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ABSTRACT

This paper considers an extension of the Target Tube
Reachability Problem (TTRP) for discrete-time, linear
systems with set-constrained disturbance inputs and
observation uncertainties to include set-bounded para-
metric uncertainty in the state transition matrix. A
backwards recursive algorithm, similar in spirit to
that developed by Bertsekas & Rohdes [1], is proposed
for the determination of Robust Attainability Regions
in state space. These guarantee the existence of ad-
missible control actions that mantain possible state
trajectories inside a pre-specified Target Tube defi-
ned over a finite planning horizon. The basic concepts
for this extension are robust direct and inverse images
of closed, convex, bounded (CCB) sets through linear
waps with uncertain but bounded parameters. Formulae
and simple examples are furnished in detail for the
ellipsoidal case.

I. INTRODUCTION

This paper considers a slight extension of the
Target Tube Reachability Problem (TTRP), treated by
Bertsekas and Rohdes [1], Glover and Schweppe [2], and
others [3], to include unstructured set-bounded knowl-
edge of parametric uncertainty in the state transition
natrix.

Our results parallel those of [1], in the sense
that a similar backwards recursive algorithm for the
determination of “robust" attainability regionms is
proposed. These regions, in state space, guarantee the
existence of an admissible control sequence which main-
tains the possible state trajectories, starting from
an initial state uncertainty set, inside a prespecified
Target Tube defined on a finite planning horizon.
Targer accesibility, whenever possible, is guaranteed
in spite of all involved uncertainties: initial state
uncertainty, additive disturbance inputs, structural
(parametric) plant uncertainty in the state transition
matrix, and corruptive signals affecting the measure-
ment program in an additive fashion. A set inclusion
involving the initial state uncertainty set and the
robust attainability set at initial time, has to be ver-
ified for the existence of a "robust” control action
that induces target accesibility to the systems state
trajectory.

The basic results that allows for our extension
are the concepts of robust inverse image and robust
direct image of a closed, convex, bounded (CCB) set
through a linear map with set-constrained uncertain
parameters. These operations allows the proper hand-
ling of the parametric uncertainty in the backwards
recursive algorithm, developed in [1], and represents
the main difference of our work with that performed by
researchers in the late sixties and early seventies
(11, [2],[6].

In Section II of this paper, we .develop the two
basic concepts ‘we just mentioned above: robust direct
images and robugt inverse images of CCB set through
linear maps with set-constrained uncertain parameters.
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We present, in this section, specific formulae and
simple examples for the case of ellipsoidal bounds and
sets. We develop approximation schemes and procedures
to inner-bound robust inverse images and outer-bound
robust direct images of CCB sets. The nature of the
TTRP justifies our search for such bounds and not
others (i.e. external bounds to robust inverse images
etc.).

Section III considers the Robust TTRP for discrete
time, finite dimensional linear systems. We formulate
this problem and present the backwards recursive al-
gorithm for target reachability ascertainment.

In Section IV we discuss computational issues and
basic difficulties related to intermediate sets gen-
erated by the proposed algorithm. We also point out
possible research directions for future developments
in this area.

II. BASIC DEFINITIONS AND RESULTS

In this section we present some basic definitions
about robust direct and inverse images of CCB sets
under linear maps with uncertain but bounded parameters.
These definitions constitute extensions of well known
set operations such as direct and inverse images of
CCB sets under linear maps. We assume the reader is
also familiar with set-theoretic operations such as
vector sums, Pontryaguin difference of sets, etc. For
a detailed account of these operations the reader is
refered to Schweppe [5], Sira [3],[4]. All these con-
cepts are intimately related to the formulae presented
in next section. &

Definition 1: Let A and A (3=1,2,..,q9) be linear maps
in R , and p € Rq a vector of parameters wlth values in
the CCB set P. We define the robust inverse image of

A n
a CCB set X in R, the set:

3
This set is denoted by (A+EL ij,)-RX.

{;_sR (A+E 1P5 A,)XeX ¥ pep} (2.1)

Definition 2: Let A, A (3=1,2,..,9), p and P be as abowe.

We define the robust dlrect .unage of a CCB set X in R D
the set:
{yer"™: x:(m»ij_lpjl\j)g:_ for some xeX and some peP}(2.2)

R
This set is denoted by (A+ijAj) X.

In terms of inverse and direct images, for each p,
the above set operations are easily seen to be equi-
valent to:

-R, q S
A, =0 (a+I; .p.A, 2.3
(A+Zp] J) X pop ( ZJ'—‘lpj J) X (2.3)
(2.4)

R, q
Tp.A) X = A+L LA)X
(a+Ipy J) QP ( 312534
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The robust inverse image of a CCB set is cloged
and convex although not necessarily bounded. On the
other hand, robust direct images of a CCB set is, gen-
erally, non-convex, although closed and bounded.

Next, we particularize the above definitions for
the case of ellipsoids. This class of sets is com-
monly used to describe unstructured knowledge of
bounded uncertainty [11-[5].

Let X and P be ellipsoids described by:

x = {xeR": x'Q x < 1} (2.5)

p = {perd: p's p < 1} (2.6)
Then, the sets (A+ijAj)-RX and (A&ijhj)Rx are not,

in general, ellipsoids. We must, therefore, device
procedures to obtain tight inner and outer bounds to
these sets respectively. It will be clear from the
mini-max nature of the solution to the TTRP that it is
precisely these bounds what we need, to guarantee ’
“strong" solutions to our problem f1].

Inner bound ellipsoid to a Robust Inverse Image of X

Formula {(2.3) entails the intersection of an
infinite number of ellipsoids. We are required to
find an inner-bound ellipsoid to such intersection set.
We shall present a procedure which reduces the problem
to finding an inner-bound to the intersection of a
finite number of ellipsoids which we call "extremal”.
The inner bound we f£ind, is the tightest inner bound
ellipsoid for the infinite intersection. {(i.e. is the
"greatest" ellipsoid inside the infinite intersection
set).

Consider, for some peP, the inverse image of X
under (A+ijAj)

-1 - n, q . q
(A+Eijj) x={xeR :x" (A+Zj=1ijj) Q(A+zj=lpjnj)5 <1}
(2.7

It is easy to see that the Trace (Tr) of the disper-
sion matrix defining this ellipsoid equals the sum of
the square inverses of the distancesfrom the origin to
the intersection points of the ellipsoid with the co-
ordinate axis. Prom here it follows that maximizing
the trace of the dispersion matrix, over all possible
values of the parameter vector p, one finds the values
of p in P which "identify" those ellipsoids ("extermal®
for us) which produce the closest intersection points
to the origin. It is not difficult to see that there
is only a finite number of such extremal ellipsoids.
Each one of these will correspond to a solution p of
the static optimization problem defined on the trace
of the dispersion matrix, subject to the parameter
vector constraint.

The maximization of the trace of the dispersion
matrix subject to the parameter constraints is a
standard algebraic optimization problem solvable by
Lagrange multipliers. The involved formulae are:

Let p*i be the j-th component of the vector éfi
given by:

W - -1

P’ (AiS+KB) b (2.8)
with Ai being the i-th real solution of the algebraic
equation:

1

b' (Azs»«z}ug3 + KBs'le)_ p=1 (2.9)

where the vector b has components bj = Tr(AaQ R);
j=l,2,s{Lq, while KB is a gxq symmetric matrix whose
i,j-th entry .is Kﬁ(i,j) = Tr(AaQ Aj). Then the i-th
"extreme" ellipsoid is given by:

{xer™ix' (A+L jzlpgiAj)'Q(A+Z<jl=lp;iA )x < 1} (2.10)

3
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Formula (2.8) is the consequence of-taking derivatives
with respect to p in the Lagrangian of the optimjzation
problem posed above. Formula (2.9) is the outcome of
substituting (2.8) into the parameter restriction equa-
tions (ellipsoid P). The algebraic equation (2.9) is
2q-th order and therefore has 2q solutions which are
necessarily real according to the same equation. We
thus have 2q possible solutions for p*. This finite
set of ellipsoids produces, in all the range of p, the
closest distances from the origin of coordinates to
the intersection points with particular coordinate axis.
There can not be, in the infinite collection of ellip-
soids, one which intersects any axis closer than the
corresponding one in the finite set. This assertion
can be made because of the optimal character of the
solution, the symmetry of the restriction set P, the
convexity of the ellipsoids, the quadratic nature of
the objective function, and the boundedness of P and
the ellipsoids of the form in (2.10) above. In sum~
mary the procedure would be as follows:

1) Compute the trace of the dispersion matrix of the
ellipsoid (2.10}.

2) Maximize this expression subject to the restriction

EP.

3) gbnsider all the "extreme" solution ellipsoids found
in the previous steps and intersect these solutions
(This set is not, in general an ellipsoid).

4) Find an inner bound ellipsoid to this intersection
set. (This can be done applying the ideas of
Schweppe [5)] or Glover and Schweppe [2] by taking
intersections of two ellipsoids at a time and find-
ing an inner bound for this intersection).

Example 1

Let A=l and Al =

8 é ’ pzi 1l and
X = {§£R2:x'x < 1}. The robust inverse image of X
under A+p Al is given by:

N {stZ: « 1P x < 1}
PEP "~ = 2l 77
p l+p
Thus, the Lagrangian optimization problem would entail
solving:
max(2+p2) s.t. pz-l <0
There are two solutions to this problem p=+1 and p=-1
corresponding to the "extreme" elliptic regions:

2
xl + 2x1x2

An inner bound to the intersection of these two ellip-
tic regions is given by the disk: xi + xi < 0.381964.

2 2 2
< o <
+2x, £ 1 and X, 2xlx2 + 2x2 <1

All these sets are represented in Fig. 1.

Outex bound ellipsoid to the Robust Direct Image of X

As before, formula (2.4) entails the union of an
infinite number of ellipsoids and we are required to
find an outer-bound ellipsoid to such union set. A
procedure almost identical to the p;eceeding one allows
one to deal only with a finite number of ellipsoids and
then use standard procedures for finding the outer
pound of their union. The procedure allows to find the
"gmallest” outer-bound ellipsoid for the infinite union

Consider the direct image, for some p in P, of X
under the map A+ijAj. The support functional descrip-

tion for this set is (Schweppe [5}):
n q -1
+Ip A, ) X={xeR :x'y <Iy' (A+L} A))
(Am];x@ x'y <Iy'( Fg]JQ

q 1/2 '
:  P.A) 'yl for all 1}
3=1373 L e

(2.11)

(A+Z



X2

2

(Outer bond Ex, 2 ) "\
—

It is easy to see that the trace of the matrix in the
support functional above, represents the sum of the
squares of the distances from the origin to the inter-
section of the support hyperplane, tangent to the el-
lipsoid, with each coordinate axis. This support
hyperplane is, in each case, perpendicular to the co-
ordinate axis. From here it follows that maximizing
the trace of this "dispersion" matrix we can find the
ellipsoids which possess points far away from the
origin. Those "extreme" ellipsoids would, again, be
parametrized by p and as before there is only a finite
number of such "extreme" objects.

The static optimization problem we are suggesting
is very similar to the one proposed before. We only
have to notice the similarity of the objective func-
tions_and note that it is only required to replace Q
by Q'l the matrix A by A' and each A_ by A!{(j=1,2,..,9.
i.e. we would have: J 3

o'}

*3 - -—
p = .—()\is + Kg) (2.12)

with Xi being the i-th real solution of the algebraic

equation:

1

b —2 —_—— - _1_ - —
b' (A"s+2h K, + K S XKy) b =1 (2.13)

where the vector E has components Ej=Tr (AjQ-lA');
j=1,2,..,4, while EB is a gqxq symmetric matrix with
-lg(i,j)=Tr(AiQ'1A5). Then the i-th "extreme" ellip-

soid is given by (2.11) replacing pj by p;l. The

procedure would then be very similar, in spirit, to the
one proposed before:

1) Compute the trace of the dispersion matrix in (2.11).
2) Maximize this quantity over all possible values of
p in P.

Consider all the "extreme" solution ellipsoids found
_in the previous step and consider the union of this
“finite set of ellipsoids.

4) Find ‘an duter bound ellipsoid to this union set. A
sphere of ‘radius equal to the square xoot of the
maximun eigenvalue of the inverse of the dispersion

3

matrix in (2.11) always provides a tight outer-bound
to our problem.

Example 2:

Consider the same matrices and ellipsoids in R2
of the previous example. The robust direct image of
X under the map A+pAl is given by:

1+p p
2 1/

{xer":x'y <[y’ ¥
PEP = 1

2 for all y'y=1},

As before, there are two solutions to the optimization
problem prescribed by the above procedure. One for
p=+1 and other for p=-1. These extreme elliptic re-
gions are given respectively by:

<1l

xi-2x1x2+2x§
Since they coincide with the extreme solution ellip-
soids of the previous example {(although for oposite
values of p) we show also in Fig. 1 the outer bound
for the union of the above elliptic regions. This
bound is a disk with equation: x§+x§ < 2.618034.

2 2
<1land xl-v'2xlx2 + Zx2

III. PROBLEM FORMULATION AND MAIN RESULTS

Consider the discrete-time linear dynamic system:

5(k+1)=<A0+z‘j‘=lpj (A X(K)4B u(k)+G w(k)  (3.1)

3

where x(k)€ R" is a vector called the state of the sys-

m
tem at time k, u(k)e R is the control vector, w(k) is
a perturbation input signal, pj (k) is an uncertain

parameter vector of the system transition matrix. The
matrices AO,Aj,B and G are real valued matrices of the

appropriate dimensions according to: (the time index
k=0,1,...,N-1)

9 is a CCB set

wik)e Wk ¥ k, wkc R and is a CCB set

x(0)e X, C R, X

plkre kak, P C R is a CCB set. The element of
plk) are By (k).

uke U ¥k, UkCRm is a CCB set of Admissible

Controls.

At each instant of time the controller performs
measurements on the state of the system according to
the rule (measurement program):

z(k) = Hx(k) + v(k) (3.2)

where z(k)e R is the measurement vector and v(k)e R’
is a vector quantity of unknown nature, known only to
be an element of a prescribed CCB set of called

the measurement disturbance set denoted by Vk' The

matrix H has the appropria e dimensions.
It is required to find an admissible control
sequence {u(k), k=0,1,..,N-1, u(k)e UV k} such that

the state of the system x(k) is found, at each instant
of time k, within CCB set X (Target Tube) in spite
of the values that the variables x., w(k), v(k), and
the vector p(k) may take within théir respective res-
triction {(uncertainty sets).

Formally stated our problem would be possed as:

Problem: Given the discrete time linear sgstem (3.1)
and the measurement program (3.2) find (if it exists)
an admissible control sequence u(k), k=0, 1,..,N-1,
with the property that at each instant of time the
state of the system is contained in a prespecified
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target set {xk, x=1,2,..,N} for all possible distur-
bance sequences w(k), v(k), all possible initial states
x(0) in Xo and all possible values of the parametexs
pik).

We say that the target tube is reachable in a
robust sense whenever a solution to the above problem
exists. (see Bertsekas [1]).

Proposition 1

k
The Target Tube {X } is reachable in a robust
sense from the initial state uncertainty set XO if

and only if XgC X . The set xg is computed (off-line)

0
by means of the following backwards recursive algo-
rithm:

k+1 k+1 k
Xy =X -GW (3.3)
k k+1
X, =X, T+ (-BU, ) (3.4)
k -R _k
xRA (Ao+):pj(k)Aj) xA (3.5)
k k
= N
X = xo N X (3.6)
with the "initial condition"
N N
xR =X (3.7)
The set X: is called the Modified Taxget Set at

time k, and conforms a Modified Target Tube when all
k's are considered. This set represents the region of
the state space for which no valué of the plant per-
turbation input can force the state, at time k, out of

the Reduced Target Set Xi. The Modified Target Set is

thus a robust set with respect to the additive action
of the plant uncertain input signal on the present
value of the propagated state through the state tran-
sition matrix.

The set x: is called the Attainability Target Set

and represents the set in state space for which an ad-
missible control vector u(k) can be found such that
the next state is found within the Modified Target Set.
This Attainability Target Set thus contains everything
that is possible to transfer to a secure region in the
state space from which the additive disturbances do not
take the state out of the Reduced Target Set at the
next instant of time.

The set x;A is called the Robust Attainability

Set at time k. This set represents that portion of
the Attainable Set which is immune to the parametric
uncertainty multiplicative action on the states at
time k, so that reachability of the Modified Target
Set, at the next instant of time, can be achieved.
This is the smallest set for which, no matter what
parameters or perturbation signals nature chooses to
apply, its elements will always be capable of transi-
tion to the Reduced Target Set.

The set xi is the Reduce Target Set at time k and,

as might have been already inferred, this set contains
that part of the state space which has to be achieved
by the state (i.e. reached) and at the same time, con-
tains those states which ¢an be guaranteed to posses
an admissible control sequence for reachability of the
rest of the Tube prescribed as a target. This is a
compromise set where you have what you want to reach
and what you must reach to insure a long term satis-
factory behavior of the systems state trajectory.

The Dynamic Programming spirit underlying this
backwards recursive process is self evident. Its off-
line character allows room for computer studies and
feasibility experiments.

All the basic set-theoretic operations involved in
the above a priori recursive algorithm do not destroy
the convexity of the original data sets.

Suppose that target reachability, in a robust
sense, has been verified with the aid of the previous
algorithm. We must then proceed to f£ind a control se-
quence that actually produces target reachability. We
shall now indicate how to compute a set in the control
space, for each instant of time k, (i.e. a tube) which
has the property that any of its elements produces, at
the proper instant of time, state transitions that in-
sure robust reachability of the Target Tube. We call
such tube the Strategy Control Tube or Robust Strategy
Control Tube. This set is given by:

-1 _k+1 R
EARE e - (gt AN X 1NV {3.8)

where is either a singleton, in the case of per-
fect measurements, or an estimate set of the state at
time k, produced by a processing of the observations
of the noise corrupted measurements. This process
would necessarily have to be on-line.

In general, the Strategy Control Tube is consti-
tuted by a sequence of sets which are non-convex.
This is easily infered from the above formula due to
the presence of a robust direct image of the estimate
set Xk|k' However, using the ideas of Section II, it

is possible to prescribe an outer-bound for the robust
direct image in Pontryaguin difference with the
Modified Target Set at time k+l. We thus obtain a
"strong" Strategy Control Set.

As pointed out above, the sets Xklk are the out-

come of an on-line estimation process that is performed
according to the systems dynamics and the compatibility
of the set of possible states with those rendered by
the measurement program. The estimation process is
accomplished in the following manner:

%l = Be[x-1" 1S -zt b (3.9)
R .
X 1™ BgtiR O RS xk__1|k_l+{B_\1(k—l) Moew, _, (3.10)
with the "initial condition”
X0|0 = X, (3.11)

The control vector E(k—l) is an element of the Strategy

Control Set Ek-l.

As in the case of the Strategy Control Sets, the
estimation process involves dealing with robust direct
images of sets (i.e. non-convex sets, in general). 1In
this case, it would be necessary to compute an outer-
bound to the first summand in (3.10) so that certain
"strength" is added to the on-line process of simul-
taneous estimation and control.

We conclude this section by pointing out that all
the formulae in the algorithm (3.3)-(3.7) can be par-
ticularized for the case of ellipsoidal bounds. This
only calls for set operations such as direct images,
robust inverse images, intersections and Pontryaguin
differences .of the involved sets. Approximation for-
mulae for all this operations exist in the published
literature (Schweppe [5], Glover and Schweppe [2],
Bertsekas and Rohdes [1], Schlaepfer and Schweppe [7],
sira [3],[4] etc.). The estimation process (3.9)-
(3.11) is equally suitable for particularization in
the ellipsoidal case. The formulae and procedures
given in Section II for the robust direct images of
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CCB sets allows such particularization. The rest of
the operations in this Process are widely known and has
been described in full detail in the above mentioned
references.,

In this paper we have presented a straightforward
extension of previously known results to include the
parametric uncertainty case in the TTRP. A backwards
recursive algorithm was proposed for Target Reach-
ability ascertainment. The main ideas that allows for
treatment of the parametric uncertain case lies in the
concepts of robust inverse image and robust direct
.image of a CCB set under linear maps with uncertain but
bounded parameters. These operations entail, basically,
infinite intersections and unions of CCB sets respec-
tively. We have shown, for a particular case, that
only a finite number of the involved sets need be con-
sidered for the prescription of inner and cuter bounds.
We have only considered ellipsoidal bound for the un-
certainty in the results concerning these robust in-
verse and robust direct images. Polyhedral cases are
treated elsewhere [4].

One of the long-standing problems associated with
the TTRP is the question of computational feasibility.
The approximation schemes become somehow tirening for
computer capabilities. A number of methods have been
prqoposed in the past to handle the inescapable memory
growth associated with the backwards recursive algo-
rithm for Target reachability ascertainment. Elimina-
tion of redundant constraints, in the case of polyhe-
dral bounds, minimal description of sets and canonical
direction bases [8] are among the many incursions in
the computational problems associated with the
"unknown but bounded" technique for dynamic systems
estimation and control problems.

Some new problems may arise from this preliminary
study. Potential areas for further research are,
among others, a) Computer implementation of the results.
b) Development of new methods for efficient approxima-
tion (inner and outer bounds) of infinite unions and
infinite intersections of ellipsoids and polytopes
(bounded polyhedra). c¢) Connection of our problem with
reachability of Target sets and tubes in bi-linear dy-
namic plants d) Consideration of other classes of
bounds (cones, generalized polyhedra, subspaces)

e) Extensions of this type of problems to the case of
fuzzy sets (See also Sira [91,[10]). :
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