticularizes the main algebraic operations in-
volved in the algorithm of the preceeding
section to the case of ellipsoids and convex
polyhedra. The main contribution of this
part lies in the introduction of the notion
of robust inverse images of closed, convex
bounded sets through linear dynamic maps with
uncertain parameters. It is easily seen how
convexity is preserved through this type of
algebraic operation on the sets. Section V
presents some flow diagrams representing com-
putational procedures for performing some of
the algebraic operations defined for polyhe-
dral bounds. Some considerations on the com-
putational efforts are indicated at this
point. Section VI contains some conclusions
and suggestions for further research indica-
ting some recent developments in the general
area of set-theoretic analysis of dynamic
systems. The list of references used in the
preparation of this research is included at
-the end of the paper.

2. PROBLEM FORMULATION

Consider the discrete-time linear dynamic

system:
x(k+1) = (A0+2521pj (0A)x () +Buk)+au (k) (1)

where _)g(k)eRn is a vector called the stateof
the system at time k, u(k) e is the con-

_trol vector w(k) is a perturbation input sig-

nal, p:(k) is an uncertain parameter of the
system% transition matrix A. The matrices AO
A., B and G are real valued matrices of the
aﬂpropriate dimensions according to:
x(0) € XO c R , X0 is a closed convex
bounded set (ccbs)
w(k) e W, ¥k, WCR (ccbs)
r& € Pk ¥k, Pyc R?  (ccbs). The ele-
- ments of E(k) are pJ. ®
¥k, U R™ (ccbs) Set of Ad-
missible €ontrols.

ulk) e U

It is required to find an admissible con-
trol sequence’ {u(k), k=0,1,...,N-T , u®) €
U ¥ k J such that the state of the system
x(k) is found, at each instant of time k of
the finite plamning horizon 0,1,2,...N-1,
within a ccbs XK (Target Tube) in spite of
the values that the variables x,, w(k) and
the parameters p(k) may take within their
respective restriction (uncertainty) sets.

At each instant of time the controller
performs measurements on the state of the
system according to the rule (measurement

program)
z(k) = H x&) + y(k) @)

where z(k) e RP is the measurement vector
and v(k) € RP is a vector quantity of unknown.-
nature, known only to be an element of a pre-
scribed ccb set of P called the measurement
disturbance set and denoted by VK."The ma-
trix H has the appropiate dimensions.

The fact that we have chosen a time in-
variant model does not affect substantially
the developments for the more general case.

The form of the state transition matrix
and its dependence on the uncertain parame-
ters pj is quite general and even provides
room °for the case of non-linear effects of
this parameters on the system matrix. It is
easy to see that one can always write a ma-
trix with uncertain entries in this form, the
upper bound for q would then be n2. We as-
sume that an ordering of the parameters has
been chosen at will to conform the parameter
vector p. Otherwise the form of the set could
hardly — be defined for Py.

The presence of uncertain parameters in
the matrix B would indeed alter the nature of
our results since at some point of the algo-
rithm we shall propose in the next section,
this fact would destroy the convexity of the
sets making it a very difficult problem from
the computational viewpoint. The same applies

for the matrix G. :
Before stating the main result of this

article we shall develop some formulas which
are frequent in the operations involved in

our algorithm. Also some definitions needed
hereafter are now presented.




Definition 1 Let A be a lmﬁﬁr map from R"
into R and , X a ccb set in Then the ima-
ge of X under A is defined as the set:

"y eR y=Ax ¥ xeX}
and denoted by the symbolism Y = A X,
Obviously if X is a ccb set so is Y, sym-

metry, connectedness and some other important

properties of X would be preserved by Y.

Definition 2 Let A be a 11!&8&1' map from R

A not neces-
sarily invertible, then the inverse image of
X under A is the set :

{xe R': Ex eX }
and denoted by A = X.
Def1n1t10n 3 Let Aand B be linear maps in

R and p certain parameter with values inthe
range [a,b] then we call the robust inverse

image of a set X in R", the following set:
"{ xeR": (A+pB)xeX ¥ pela,b]}
~This set is denoted by (A+pB)'1X.

The robust inverse image set of X is a
ccb set whenever X is ccb.

Definition 4 Let X and Y be two sets in R
the vector sum of X and Y denoted by X ® Y
is defined as:

‘{zeR':z=x+y,¥xeXandyeY }

The sum of two convex sets is convex,
boundedness, closedness etc. are also pre-
served in this operation.

Definition 5 Let X and Z be two ccb sets in
RT X necessarily containing Z, we define the
Pontryagum difference of X and Z and deno-
teitby X-Z asasetYsuchthatZeyY

=X.

3. NECESSARY AND SUFFICIENT CONDITIONS FOR
TARGET REACHABILITY IN A ROBUST SENSE

In this section we establish the main re-
sult concemmgkreachability of the given
target tube , under the stated hypothe-
sis of set- bounded uncertainty of a collect-
ion of variables including initial states,
perturbatlon signals to the plant and para-
meters of the state transition map.

The result is established as 'a necessary
and sufficient condition for robust reacha-
bility of the tube. This condition is obtai-
ned as a set inclusion condition that has to
be fulfilled in order for the target to be
reachable in a guaranteed fashion. We make
here use of the previous definitions regar-
ding images, inverse images and robust ima-
ges of ccb sets under linear maps.

Proposition 1  The necessarny and sufficient
condition for an adrmAAwle control sequence
u(k), k=0,1,2,...,N-1. such that target tu-
be nmchabw,ty i achceved in a nobust sen-
se {i.e fon all possible values of the para-
metrnic uncertainty ) 48 that the set inclu-
s4ion nelation @ :

0
XR:)(O
0

8 vakid. The set Xp 44 computed (off-Line)

by means of .the §oLlowing backwards recur-

x};ﬂ - k+1 -G wk
ri.i ('B Uk)
= q -1

X T pe p, (0*L;21p; (04 X

o k

with the "initial condition" :

Xﬁ -

The set Xb]fi is called the Modified Tar
get set at time k , and conforms a Modified
Target Tube for each and every k in the fini
‘te planning horizon. This set represents
the region of the state space from which no
value of the plant perturbation input can
force the state at time k-1 out of the Redu-
ced Target set Xg. The Modified Target Set
is thus a robustiset with respect tothe ad-
ditive action of the plant uncertain input

signal on the present value of the propaga-
ted state through the state transition ma-

trix. k
is called the Attalnablhgx

"The set X
Target set afid represents the set in state
space for which an admissible control vector
u(k) can be found such that the next state is
found within the Modified Target Set at the
next instant of time. This Attainability Tar-
get set thus contains everything that is pos:
sible to transfer to a secure region in the
state space from which the additive distur-
bances do not take the state out of the Re-
duced Target set at the next instant of time.

The set X k is called the Robust At-
tainability set at time k. This set re-
presents that portion of the Attainable set
which is immune to the parametric uncertain-
ty multiplicative action on the states at
time k, so that reachability of the Modified
Target set at the next instant of time can
be achieved. This is the smallest set from
which the state, no matter what parameters -
or perturbation signals nature chooses to
apply, its elements will always be capable
of transition to the Reduced Target set.

The set Xk is the Reduced Target set at
time k and as might have been already infer
ed, this set contains that part of the state
space which has to be achieved by the state .
(i.e reached) and at the same time contains
those states which can be guaranteed to po-
sses an admissible control sequence for rea-
chability of the rest of the tube prescribed
as a target. This is a compromise set where
you have what you want to reach and what you
must reach to insure a long term satisfacto-

Ty behaviour of the systems state trajectory.

The Dynamic Programming philosophy under-
lying this backwards recursive process is e-
vident. Its off-line character allows room
for computer studies and feasibility experi-
ments. In this article we shall consider so-

me of these topics in connexion with polyhé-
dral constraints in the fifth section.

[tk



All the basic algebraic operations invol-
ved in the above a prioni recursive algo--
rithm do not destroy the convexity of the o-
riginal data sets.

Suppose that target reachability has

been concluded with the aid of the previous -

algorithm. We must then proceed to find a
control sequence that actually produces tar-
get reachability. We shall now indicate how
to compute a set in the control space, at
each instant of time k, (i,e a tube ) which
has the property that any of its elements
produces, at the proper time,state transi-
tions that ensure robust reachability of the
target tube. We term such tube the Strategy
Control tube or Robust Strategy Control Tu-
be. This set is given by: .
k-1 k1 LJ q JER
U'=B [XM T pK)e Pk(A(,*Zj:lpj (k)Aj)kuk]

where X |y is either a singleton, in the case

of pertect measurements, or an estimate set
of the state at time k produced by a proces-
sing of the observations,on the state values
in an on-line fashion,when these observa-
tions are noise-corrupted.

In general the Strategy Control tube is
constituted by a sequence of sets which are
non-convex. This is easily inferred from the
above formula due to the presence of set u-
nions (this operation is known to destroy
convexity in general). However it is possi-
ble to prescribe the convex hull for the
non-convex set in Pontryaguin difference
with the Modified Target set at time k+1and
thus obtain a "strong" Strategy Control set.

As pointed out above,the sets X Ik are
the outcome of an estimation procesg that
is performed according to the systems dyna-
mics and the compatibility of the set of pos-
sible states with those rendered by the mea-
\_.rement program. The estimation process is
accomplished in the following manner and e-
vidently is an on-£{ne process:

Xefie ™ Xjer " H K @ £200])

delﬁrlTé'Il’k(AO"Epj %1 |1 SBuG-1} @ G
with the "initial condition" :
X10 = %o

where the control E(k-ﬂ is gny element in
the Strategy Control set ok-1,

As in the case of the Strategy Control
sets, the estimation process involves dea-
ling with non-convex sets. In this case it
would be necessary to compute an inner bound
to the first summand in the previous formula
so that certain strength is added to the on-
line process of simultaneous estimation and
control.

4. ELLIPSOIDAL AND POLYHEDRAL CASES

In this section we particularize the
main formulas and aleebraic overations in-

cluded in the backwards recursive process
presented in the previous section. We shall
present formulas in a general and summary

fashion and provide comments where necessary.

Ellipsoidal case »
Definition 6 An ellipsoid E in an Euclidean’

n-space is defined as the set:
(xeR (X)'Q@E) 2 1)
where the vector x is called the centroid and

Q is the dispersion matrix ( for some other
definitions of ellipsoids see Sira(1977))

“ Proposition 2 Let X and Y be two ellipsoids

with centroid in the origin and dispersionma-
trices Q and R respectively. The vector sum
of X and Y is not an ellipsoid but it can be
out-bounde‘d by the ellipsoid :

S < {xeR: x'sx <1}
where:’

S-1 - b-1Q-1 . (1-b)'1R'1

-with b a design parameter chosen from the in-

terval (0,1). (For proof See Schweppe (1968))

Proposition 3 The Pontryaguin difference of
the ellipsoids X and Y ( X contains Y ) is
not an ellipsoid but an inner bound ellipsoid
1s given by:

D<{xerR": x*Dx <1 }
where: - ’
pl=q! - b R?
with b an arbitrary parameter lying in the
open interval (0,1). (Proof inShweppe (1968))

Proposition 4 The intersection of the ellip-
soids X and Y is not an ellipsoid but an out--
er ellipsoidal bound is represented by:

“{xeR': x'Jx <1}
where: .
J= (47T Q+ g+ 'R

and g is a design parameter in the open in-
finite interval (0, ). (See Glover §Schweppe

Proposition 5 An inner bound ellipsoid of
the non-empty intersection of X and Y is gi-
ven by: ‘

{xeR":

where:

x'Kx <1}

K= a1Q + aZR
with a, and a, chosen via the following
procedure: >

a; = (1-m)/(1-mym))

ay = (1-mp)/(1-mym,)

whenever my <1, m, <1 or m <1 andm2§1
and:

m = min X'RX
x'Qe
= min x'Q x
27 xR xt 7
all other possibilities of values for m, and
correspond to either inclusion of X 'in Y,
Y“in X or empty intersection (See Glover §&
Schweppe (1971)).

Proposition 6 Let M be an nxn invertible ma-



trix. Then the image of X under M isanellip-
soid whose dispersion matrix QM satisfies

MQM =Q, i.e

M)('='{§eRn :ox! (M')'1Q m! x <1}
If M is non-invertible, then the pseudo-in-
verse should be used. In this case the ellip-
soid is said to be ''degenerate' since there

is a proper sub-space of which wholly con-
tains the image of X under such map. (Sira,77)

Proposition 7 Let M be a not necessarily
invertible matrix, then the inverse image of

X under M is an ellipsoid given by:
Mx < {xeR: xM'QM x. <1 }

If M is not full rank, the ellipsoid M x is
also degenerate since this ellipsoid would
not have any excursions into the null space
of M i.e it would be circumscribed to the or-

thogonal complement of this )proper sub-space -

of R1, (Proof in Sira (1977)

Proposition 8 Let X be an ellipsoid, then
e robust_inverse image of X :

= q -1
Z P_Q; (g *L;p5A0 7 X

is not an ellipsoid. P is an ellipsoid cha-
racterized by P < {peRd: p'P p <1 }. Howe-
ver an inner bound ellipsoid to Z is given

by:
Z={xe R x' (A0+zp3sAj)vQ(A0+ ngAj)g_g }

where the p*'s are the components of a vector

p* given by-: _

E*= (kp-KB)'Hl
with k being a solution of the algebraic e-
quation: '

b KA -2k

-1 -1
Ky + KgP KB) b=1
which makes p* lie within P ( k is a scalar
and the algebraic equation is of 2n-th order)
The vector b has components b, = Tr(A; Q A))
while Kg isa qxgq symmetric matrik whoge
i,j-th "entry is kg(i,j) = Tr(A: QA. ).
Where Tr stands for the trace ofierat&r. :

Proof The f:»roof of this proposition consti-
tutes a simple excersise in an constrained
algebraic optimization problem. We simply
sketch the proof at this time.

Consider the trace of the dispersion ma-
trix of Z, it is easy to show that this tra-
ce is a measure of the extension of the el-
lipsoid. Maximizing this functional subject
to the ellispoidal restriction of the para-
meter vector p leads to a Lagrangian opti-
mization probIem whose solution is given by
p*. The Lagrange multiplier k , could then
be obtained by substitution of the solution
vector p* in the restriction equation.

The basic operation needed for the compu-
tation of the Robust Strategy Control Set and
the updated estimate set is the robust union
of ellipsoids. We define now this operation.

Definition 7 The Robust Union under the set

g of parameters of the ellipsoid X is given
Yy = q
u= L g+ L3 pa ) x

This operation evidently does not yield,
in general,an ellipsoid. However several ap-
proximations can be worked out (i.e bounds).
The simplest one being a sphere whose radius
should equal the value of the spectral ra-
dius ( See Brockett (1970)) of the matrix

o+ Tpp )7l g T pgp )T @)

The computation of the maximization operatimn
would have to be restricted over the condi-
tion peP.

A second alternative is the maximization
of the support functional of the generic el-
lipsoid whose dispersion matrix is given by
(3) with respect to all possible values of p.
This is far easier to achieve and the result
is identical to the one given in the previous
proposition except for the fact that Q has tc
be replaced by Q~!. We leave it to the -
reader the verification of this simple result

We now proceed to summarize the basic
formulae involved in the main algorithm for
the polyhedral case.

Polyhedral Case

Definition 8 A polyhedron (also called po-

Iytope ) in R is defined as: »
“{xeR": <x, xt><l ¥"i=1,2,...,NX}

Ny> n+ 1. x¥ are called support vectors.

X

Notice that our definition of polyhedra
makes them always contain the origin of coor-
dinates. This does not represent a loss of .
generality and gives us the additional bonus
of greater mathematical tractability without
lossing the essential features of the pro-
blems. ‘

Proposition 9 1let X and Y be polyhedra
characterized by support vectors 5; and y?*
respectively. Then the sum X &Y is &
polyhedron with support vectors g; given
by: (Proof in:Sira (1977) )

= = %

5; = 5’1* /(1+m;) where m;_ = max <y, x¥>
yeY

i=1,2,..., Ny -

* = y* /( 1+ n*); n*= max <y, y*>
Ha5 = ¥y /1 ng ) n max o, 3

xeX
j=1,2,...,Ny

Proposition 10 Let X and Y be as before
with X containing Y. Then the Pontryaguin
difference set X - Y is defined as a poly-
hedron characterized by support vectors z?
where: (Proof in Sira (1977)) s

X =k k) e ko= *
=X /a my ) my er<Zv x>
i=1,2,...,Nx -

Iyhedra given as before, then the intersec-
tion XN Y is a convex polyhedron whose
support vectors are _z_’i‘ given as: (Sira 1979

3 m§=min'{1,max<z, x¥> }

Proposition 11 Let X and Y be two convex po-

X = xk/pt
¥ = x¥/m?
2 —1/1

yeY

L= 12,00, N



2k .. = y* / n*
Ra g/

§ =2, N

Proposition 12 Let M be an nxn invertible
matrix and X apolyhedron with support vec-
tors x* . Then, the image of X under the
linear “map_ M is given by: (Sira (1977))
MX = {ze R%: <z, Z>< 1 i=1,0 0 N )

with: 1 5: ¥ i.

; n* = min{l, max <x,y*>}
J xex 9

2% = M7
=i )
Proposition 13 Let M be an nxn matrix not
necessarily invertible,and X a polyhedron-
as before. The inverse image of X under M
is also a polyhedron whose support vectors
are z¥ . These are given by: (Sira (1977))

2% = M x* i. '
z¥ M_1 ¥ i )

Proposition 14 Let X be a polyhedron with
support vectors 5; , then the robust inverse

image of X :
z= [

EeP

(g + 1,3 psan 7" X

where P is a hyperbox in R? with coordinate
constraints |p.| <8., is a polyhedron with
a finite nunbet of Jhyperfacets given by the
expression: <

e . q *
Z< {ze Rn.<_;_,(A0+ Ej=1 j_BjAj)'zi>=§1

for all i =1,2,..., N }

where all possible combinations of signs
should be taken in the q summands of the
above formula. An alternative expression
for the above polyhedron is the following:

Z={ze R <z,AL x* > + V.98, |<z Atx*s| <1
= =703 2J=TBJ| =757 |

i= 120, N}

The number of facets (hyperplanes) boun-
ding this polyhedron is lesser or equal than
29 N, . This clearly shows that the amount
of cOmputation is substantially increased
when the number of parameters is quite large
in a particular problem. However, not all of
the hyperfacets are '‘active' in the sense -
that they actually tightly bound the polyhe-
dron. :

The problem of computing the RobustUnion
of an infinite nunber of sets parametrized
by a vector p :

. " q
0 Ly o+ L2y it X

is quite a complicated problem when X is a
polyhedron and no general formulas are known,
at this point,except for some particularly
simple case treated by Barmish (1979 ) . How-
ever we shall outline a procedure for find-
ing an outer bound to the infinite union,
solving a finite nunber of non-linear optimi-
zation problems with constraints.

a) Produce an expression for the vectors:

(A, +2j31 ijj)-1 x}  for each i.

(The existence of computer programs such
as MACSYMA, See Boger et al (1975) easily al-

lows one to handle this task quite effecti-
vely.

b) Minimize innorm each of the vectors over the
existence range of the vector p . This step
essentialy entails solving N_ ~ constrained
optimization probléms where © the objective
functions are rational functions of multi-
nomials in the q parameters.

c) Choose separately the solution found in
the previous step for each i, and substitu-
te the original support vector x¥ by §;/m$
where m¥ is the solution found ~in the
previous step. This polyhedron boundsthe in-
finite union.

Obviously this proceedure is quite limi-
ted and can only be followed in low dimensio-
nal cases without much complications. We re-
mark however that many efficient computer pa-
ckages are available for implementation of
these ideas. For a complete treatment of the

TTRP from the computational viewpoint see
Sira (1977).-

5 SOME COMPUTATIONAL CONSIDERATIONS

One of the most serious problems that
often arise with the computer implementation
of the necessary and sufficient conditions
for existence of a solution to the TTRP, is
the fact that the backwards recursive algo-
rithm generates a sequence of polyhedra with
a growing number of hyperfacets (bounding hy-
perplanes). This fact promts one to develop
efficient computational procedures to reduce
the number of constraints defining a partiau-
lar polyhedron, since some of these cons-
traints might be redundant (i.e. non-active)
and thus unnecessarily occupying memory lo- -
cations in the computer. This is particular-
ly frequent in the case of computing inter-
sections of polyhedra. A good number of the
constraints appearing in one of them does not
intervene in the final description of the
true intersection.

In this section we shall indicate some
computational procedures usually followed to
eliminate redundant constaints in polyhedra
descriptions. Some of the ideas are taken
from Sira (1977) and Hnyilicza (1967).

'Constraints reduction al gorithms

We now describe two general constraint re-
duction algorithms which yield more economi-
cal description of polyhedra given by a num-
ber of constraints, some of which may be redun-
dant. These algorithms are modified versions of
the '"bounding hyperbox algorithm' found in Hny-
ilicza § Lee § Schweppe (1975).

Definition 9 A HiperboxH in R* is arectangu-
Tarparallelopiped definedby : H = {xe R :

xﬂﬁn‘éxj SXax3d = 12,000\ }. Let Pbea
polyhedron, then a bounding hyperbox is a hy-
perbox that contains P.
Bounding Hyperbox algorithm.

Assume we are given a polyhedronP defi-
ned by: P < {xeR" : <x, x> < 1¥isl,...,

K }. We now construct the tightest of all
bounding hyperboxes containing P in the fol-
lowing way:




Let ¢. be the vector (0,0,..,1,0,..,0)' with
1 in Jthe j component. Then the minimal
bounding hyperbox is given by:

0_ n.oo_j I oodd
H'={xeR%: ¢+ <x’. <
where cJ.n

process:

nga); 3 j=1,..N}

J
and c - are generated by

1=1

Solve the fol lowing linear prograss
mx <X, g9 i
st X Xy €1:1=L2...K

(Resrectively
min <X, &> = Gly
S.toQx, K941 12 L2.K

An initial guess for the bounding hyperbox
may also be considered before calculating the a-
bove minimal bounding hyperbox. Inany case, the
constraint reduction algorithmneeds an initial
bounding hyperbox to get started.

The following process calculates the verti-
ces of the bounding hyperboxwhich lie in the
same orthant as the direction in which each sup-
port vector x¥ points and eliminates those cons-
traints which do not intersect the bounding hy-
perbox.This yields a more economical description
of thepolyhedron P.(See fig.2 )

True minimal description algorithm

The algorithmof Fig. 3eliminates all redun-
dant constraints for a polyhedron P. This algo-
rithmshould be used after an initial constraint
reduction algorithmbased in the bounding hyper-
boxhas beenapplied. (See Fig.3 )

Fig.4 shows an algorithm to find the minimal
description of the intersection of two polyhedra
with support sets x¥ (i=1,..,K) and y* (j=1,..
.,N) for the polyheara P, and P, respectively.
6. CONCLUSIONS AND SUGGESITONS FOR FURTHER

In this paper we have presented extensions
of previous results to the parametric uncertain-

ty case ina TTRP. Abackwards recursive algor-

ithmwas proposed for Target Tube reachability
ascertainment,

START
1e1
121
1=t
>
e ]
=<K 139 e
STOP L)
18
)
?

I-th constraint reoresen
ted tv 15; 1S on octive oons-|
treint stnce 1t inter-
jsects the bounalng hyrerbox,

[is constretnt should be re-
totred.

The |-t corstraint renresen]
ted by Xx{ is ot an octive
corstraint. L. it Is rean-
ant ond therefore 1t should

ty, =] ¥
Comute :

by = <y . >

Solve the lineor progrom :
mx €x,x}>" ]

sibject o 3
x.5%&i v

eliminated constroint

( J-th constroint Is not :)naum

e 17 arstroint re- |
DESBleg.DIIﬂ! SUoort
tor xt

reoresents a
ore and it o be disoor]

Caloulote :

X <X, = 8]
x€Py

Then te re-
presented by this vec-

Men we =g 1s
0 SUYOrt vector for
the intersectian ro-
Ivhedron.

Then the surart vec-
tor xj /p; Ismot L
a suroort vector for

—

Substitute In the obove Procecure
1 by ). Xt vy} o viceverso

H kv nonp by qjiP v B

Mtoin finally the set of stpoort vectors

It W = for sove
| laull,{uenof
ther 0s suroort vector
od eliminote e othed
vector,

¥ for te Intersection

Fig.4



The main idea that allows for treatment of
the parametric uncertain case lies in the con-
cept of robust inverse images and robust direct
images which basically entail respectively an
infinite intersection and an infinite union of
closed convex bounded sets over aparameter set.

We have particularized our main results for
the most important cases of set-valued uncer-
tainties, namely :E1lipsoids and Polyhedra.
Explicit formulas were presentedwhich allow
computer implementation of the basic recursive
scheme of section III.

Some new and interesting problems have ari-
sen of thesepreliminary studies. Potential a-
reas for further developments are among others
the following . a) Computational experiences
withpractical problems. b) Development of new
methods for efficiently approximating from out-
side and inside infinite unions and intersec--
tions of the twomain classes of sets. c)Connec-
tionof some of our developments with bi-linear
systems reachability of target sets and tubes.
d)Explorationwith other types of convex sets
(cones, geometric theory) and even non-convex
sets (Generalized Polyhedra, Sira (1978,1979
a,1979 b, 1979 ¢) e) Relationof this work
with Fuzzy Sets (See also Sira(1979 d)).
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