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ABSTRACT

This paper develops a generalization of Wonham's Geometric Theory of
Linear Multivariable Control [1] by introducing a fuzzy subspace formulation
into the conventional theory. This generalization allows for treatment, with
in a convenient mathematical framework, of inescapable issues in systems a-
nalysis and design such as : vagueness or imprecision in control restrictims
, disturbance description and design objectives. We furnish an appropiate
fuzzy geometric basis for the restatement and solution development of pro-
blems treated by the conventional Geometric Theory for the control of Linear
Multivariable Systems.

I INTRODUCTION

The purpose of this paper is to introduce and develop the fuzzy set
theoretic context within the Geometric Theory of Linear Multivariable Con-
trol introduced by Wonham [1]

At the very heart of this generalization is the concept of fuzzy sub-
space of a real vector space. Its introduction allows for the convenient and
mathematically tractable modeling of :subjective or vague control restric-
tions, imprecise disturbance knowledge and fuzzy design objectives. State-
ments and requirements expressing a subjective knowledge of systems varia-
bles and design specifications can be adequately modeled by this technique
in a way that enlarges the solution possibilities even from a practical
viewpoint. This power is not sheard by the conventional "crisp" theory.

It is noteworthy that fuzzy set theory, invented by a control theoreti-
cian [2}, has rapidly evolved in directions out of the control systems dis-
cipline ( Cognitive Processes, Grammars, Graph Theory, Risk Analysis etc [3]
) while questions related to utilizing fuzzy sets or fuzzy subspaces as a
modeling device for describing poorly defined variables, signals and objec-
tives, have only been partially explored [4]-{7].

Geometric theory, on the other hand, has reached a state of maturity
and rapid growth bridging, day after day, with old and recent areas within
the control theory arsenal. Recent contributions, especially by Willems [8]-
[13] , point to the necessity of relaxing some of the basic concepts in Geo-
metric Theory so that some degree of freedom and approximative characteris-
tics are introduced in the formulation of problems succesfully treated by
the Geometric Theory of Wonham. Our viewpoint touches, tangentially, on this
phylosophical necessity and conicides, although in a non-technical manner,
with the theory developed by Willems of " Almost Controlled Invariant and
Almost Conditionally Invariant Subspaces ".

This articlepresents in its section II all the basic definitions and re-
sults related to the proposed generalization. We introduce there the defini-
tions of : fuzzification of a linear vector space (subspace), fuzzy subspace
,fuzzy images and fuzzy kernels, fuzzy invariant subspaces and fuzzy factor
spaces. These definitions allow, in turn, for the corresponding generaliza-
tion,to the fuzzy context, of concepts such as reachable subspaces, (A,B)-
invariant ( or contrélled invariant, or A-mod B invariant ) subspaces ,(A,Q)
-invariant ( or conditionally invariant, or A] Ker C - invariant ) sub-
spaces, unobservable subspaces and controllability subspaces. All these de-
finitions, though, are based in the elementary fuzzy-set operations of vec-
tor addition of fuzzy subspaces, intersection of fuzzy subspaces etc. We
also present formulae needed in the algorithms that produce fuzzy maximal
invariant subspaces, maximal reachability and maximal unobservable fuzzy
subspaces within a given fuzzy subspace.
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In essence, all the variety of problems treated by the Geometric Theory
of Linear Multlvarlable Control could be restated in terms of the fuzzy-geo-
metric generalization. Nevertheless, we shall only formulate one such pro-
blem; the Fuzzy Disturbance ReJectlon Problem (FDRP), in section III of this
work, as an example of the possibilities of the proposed generalization.

All the background material about fuzzy sets, and some basic operations
on these sets, as presented in [6], are collected at the end of the article
in an appendix. The work also presents some conclusions and suggestions for
further research in this area.

IT NOTATION AND BASIC DEFINITIONS

In this section we introduce the basic definitions needed throughout
the entire article. These definitions are centered around the idea of fuzzy
subspaces We introduce this concept by simply adscribing a membersh1£>func—

tion (m.f) defined on the support subspace This concept joined to all known
elementary operations on fuzzy sets permits the 'reconstruction" of the Geo-
metric Theory with a fuzzy-set theoretic context.

Definition 1 A fuzzy vector space, (subspace) is defined as a pair (U,u),
usually denoted by U, , where U is a vector space (subspace) and u is a
membership function (m.f) ( i.e, amap:U ~» [0,1] ) defined on U . We shall
refer to U as the support space ( subspace) of ULJ‘ Simbolically, we ex-

press this fuzzy space (subspace) by means of Zadeh's notation as :

u, o= j W/ v ol

H u -
A v- fu221f1catggpm9f X is understood as the adscription of a m.f. v to
asubspace ( or space ) X . When confussion could develop, we denote a m.f. v

adscribed to a subspace X as v,.
Definition 2 = Let B be a linear'map B:U +X and let U, be a fuzzy subspace
defined by a u-fuzzification of U . The fuzzy image of B or the p-image of
B in X is determined by :

BU ={xeX: x=Bu for somegefu} (2.2)
and denoted by B, .B  is then a fuzzy subspace whose support subspace is B
and its m.f. is inherited from the fuzzification of U . According to the
extension principle ( Zadeh [2] ) we have :

B - f pel X/ x (2.3)
u B - -

We shall often use the composition symbol to express the m.f. inheri-
tance through certain linear map of a m.f. adscribed to an original space.
In the preceeding case we would write :

g = owe B~1 (2.4)

Definition 3 Let Y5 denote a d-fuzzification of ¥, by means of the m.f.
§ , representing the qualitative statement : " V¢ 1is the set of vectors

very close to zero in Y " i.e §(0) =1 while 6(X) 0 ¥ y#0 . We

call % a "fuzzy zero" and it is usually denoted, in this work, by 96 5

Definition 4 Let C be a linear map C :X-+VY, then the fuzzy kernel of

C , denoted by Ker6 C or &S-ker C, is the fuzzy subspace g
= . 2.5
Ker  C {x: Cxeg % } (2.5)
The m.f. of this fuzzy subspace is inherited from that of the fuzzy
zero. By virtue, again, of the extension principle we have :
= 2.6
6Ker C §oC ( )
Definition 5 Let Vp be a fuzzy subspace with m.f. U , we say Vu is an
A-invariant fuzzy subspace if :
c
A VU £ Vu

TAR

(2.7)



This condition implies two relations, one involving the support subspace and
the other involving the m.f.

-1
AV c V and Map S M oor “V°A My (2.8)
Definition 6 Let Ru and 8,, be fuzzy subspaces, we denote the fuzzy addi-
tion of these subspaces by Ru + S and define it as :
'Ru +8,=1lx+y: 5 €¢ Rliand Y €S, } (2.9)

where the sum is understood in a fuzzy set-theoretic way. Adopting the defi-
nition of fuzzy addition given in [6](See also the Appendix ) we have :

Ru*Sy =J sup [ p(u-v) A v(W]/ u (2.10)
H R+S v
We shall express shortly the m.f. of this sum as :

LAY (2.11)

& R4S Mg * Vg

or : _ .
RU+ Sv = (R+S )U*V (2.12)

where the symbol * stands for convolution of the involved m.f.'s according
to the formula (2.10) above.
Definition 7 Let UV, and Ry, be two fuzzy subspaces, then the intersection

of thses subspaces is a fuzzy subspace defined as :

v ﬂR:(VﬂR )uf\) ‘ (2.13)

Definition 8 Let A : X-*X be a linear map, not necessarlly invertible,

and let S be a fuzzy subspace of X . The | -inverse image of S under A is

defined " as the fuzzy subspace given by :
-1

ATS = dx: Axe. S, } (2.14)
According to the extension principle we have :
Al S, = ( atls S, (2.15)

Definition 9  LetX be a fuzzy subspace and Su Xy a fuzzy subspace of Xy,
Then, we denote by QJ the factor space ( or sugspace) of X,, modulo Su
(also denoted by X %mod SU) The support subspace is  X/$ andllt consti-
tutes a vector subspace with elements denoted by either [x] or x(modS).
Using the definition of equ1va1ence classes as the sum of a singleton
and a subspace, we can,after using the formula for fuzzy translation of a

fuzzy set ( in this case of a fuzzy subspace ), determine the fuzzy factor
space as the fuzzy subspace : ( See the Appendix )

X /S = sup { Vo [ IS ) A uy(n1 Y /Ix] (2.16)
WU X/S a Xe§+S X S X0 -

In conventional Geometric Control Theory, when one defines the reachatle
or controllable subspace < A]B > , use is made of the fact that u(t), the
control vector, can take any value in the set of allowable control functions
over the infinite time interval. It is not difficult to see that a u-fuzzi-
fication of the control space U yields a fuzzification of the reachable
subspace through the H-image of the control channel map B and the systems
dynamics. It is left to the reader show that actually the subspace of fuzzy
reachable states in this case is given by :

RE<AB>=B+aB +a%B +..+a"8 (2.17)

H U M H H H

. n_l _- L3
and chen : Venlp> T MB T Has T TS L uge AT (2.18)

Definition 10 A fuzzy subspace Y in " is said to be u-controllable or u-

Teachable if and only if : < AIB >Pp X, i.e it is simmultaneously satis-
fied :
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Hass (2.19)
Definition 11 W is (A, B)u-lnvarlant ( also called A(modBn)-invariant or

Controlled Invariant subspace ) if there exists a map F such that Vv is

(A+BF }-invariant, i.e (A + BF )U < Vv

As a counterpart to WOnham s theorem on (A,B)-invariant subspaces, we
also have :
Theorem 1V  is (A,B)u -invariant subspace if and only if :

<A |B> D X and

Y
A Vv S Uv Bu (2.20)
In terms of the support subspace and the m.f.'s this means :
AVcV+B (2.21)
and 1
vy ° AT <v vy * Mg (2.22)

Definition 12 A fuzzy subspace §, is said to be (C,A) -invariant ( also
called A KerGC -invariant or Conditionally Invariant Subspace ) if and
only if

A( Sv (\Ker6 c) Cf Sv (2.23)
this condition implies the simultaneous verification of :
A( SNKer C) < S (2.24)
and 1
[vSA(soC)]oA' < Vg (2.25)

We now make use of the fuzzy kernels, in order to study fuzzy unobser-
vable subspaces.

Definition 13 A subspace ZC is §-unobservable if and only if :

I, <, “é; At Ker, C (2.25)
This condition implies : 1 .
1 ¢ Q A™! KercC (2.26)
and n-1 .
‘A0[6°(CA1)]; 4 (2.27)
i=

In conventional Geometric Theory of control systems, it is shown that
the class of (A,B)-invariant subspaces of a vector space N , denoted by
I(A,B,N) or simply I(N) is an upper semilattice relative to subspace in-
clusion and addition. As such, if I(N) is non-empty, then it contains a uni-
que supremal (A,B)-invariant subspace V*. This subspace can be computed in
a finite number of steps according to the following recursive algorithm :

poe Vs Vennal(Ba vty den 5 0w (2.28)
Let Ng be a fuzzy subspace and R}, a Wu-fuzzification of R". The su-

premal (or largest) (A,B) -invariant subspace contained in N s is obtained
recursively by means of :

3. -1 i-1 c s s . .
Vo= vt s U = NgN AT (B Y ) ; i=j in n, i=n, j>n4
lim, b, O’ . § . ’ = e
] ims . o0 VJ wJ u wj_l
with the "initial condtion" Vg S N6 (2.29)
0

The above algorithm splits, as usual, in two algorithmic procedures ;

one defined on the support subspaces and the other defined on the m.f's

The first one converges, necessarily, in n steps at the most. The second al-
gorithm needs, in general, a larger number of iterations. For this reason ,
the sub-indices are equal in n but from the n-th step on, the sub-index i
stops at n while the sub-index j continues growing until convergence of the
m.f. The support subspace algorithm is the same given by (2.28) above,while
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the m.f. algorithm is represented by :

* = i . = 3= . =
‘P 11mj+00 Wj 3 \Pj GA [(“B*d’_) oA] ,Jl)z,"' JUJO 6(2 30)
The dual notion of V* the smallest AIKerC invariant subspace
br (C,A)-invariant subspace)containing a given subspace K , is denoted by J,

and the algorithm that produces this subspace is :
Jo= I 5 Fekear o kerc], ien; =0 (2.31)
The fuzzy version of this algorithmic procedure is stated as follows:
Let K, be a fuzzy subspace and 05 a fuzzy zero in RM. Let us denote by
3w tﬁe Dirac unit impulse function centered at u i.e 3(u) = 1 and 3 (v)=0
¥ v # u. The infimal (smallest) (C, A)d—lnvarlant subspace containing K is
obtained recursively by means of : H

n i e s
J*v* =7 lim j+mvj ; ij Ku+ Al J 3 1('H(erGC] , i=j in n; i=n, j>n4
with the "initial condition" :  JO '={0) (2.32)
‘ Vo 3 (o)
i.e the m.f. algorithm would be given by :
: -1, .
v, = lim, V, 3 v. =us{fv, A(SeC o A "},3=1,2... ; v, =3 (0
E j>oo ') j o uellyy A ) ) g (2?3?’,)

One of the crucial concepts in Geometric Control Theory is that of a
Controllability Subspace (C.S). The fuzzy version of these important subspa-
ces is characterized by the statement given in the following definition.
Definition 14 A fuzzy subspace R is a p-controllability subspace if there

exists a matrix FU such that :

R, = <A+BFUIBUn R, > (2.34)
according to this the m.f. satisfies
vo= " e v o assm T (2.35)
i=0

The fundamental theorem which allows characterization of fuzzy C.S.'s
is the following :

Theorem 2 Let A, B, be fixed; R<X , R, is a fuzzy C.S. of (A,B) if
and only if Rv is (A, g) —1nvar1ant and Rv = S*v where S*v is the in-

fimal subspace such that: L L
= R, N(AS,, -B,) (2.36)

furthermore:
i i-1 s s . .
S, = st 5 st -nr n (A R + B ) ; i=j in n ,i=n,j>n+1
V, 11m3'*00 vj Vj \Y vj-l U
0 ,

g 1 stion' o = .37
with the"initial condition" : R° { 0}8(0) (2.37)

i.e the support subspace satisfies = the algorithm :
R=S, ; S, = RN(AS, +8); st= st l+8);s%-0 (2.38
while the m.f. satisfies :
: -1 .
V. = lim, V. 3 V. =VA [(v; oA * U] , §=1,2,... 3 v, =3(0)
. jro ) j [0y 4 A U 0 (2.38)
This procedure allows one to check whether a fuzzy subspace Rv is a
fuzzy C.S.
Let Ru be a fuzzification of R" and let U+ . be the largest (A,B)U-

invariant subspace contained in K. . Then, the supremal fuzzy controlability
subspace algorlthm (FCSA) wh1ch rénders V*W* is given by:
n i-1 . . . .
= Q =] =| = >
R*E* R o £ R £ V* v n( B + AFE- . ) =i inn i n,q=p+1
J> o 7] J J- (2.39)
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with the "initial condition" ; g0 - {g}

g~ "ho
The support subspace is generated recursively via:
Re =R R-ven(Bs A RFTYY L den ; R0 = 0 (2.40)
while the m.f is computed by means of : -1 _
Eumlimg o0 &5 &5 = WA lug * (5 0 A5 R0, 5 kg IR

Another important concept in Geometric Control Theory of linear systems
is that of detectability which turns out to be a property weaker than that
of observability and closely related to it. { Wonham [1]). This property is
established when it is found that, for a particular system, the subspace of
unstable modes is observable.

Let the minimal polynomial (m. p)+ a{l) of A be factored as a(}) =

o (A) o (A). where the zeros of o (A) ( respectively o (1) ) in the
complex plane lie in the closed right ( respectively : open left ) half
plane. Let :

X(A) =Keru(A) s X' (A) = Ker ¢ (A) (2.41)
a pair (C,A) is detectable if :
n-1 .
N A KerC < X (A) (2.42)
i=0

i.e. A 1is stable on the unobservable subspace of (C,A).

Let 1,~ denote the membership function of the crisp set X (A) along
the subspace indicated in the second formula of (2.41). This m.f. has the
value zero elsewhere. Using this m.f. and adscribing it to X" (A) we can
propose the concept of a fuzzy detectable pair whenever, given a fuzzy zero
characterized by the m.f. 6 in the output space, it is verified that :

A §oCA' < 1X— (2.43)
i=0

ITI FUZZY DISTURBANCE DECOUPLING PROBLEM

In this section we shall formulate the Fuzzy Disturbance Decoupling Pro-
blem (FDDP). This problem is concerned with decoupling in an approximate (
i.e fuzzy ) way the effect of exogenous disturbances on the output of the
linear plant. We deal with two special cases; the first one asumes unrestric-
ted control vector action in R™ . This case represents the closest formula-
tion to that of Willems' approach [8] to geometric problems within the me-
thodology of "almost invariant subspaces'. We remark, however, that our ge-
neralization does not englobe Willems theory (notice that a fuzzy controlled
invariant subspace does not generalize the concept of an almost controlled
invariant subspace ). The second case we shall treat, assumes fuzzy restric-
tions on the control space. These two problems could be termed : Fuzzy Dis-
turbance Decoupling Problem with Unrestricted Controls (FDDPUC) and Fuzzy
Disturbance Decoupling Problem with Restricted Controls (FDDPRC) respectively.

Fuzzy Disturbance Decoupling Problem with Unrestricted Controls
Consider the linear dynamic system :
x(t) = A x(t) + Bu(t) + D q(t) (3.1)
y(t) = C x(t) (3.2)

where the term q(t) is an exogenous disturbance in Q = RP whose structure
is not precisely known except for the fact that only a qualitative statement
is at our disposal about the nature of such acting signal ( i.e. only a fuz-
zy description of the signal is available., e.g. "q(t) is a biased unknown
signal whose value fluctuates around such value" “or else, " q(t) is a small
disturbance which oscillates very rapidly", etc. ). This distUrbance in RP
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is thus best modeled by prescribing a , let us say , Y-fuzzification of Q.
The control vector u in U =R™ is totally free while the output vector y(t)
lies in ¥ = R4 for all t. -

It is required to find ( if possible ) a state feedback gain F such
that the influence of the disturbance signal q(t) is very smaflf on the out-
put y(t). ( Alternatively, we could say that it is required that the zero
input response of the system, i.e. the response for u(t) = 0 ¥ t, be very
close to zero or almost zero ). -

Formally, we are given a fuzzy zero in Y characterized by a m.f. § (
i.e we are given a &-fuzzification of ¥ ), and it is required to find a
feedback gain F such that if DY is the fuzzy image of D ,in the state
space, of the y-fuzzification of @, then :

<(A+BF)|DY>CfKer6C (3.3)

This condition constitutes the fuzzy disturbance decoupling condition
for our problem. Because we have not imposed any (fuzzy) restriction on the
input signals, this problem has an important conceptual similarity with that
treated by Willems in [8]. One of the differences is that Willems' cons-
traints on the output values,due to the disturbance action on the plant, are
of the "hard"type, thus forcing the norm of these outputs to become smaller
than a preassigned quantity . On the other hand, we impose a'"soft'type of
constraint on the zero input response allowing it to stay around the zero
value so as to be able, at least from a qualitative viewpoint, to asses our
control effectiveness,in the desing problem,by a mere subjective evaluation
of the disturbance influence on the observed output. The other main differen
ce stems from the fact that our definitions of fuzzy invariant subspaces
and fuzzy controllability subspaces do not generalize those of almost inva-
riant and almost controllability subspaces. Our definitions relate to pro-
perties (whether qualitative or vaguely known ) of elements which do belong
to certain subspaces while Willems' essential concepts relate to properties
of subspaces with respect ot points of the space which do not belong to the
related subspaces (.i.e systems trajectories ).

Condition (3.3) signifies, as usual, a pair of mathematical requirements
: one on the support subspace and the other on the m.f.'s. These are :

<(A+BF)|D> € KerC (3.4)
and n-1 1 .
oY DTCA+BR)T < 8o C (3.5)
The solution to the FDDPUC would then be given by the following theo-
Tem !
Theorem 3  FDDPUC is solvable if and only if :
%
v v of DY (3.6)

vhere U* is the supremal (A,B)-invariant subspace contained in the KerC.
This subspace is given by the algorithm in (2.28) with N = KerC ,while the
corresponding m.f. is generated recursively by means of (2.30). According to
(3.6) this m.f. must satisfy : ( Wg = IB i.e u(x) =1 in B and zero

elsewhere ) : vy (3.7)

Fuzzy Disturbance Decoupling Problem with Restricted Controls

This case, slightly generalizes the preceeding one by adscribing a u-
fuzzification to the input space U . We now make use of the (A,B) -invariant
subspace concept, in order to propose a solution to our problem. In the
preceeding problem only (A,B)-invariance had to be invoked due to the'trisp~
ness" associated with the input space.

As before, the solution to the problem exists if and only if :

* 3.8
v g ¢ DY (3.8
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where V* is the supremal (A,B) -invariant subspace contained in the fuzzy
kernel of C ; KerGC. Y* is giJén by (2.30)

IV CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this paper we have given initial steps towards the establishment of
a "Fuzzy Geometric Theory of Linear Multivariable Control!, We have provided
basic definitions that range from fuzzy subspaces and fuzzification of 1i-
near vector spaces to Fuzzy Controlled invariant and Fuzzy Controllability
subspaces. This framework allows for the adequate treatment, within the fuz-
zy geometric technique, of wchichever problem has already been formulated
and solved by means of Wonham's theory. We can therefore parallel the de-
velopments of the Geometric Theory in a fuzzy-theoretic frame,

The results, thus far obtained, generalize those of the existing Geome-
tric Theory of Wonham. This generalization actually represents a needed re-
laxation of the concepts that researchers have been using since Wonham's
early works. This relaxation has a significance, not only from the phyloso-
phical viewpoint, but even from a practical standpoint. This is demonstra-
ted by the closely related line of work initiated by Willems with his "Al-
most Invariant Subspace theory". Willems methodology, which is rapidly ex-
panding into a new and original approach to a number of classical and modern
control problems, could have important inter-relations with the approach we
are proposing in this article. Eventhough we did not pay much attention to
the similarities and parallelisms that could be exploited and explored with
both theoris at hand, we are convinced that an area for further research
could be constituted by the bridging of both approaches.

As mentioned before, a wide variety of problems already treated by the
conventional Geometric Theory remain unexplored within the Fuzzy Geometric
context presented here. Specific examples remain to be worked out and the
variety of solutions obtained, analyzed from both a theoretical and practi-
cal viewpoint. Problems such as the Decoupling Problem, the Output Regula-
tion Problem, the Disturbance Decoupling with Measurement Feedback and Sta-
bility Problem, the Disturbance Decoupling with Measurement Feedback and
Pole Placement Problem, the Unknown Input Observer Problem ( also known as
the Disturbance Decoupled Estimation Problem }, etc. deserve attention from
a fuzzy geometric viewpoint.

Finally, a natural particularization for the m.f.'s appearing in this
work, is the case of "Gaussian Fuzzy m.f.'s " defined over the entire
space of subspace. ( See [6],[7] for more details ). Interesting connections
already exist among Fuzzy Sets or variables and random variables and Proba-
bility theory . The exploitation of these bridges could shed some light on
the recent developments of Stochastic Geometric Theory mentioned by Wonham
in {14].
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APPENDIX

In this appendix we present the basic notation and definitions we use
in this article. These definitions were given in [6] with minor modifica-
tions.

Definition Al  We denote a fuzzy set A with m.f },( ) defined over the

uiverse of discourse U in the n-dimensional euclidéan space R" as :

A= w@ /u (A.1)
U
A non-fuzzy set will be termed "crisp'. Its m.f. has a value 1 over the
entire domain of the set. We use wu €. A to denote fuzzy membership of u to
A.

A straightforward application of the Extension Principle [2] allows us
to define linear transformations, crisp translations, sums, etc of fuzzy
sets in RM.,

Definition A2 We define a crisp translation of a fuzzy set A, in the di-

rection of the vector v , the fuzzy set given by:

A+¥{1/v}= J Hoau-y) /v (A.2)
A+ v
where stands for the support of the fuzzy set A ( i.e the set of points
where the m.f. of A is not zero ) " + " denotes the vector sum of the in-

volved sets.
As a generalization of the preceeding definition, consider the fuzzy
singleton v with m.f. w(v) , i.e B ={p() /v }

Definition A3 A fuzzy translation of the fuzzy set A in the direction

and extent of the fuzzy singleton B , defined above, is defined as a fuzzy
set described by:
Aw%@@}=h [, (ww) A w1/

+ Vv

(A.3)

|=

where the symbol "A " stands for the infimum function of the two functions
values specified to its sides.



As a generalization of the previous definitions, we introduce now the
direct sum or vector sum definition of two fuzzy sets. This definition ge-
neralizes that of a vector sum of two crisp sets.

Definition A4 Let A be a fuzzy set with m.f. u, , and similarly 1let B be a

fuzzy set characterized by g We define the vector sum of A and B as thé
fuzzy set specified by:

A+B =J sup[ My (u-V) A up(v) 1/ u (A.9)
A+B v

where A + B denotes that the universe of discourse , where the fuzzy sum is
to be defined, is the vector sum of the crisp sets that serve as supports for
the fuzzy sets A and B respectively. The "sup' operation is necessary to e-
liminate the possibility of having ill-defined membership values for those
elements that can be expressed in a non-unique fashion as sum of elements in
A and B . This supremum operation usually results in a maximization opera-
tion.

The above formula (A.4) constitutes a natural 'convolution operation'
on the m.f's of the fuzzy summands. Naturally, this definition includes the
case where A and B are crisp sets. The formula (A.4) is, not surprising-
ly, reminiscent of that which establishes the probability density function
of the sum of two independent random variables. Note also that the roles of
u and v can be interchanged.

Remark It is a basic principle that the result can never exceed the exacti-
tude of the data. Equally true, the sum of two fuzzy sets can not be a crisp
set. This fact is established by simple inspection of (A.4).

As a simple application of the extension principle we define now the
direct and inverse images of a fuzzy set A in RM under linear transfor-
mations.

Definition A5 Given a non-singular linear transformation P , and a fuzzy
set A with m.f. U , we define the direct image under P of the fuzzy set
A, the fuzzy set given by : T '

P(A) =J w7 u) /u (A.5)
P(A)

Definition A6  The inverse image of a fuzzy setA ,with m.f. , .under the

linear map Q , not necessarily invertible, is the fuzzy set described by
means of :

Q‘l(A)=f_1 m(Qu) /u (A.6)
QA
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