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ABSTRACT

The convex hull of reachable sets for bi-linear sys-
tems is examined through a support functional type of cha-
racterization. Anoptimal control problemis formulated
for such characterization. Computational algorithms and
some approximating scheme are also presented. Approxima-
tions relate to polyhedral characterization of the con-
vexhull of reachable sets for this class of systems.

I INTRODUCTION

Reachable sets play an important role inboth : opti-
mwal control theory and set-theoretic estimation and con-
trol problems [1],[2],[3].A good amount of results are a-
vailable in connectionwith these sets, for the linear case
[4]1,[51,[6]. The most important features of reachable
sets for linear dynamic systems are ,among others, convexi-
ty, closedness, boundedness and connectedness (inputs are
assumed to be bounded ).

Recently effort has been placed in the study of rea-
chable sets for bi-linear systems. The works of Brockett
[71,(81,[9] and others [10],[11], have shown that desi-
rable properties of reachable sets, present in the linear
case, arenot retained in the bi-linear case. For instance,
even if the reachable set is closed whenever the control
set is closed, bounded and convex , it is not true that the
reachable set is necessarily closed when the control set
is only compact.For bi-linear systems the reachable set is
tipically non-convex and non-simply connected [9]. Rather
stringent conditions and limitations have to be imposed on
thebi-linear structure to retain convexity and compact-
ness of the reachable set (RS).

In this paper we shall treat the problem of characte-
rizing the convex hull (CH) of the RS for bi-linear sys~
tems. This problem is handled through the introduction of
the functional support description of the RS. This descrip-
tion naturally convexifies theset making it mathemarically
tractable. The functional support description leads to a
terminal time optimization problem defined on the bi-li-
near structure with bounded control signals. For reasons
of space,only the amplitude bounded casewill be treated,
the results are easily extended to the energy constrained
case.

The CH of the RS is characterized by the solution of
a Matrix differential equationwith split boundary condi-
tions which are only partially known . Two equivalent al-
gorithms are proposed for the computational solution of
the problem Asampling process of the support vectors
yield a polyhedral approximation of the CH of theRS for
our bi-linear structure.Some suggestions for further re-
search are included at the end of the paper.

II PROBLEM FORMULATION AND MAIN RESULT

Given the bi-linear system:
d _ m .
Fxm = @+ L0 wOBx® 5 xedex, D

with u, measurable inputs in [t,,T] constrainedby the
relatidn:|u .I_g B.,find the C}lo‘r0 the RS in R at some
5 N = i

fixed time T <00

The support functional description of the CH of the
RS is given by the expressions

Co R(T) < {xeR" :<x, y> <o(y) ¥ |yll=1} @
where R(T) denotes the RS at time T, and 0(y) is the

support functional defined as the solutionof™ the fol-
lowing static optimization problem :

O(y) = <X, 5> (3

sup
XE€ R(T)
In our problem the sup operationis amaximization

due to the compactness of the RS .

Proposition 1
The CH of R(T) is characterizedby:
Co R(T)’={_}5€Rn:<§,y> ;TrKT(1) 'V‘“Z” =11} (4)

where KT(y) is the unique solution at time T, of the non-
linear matrix differential equation:

TR = [AKO]+ T BsenTr BKE) [B,R®] (5

withsplit boundary conditions:

= 100 . = = 0 '

K(to) %, P ;5 K(D) KT(Z) x (D y (6)
where ' denotes transpose and the symbol [A, B] =AB-BA is
the commutator product of the involved matrices. The vec-
tors x  (T) and p, are not initially known but they are
found via the following algorithm: :

1

1) Select or guess a vector py = P,

2) Set k =1 k k
3) Compute the matrix K (to) = x p(') and integr

forward in time equation (5) with K(t) =K ()

4) Choose Kk X

v (t) = B sgn(Tr(BK (t)) €)

5) Integrate backwards in time the vector differen-
tial equation:

d _k+l n k k+1
R == a0 u (0B p () .
8 k+1 ®
with p. (T)=-y
6) Obtain a solution vector pk+1= pk+1(to)

7) Set k = k+l1 and repeat the process from step 3
on, until convergence. o
8) x (1) is computed by solving (1) with ug=ug
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Proof,

The proposition is an immediate consequence of ap-
plication of Pontryaguin'sMaximum Principle to the
constrained terminal cost optimal control problem. The
Hamiltonian for the problem is:

B(x,p,u,t)= <p ,(A+ T uB)x > 6]
with |ui|=§= Bi and the canonical equations are given
by:

Faw = (a+ L% w08) x(0 (10)
2t = x5
?S» R(C) = -(A + 2121 ui(t)Bi)'g(t) (11)

M ==y

Hamiltonian minimization subject to the control
restrictions yields:

- t 3
u (t) = B, sgn p'(t) By x() ¥ i 12)

If we define the matrix K(t)= x(t)p'(t) then
x'(t)p(t)= Tr K(t)= constant, due tothe fact that d/dt
x'(t)p(t) = 0. The control vector components are seen
to equal u, = B.sgn Tr(B.x(t)p'(t)) = B_.sgnTr(B.K(v))
Taking derivatives on K(t) and usingthe clanonicaf'equa-
tions associated with the optimization problem results
in the differential equation forK(t) as statedin (5).
The splitboundary conditions arise fromthe definition
of K(t) in a trivial manner.

Uniqueness of solutions for the matrix differential
system are immediate from well established Lipschitz
conditions of the right hand side of (5). The proposed
algorithm constitutes a solution to the two point bounda-
ry value problemthat arises by the coupling of (10),(11)
and (12). The matrix formof thenecessary conditions
produces an ill-defined two point boundary value pro-
blem due to the partial knowledge of these conditions on
either extreme of the time interval.

Since it is possible to have measurable intervals of
time where sign B.K(t) couldbe undefined, singular solu-
tions could arise, Itis easy to verify that this can hap-
pen only if the smallest Lie Algebta generated by A’Bl’ 5
- is Abelian. (Frick and Wei [12]1 ) .

III AN ALTERNATIVE COMPUTATIONAL ALGORITHM

The following is a computational algorithm that es-
tablishes an interplay among the matrix differential e~
quation and the canonical equations for the solution of
the TPBV problemwhich characterizes the CH of the RS.

1) Select or guess a vector X(T) = xl(T)

2) Set k=1 " X

3) Compute the matrix K (T)=-x (T)y and inte-
grate backwards in time equation [5) with
K(t) = RK(1). .

4) Choose uf(t) = B.sgn(Tr B.,K (t))

5) Integratelfomardlin time “the vecltéor diffe-
rential equation (1) with x(t) = x**1(t) and
boundary condition x¥*l(t.) = x .

6) Obtain §_k+1 (T) and use this solution to re-
peat the process from step 3 on setting now
k = k+1, until convergence.

Once the support functional has been determined as
Tr K (y) = Tr K®(T) for a particulary , then a sam-
pling of the possible valuesof y over the unit sphere
is necessary to obtain a convex polyhedron approximation
for the CH of theRS. Abounding hyperboxis readily ob-
tained by taking the unit coordinate vectors e.=(0,..,1,
+..0). Two and even three dimensional examples can

benefit of a greater number of "sampling points" in the
unit sphere toyield abetter approximation of the CH for
the RS.

IV CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

A characterization of the CHof the RS for bi-linear
systems has been presented. Astraightforward application
of Pontryaguin's principle yields the answer to the opti-
mization problem inherent in the support functional des-
cription of such CH. The TPBVproblem that arises in co-
nectionwith the optimal control problem can be solved via
two equivalent computational algorithms that we have pre-
sented.The energy constrained case for the structural con-
trols is treated similarly and it will be the subject of a
forthcoming publication. The inhomogeneous structure
case has not been treated here and deserves some attention.
Numerical experience is needed in this area.
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