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A BILINEAR OBSERVER APPROACH TO A CLASS
OF NONLINEAR STATE RECONSTRUCTION
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Abstract This paper considers an observer design problem for linear, time-invariant

plants with nonlinear output equations.

The nonlinearity of the output map is describa-

ble by a linear transformation of a " family of tensor powers " of the state vector {

Brockett,1973 ;

Sira, 1979 ). The problem is transformed into an equivalent bilinear

system observer design for which a number of results already exist ( Derese and Noldus,
1980,1981 ; Funahashi, 1979 ; Hara and Furuta, 1976; Kou, Elliot and Tarn, 1975 ). We
give necessary and sufficiency conditions for the existence of an asymptotic state ob-

reconstructing the associated family of tensor powers trajectory. This observer

simple example is presen-

server

easily allows the estimation of the original systems state, A

ted to illustrate our method. Suggestions for further research are included at the end
of the article.

Keywords. Nonlinear Systems; observers; bilinear observers; state estimation; Tensor po-

wers; Lie Algebra,

INTRODUCTION

A complete body of theory and applications of deter-
ministic state observers has been structured over
the years following Luenberger's original work in
the sixties ( Luenberger, 1964, 1966 ). The state
reconstruction problems proposed and solved, by a
multitude of authors, include continuous or discre-
te, time varying or invariant linear dynamic sys-
tems, delay differential systems, bilinear and non-
linear dynamics and infinite dimensional systems,
just to mention but a few. The techniques underly-
ing these studies range in a wide spectrum inclu-
ding, among others, frequency domain methods, state
space, geometric theory and optimization. For a de-
tailed review of the vast amount of literature and
results that exist in this important area, see the
recent monograph ( O'Reilly, 1983 ).

An important class of problems arise when one con-
siders linear dynamic plants with output maps which
exert a nonlinear transformation on the state vec-
tor and a state reconstruction is to be performed
on the basis of perfect output knowledge. This pro-
blem is frequently present in practical situations
where output measurements include saturation and
other physical limitations of a nonlinear nature,

A state reconstruction procedure which takes this
nonlinearity into account leads, generally, to a
nonlinear state observer design problem ( Kou, El-
liot and Tarn , 1975 ). Such an approach, aside
from theoretical difficulties involved, presents a
major drawback due to hardware and digital computer
routines limitations ( Zeits, 1979 ).

For a large class of nonlinear output maps and li-
near state dynamics, there exists the possibility
of building a bilinear state observer which asymp-
totically reconstructs the systems trajectory. The
bilinear observer dimension is directly related to
the nonlinearity of the output map through the de-
gree of an associated "homogeneous tensor power' of
the state vector which describes, after a linear
transformation, the output map in an exact fashion.
We thus define a high-dimensional equivalent bili-
near state reconstruction problem for which a sig-
nificant amount of results already exist.
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In section I we present a number of results rela-
ted to homogeneous tensor powers, and their asso-
ciated "families", defined on vectors and matrices.
We closely follow Brockett (1973) and Sira (1979)
for this part. We also show how to obtain a bili-
near system with linear outputs which, from the in-
put-output viewpoint, is equivalent to the original
linear system with nonlinear output equations. This
equivalence is achieved by describing the dynamics
obeyed by an appropiate family of tensor powers of
the linear systems state. The bilinear system thus
obtained is actually a tensor power of the, so
called, "Myhill machine" associated with the origi-
nal linear system, The structure matrices of this
Myhill machine form a Myhill algebra ( Krishnapra-
sad, 1980 ) with a very special structure, We stu-
dy and conclude the solvability of the Myhill ail-
gebra associated with the structure matrices of the
machine, The relations of this algebra to the pos-
sibility of upper-triangularization of the structu-
ral matrices describing the family of tensor powers
evolution equations, is shown to be of particular
importance for the implementation of our method.
The proof of the solvability of the Myhill algebra
is a straightforward application of Schur's theorem
(Bellman, 1970).

In section III we formulate our main problem, and
following Kou, Elliot and Tarn (1975) we take a
Lyapunov approach to establish necessary and suffi-
ciency conditions for the asymptotic stability of
the bilinear system describing the error dynamics.
Some of these conditions translate into observabi-
1ity requirements on the part of the system gene-
rating the family of tensor powers of the state
vector and directly involving the original output
sub-matrices.

In section IV we present a pair of simple examples.
We take the harmonic oscillator with nonlinear out-
put equations and test the validity of the proposed
conditions. '

Section V presents some suggestions for further re-
search in this area.
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II NOTATION DEFINITIONS AND
BACKGROUND RESULTS

In this section we give some definitions, closely
following Brockett (1973) and Sira (1979) , about
tensor powers of vectors and matrices. Also, some
facts about the infinitesimal versions of these
maps.

If x is an n vector with components XysXyseee, X WE

denote EIP] the (n+p-1)-dimensional vector of homo-

geneous p-forms in "the components of x. By conven-

tion we set §>0 = 1. The elements of the vector
l[P] are of the form : o 1 iTl xipi with Ip.=p
Py 20 . We define: p 1= .

2 _ Py PP P-P1=Py=+++~P

a- = ) 5000 17F2 n-1 1

o (pl)( v, ) ( 5, ) ()

n+p-1). We shall often refer to

the vector x as the '"p-th tensor

and N(n,p) s (
this 'power" of
power of x ".

If y = A x then y[p] = A[p] gﬁp} is verified and

A[P] is then properly called " the p-th tensor po-
wer of the matrix A " , We denote by A[ 1 the infi-
nitesimal version of the above power, Pl e if

x satisfies the differential equation d/dt x = A X

then d/ae xP1 = a0 xPh

Some useful properties of tensor powers for matri-
ces and for its infinitesimal versions are :
1y any [P1 < AlPIglP)

4) (A+B), . = A, +B
[
LA NN (e] Pl lpl

5) (qM[p] =qA ]

3) (An)[P] - (A[p])‘ 6) (A')[p] & (A[p] )

(2)

We extend the definitions of p-th tensor powers for
vectors and matrices, by considering vectors wich
are constituted by an ordered arrangement of increa-
sing tensor powers of the vector x. For this we
take the p-th power of an augmented vector whose
first component is 1 and the rest of the components
are those of x, We denote this vector by i = [x] 5

then i[P] = [1,5',(5[2])’,...,(zip])']' . We shall
call this vector the '"p-th family of powers of x" .

The dimension of 3["] is (“;P) £ 8,

By direct use of the previous definitions, it fol-

lows easily that if y = A x then ¥ = X X and also
z[pl - xfrl ilp]

, where Rlp} is a block diagonal
matrix of the form R[p]=diag[l,A,A[2‘,...,A[p]].

The infinitesimal version of A'P! is denoted by
A = diag[0, A, A eeesA . The properties
{p] g[0, A, (21’ s [p]] prop

given in (2) above for tensor powers of matrices
easily extend to families of tensor powers of ma-
trices and the same holds true for the infinitesi-
mal versions of such powers.

Lemma 1 . If A is uppertriangular, then A[p] and

A[p] are also uppertriangular.

Proof This fact is a direct consequence of the le-
xicographical order imposed on the vector compo-
nents, and each component set-up, of a temnsor po-
wer of an n-dimensional vector, The details are
left for the reader.

Lemma 2 The eigenvalues of A are constituted by
the set of all N(n,p) formall;p] distinct sums of
p eigenvalues of A, Thus, if A is Hurwitz (i.e all
its eigenvalues have negative real parts ) then
A[p] and K[p] are also Hurwitz,

Proof The first part of the lemma is easily esta-

blished either by diagonalization or Jordan form
reduction of the base matrix A, The second part of
the lemma is a straightforward consequence of the
first part,

Lemma 3 Let A be an nxn matrix and T a non-singu-

lar matrix, then :

-1, plp] [p],-1
(TAT™) 1= (TP A, (TP (3)

Proof Let d/dt x = A x, then d/dt x(Pl=a  x[P]
if z = T x, then d/dt z = TAT-1 z and i[p] E T[p1
LEPT. Therefore d/dt EIb] = (TAT-l) Eﬁp]. On
the other hand we have: d/dt i[p] = T[P]d/dt
1[p]= T[p]f\[p]i[p] =T[P1A[p](T[p])-l i[p]. T
sult follows.

As a consequence of this lemma we obtain a corres-
ponding formula for the family of tensor powers

el PP ) I Y IS
(TAT )[p] = (T*9) A[p](T ) [CD)]

The proof of this fact is left for the reader.

Lemma 4 Let b be an n-dimensional column vector.
Denote by B the matrix :
= g 9-lxn
B = 4
b 0
— nxn

Then the matrix Ek has its nonzero entries in

blocks immediately below the main zero diagonal
blocks according with the following structure:

®lp1

? glxn g1x“~l(n,2) e glxN(n,p)
by Coxnlpi) Gaxven, ) oo Saxn(n,p)
gnxl 13—(2) [ann][Z] te 5

"'[Onxn][p-l}

500 1S {

9N(n,p-l)xl e

9N(n,p)xl s —(p) Onxn][p]

where E(k) is a N(n,k)xN(n,k-1) matrix with E(]f.t.’_
The map b » §~(k)
N(n,k) x N(n,k) matrix.

is linear and [Onxn][k] is a

Lemma 5 Let B =[b.,b_,...,b_] be an nxm matrix.
- -~1’=2 =m
Suppose x satisfies the linear vector differential
equation :
d

P Ax+Bu (6)
then i[p] evolves according to the bilinear dyna-
mics :
m

;] 5

d -
3 1 ¢ Lietts Bugpy ) X

_d zfp] .
i = (A
where the ui's are the components of ue€ Rm 3 K[p]

is as defined before and Ei[ 1 has the structure
given in Lemma 4. P

Proof The proof is based on the simple fact that
(6) can be written as a bilinear system with a
state given by the composite vector X . This vector
evolves subject to : -

‘:3'[3*21 uB, ] % (8)
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The result follows immediately after using property
4) of (2).

As a corollary to the previous lemma, it follows
for k=0,1,..., €tc :

SN

MOIPES KR TR

d
itk x1* : 128k 2

(9
We now present a result related to the solvability
of the Lie algebra generated by the structural ma-
trices of system (8). By a well known result ( Sa-
gle, 1973 ) this also proves the solvability of the
Lie algebra generated by the structural matrices of
the system (7).

In (8) it is easily verified that [B,,B.] = 0 (the
bracket operation [ , ] stands for Lié bracket
operation ) for all i's and j's. On the other hand
we have :

0
X —1xn

A'b. O
=i nxn

[AE, ] =48 -B A

3 i i (10)

If we denote by B ={ 21’22""’Em

span of the Ed's ) then the Lie algebra generated
by the matrices {A,B ,...,B } and denoted by {A,

Bl""’Bm }LA = [ ,’is characterized by :

)LS ( the linear

9lxn
kk v A

I-¢ ;veB,aeR; k=0,1,...,n-11}

(11)
Proposition 1  The Lie algebra I is solvable.

We can prove this proposition by either computing
the derived series ( See Sagle op. cit, ) or
else using a well known result about the possibili-
ty of upper-triangularizing simultaneously all the
elements in the Lie algebra by use of a single si-
milarity transformation ( Willsky, 1975 ). Schur's
theorem ( Bellman, 1970 ) ensures , for this case,
the existence of such transformation thus proving
I is solvable. The first route leads one to the
conclusion that the second derivative of the alge-
bra is zero thus proving solvability. We present
in detail the second approach,

Let 2~ = T X with T being :

0 T

iz
and 2 =[] (12)

e len

and T a unitary matrix such that Tt s upper-
triangular, Schur's theorem guarantees that T al-
ways gxists.~Applying the similarity transforma-
tion T on we have

. oTAT-1 —Ta¥y
TLT ={ ; ve B, aeR ;

0

glxn
k =0,1,2,,.., -1} (13)

In particular, the matrices A and Ei ¥i, are
upper-triangularized by T.

1f we denote by I[p] the Lie algebra generated by

{AIPJ’Bl[p]’l"’Bm[p]
fact that L is also solvable. This result
easily follow;p] by taking the p-th tensor power

in equation (12)., Without loss of generality, one
can say that the system (7) is constituted by
structural matrices of uppertriangular nature. This
has two main implications 1) the differential equa-
tions (7) and (8) have a global solution ( as it
was expected ) expressible in terms of products of
exponentials ( See: Wei and Norman ; 1963,1964 )
and 2) the solution to both (7) and (8) can be

} then it is a well known

written in terms of integrals.

Remark The Lie algebra I is also known as the
Myhiil algebra of the linear system X = Ax + Bu
(See : Krishnaprasad; 1980 ). This algebra is a
matrix Lie sub-algebra of the general linear group
g€(n+1,R), spanned by the type of matrices in (11).

II1 PROBLEM FORMULATION AND MAIN
RESULTS

In this section we shall consider the state recons-
truction problem defined on a linear system :

d
— = + 4
It X A x Bu (1 )

xe R, ue Rm, B = [b,,b. ....,Em] and a nonlinear
output equation of the form :

ye0 = L0y oxlt] =[GO,GI,...,Gp]g[T’]

o Gp z[P] (15)

§_is a q x N(n,p) matrix of rank q>n. G,_1is a

q x N(n,k) matrix. We wish to build an observer
for the system (14)-(15) which asymptotically re-
constructs the state x .

Using the results of the previous section, we can
reduce the above nonlinear problem to an equivalent
bilinear observer design problem defined on the
dynamic system describing the evolution of the vec-

[p]

tor X'%

It is easy to see that from an input-output view-
point system (14)-(15) is totally equivalent to
the system defined by (7) with output equation gi-
ven by (15). Therefore, the problem of estimating
x in (14)-(15) is equivalent to that of estima-

ting i[p] from the system (7)-(15). Regardless of
the highly nonlinear interdependency among the com-

ponents of EIP], the state reconstruction problem
of our original system with nonlinear output equa-
tions is also equivalent to an observer design pro-
blem for the following bilinear system in which the
initial state is a p-th family tensor power of some
vector in R".

d _ e m S
dc n = A[P] & zi=1 uiBi[p] n (16}
= G_n 17
b4 p 2 a7
where n is an ﬁ(n,p)-dimensional state vector

3[P) if the initial states
were chosen to be equal, If we build an asymptotic
observer for system (16)-(17),then, obviously, the
second to the (n+l)st component of the estimate of
n ( which we denote as n ) will asymtotically re-
construct x. We remark that an initial state for
(16) can not be free since its components have to
be those of a family of tensor powers of some n-di-
mensional vector. Also, a similarity transforma-
tion on (16) is necessarily restricted to matrices
of the form diag[1,T,...,TIP] J with n_ = Tlp} ¢ .
This fact impeeds one to assume that G_ could be
of the form | o,quq,o,...,OJ i.e the results

commonly found in the literature cannot be directly
applied. ( See Derese and Noldus, 1980,1981; Funa-
hashi, 1979; Hara and Furuta, 1976 ; Kou, Elliot
and Tarn, 1975 ).

which would reproduce X

Let H Hl""’H be design matrices and define an

0’ m

estimate n of n by means of
d = m. o= ~ ~ m o
St A=y LBy ppd + Holy- 9+ LicyuHy (o)
(18)
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=83 (19)

Defining the estimation error as : e = n - ﬁ B
the error dynamics is, then, governed by the bili-
near system :

n —
1 ui[ B,

d = A - +
ar e (ARl I ifp]

e -HiGp]}_e_ (20)
As it is easily accepted, the estimation error
should be independent of inputs and initial states,
Following Derese and Noldus (1980}, we take a Lya-
punov approach which allows for an observer design
whose error signal stability is independent of the
input signals and initial states. We summarize the
result in the following proposition:

Proposition 2 (Derese and Noldus, 1980). The state
observer (18)-(19) is an asymptotic observer for
(16)-(17) ( i.e (14)-(15)) if and only if there
exists, for any positive definite matrix Q (N(n,p)
xﬁ(n,p)), a positive definite matrix P (ﬁ(n,p) x
R(n,p)) such that :

PlA-HG) + [A-HG)' P=-Q (21)

with:
H=diag[H0,H1 Noaa 'fm]

Q= diag[Q,0,0,...,0], Q=Q' ;
A= diag[f\[p]jl [p],...,im[p]]; G=diag[6p,ﬁp,...,cp]
P = diag{P,P,...,P ] ; P = P' (22)

Proof The proof amounts to investigate the stabi-
lity of the estimation error trajectory by choosing
a quadratic Lyapunov function V(e)= e'Pe with P=P'

> 0., Differentiating one gets:

d . - - -
—— V(e)=e'[P(A -H G )+(A -H.G )'Ple +
dr V(9= PRy HoCp) (g HoGp) 'Ple

0 m T HE Y H.G )
e'{ Eizlui[P(Bi[p] “iGp)’(Bi[p] HiGp) Plle
The asymptotic stability of the error dynamics is
guaranteed if and only if there exists a P = P'>0
such that for any Q = Q' > 0 one has :

AL G, )+ (A -HB )P = —Q (23)

and

-H.G

P(Bi[p] i p) + (Bi[p]-HiGp)'P =0 ; (24)

i=1,2,...,m

Using the definitions in (22) this set of condi-
tions is sinthesized in (21).

Remark [If the pair (;[p]’ap) is observable, then

condition (23) is automatically satisfied. This re-
quirement can also be weakened to have (A[ ],G )
detectable ( See: Wohnam (1979) ). PIoP

Proposition 3 (A[k]’Gk) is observable for all k if
the pair (A[p]’ép) is observable.( For k=0, the
condition means GO# 0).

Proof Suppose (;[p]'ép) is observable. Then, the

matrix given in (25) is full rank.
This matrix has dimensions ﬁ(n,p) X qﬁ(n,p), thus
its rank is necessarily N(n,p). Each block of co-

lumns representing the observability matrices for
the pairs (A[k]’Gk) must therefore be also full

rank, This proves the sufficiency of the proposi-
tion. We note,however, that the condition is not
necessary, i.e. each and every pair (A[k]'Gk) could

be observable and yet the overall pair ( R[p]’Gp)

may not be observable. In the next section we pre-

sent a simple example where this fact is verified.

0 1 2 P
0 GIA GZA[Z] GPAgp]
2 2

e S €I Y1)

el :
I R o 3
G|t ox :

P Nma (25)

xRy .

5 i \J N(n,p)-1

I B o aN(n,

5 H H p [p]

. * * *

. * * *

. * * *

. * * *

. * * *

I :

Thus, if the overall bilinear system (7) is obser-
vable then each subsystem constituting it is also
observable., The observability of each subsystem re-
presented by (9) with output equation given by :

Yy = Gk 5ﬁk] does not imply full observability of

the system (7).

IV EXAMPLES

Example 1 We consider now a simple example consti-
tuted by a controlled harmonic oscillator with sta-
te equations:

X, = X
Lo (26)
X, = ~x1 +u

and nonlinear output equation of the form:
y=1+x +a xz 27)

1 2

As we have shown, an observer design for this non-
linear problem is equivalent to designing an obser-
ver for the system:

n1| 0000 0 0f[in
Ny 0O 0 1L 0 0 O ny
alng | 2| 0-t 00 0 0 lng
dtin, 00 0 0V2 0 ny
ng 00 042 02 ng
e 0 0 0-/2 0 ne
0000 0 0]ln
0000 0 0|fn,
- 1 000 0 0|in, 28
0000 0 0fn,
0/2 0 0 00 ng
00 20 0 0 |n
y=[1100 0 a]n (29)

The observability matrix for the pair (K[Z]’ﬁz) is
given by:

1100 0 a
00 10-/2 o0

P 0-1 0228 0-2a

%= lo 0-1 04/2a 0 (30
0 1 0-8a 0_8a
0 0 1 0-16/2a 0
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in this matrix, every pair (A[k]’Gk) ; k=0,1,2, is

clearly observable and yet the overall matrix is
not full rank. Thus, the overall pair (AIZ],C ) is
not even stabilizable i.e one of the ‘néces-
sary conditions for the solution to the problem to
exist is not fulfilled and an asymptotic observer
does not exist, Furthermore, it can be shown that,
in this example, for any single output full second
order multinomial in X)Xy s the resulting pair

(A[Z],ﬁz) is unobservable. If we addition, never-

theless, a linearly independent output to (29) we
may obtain an observable system as the following
example shows.

Example 2 Consider the previous example with out-
put equations :

2

y1=1¢xl+x2 (31)

¥, = 1+ /2 X Xy (32)
i.e in this case we have :

~j1 100 01

é2'100010 (33)
The observability matrix for the pair (A[2],Gz) is,
in this case, full rank as it can be eaSily
verified.

0= (34)

In the full observability matrix (34), we have i-
solated the blocks that correspond to each of the
subsystems generating the tensor powers that cons-
titute the family of tensor powers of the state,
of appropiate dimension, as to generate the equi~
valent bilinear system defined above in (28). It
is also immediate to verify that each subsystem is
observable in the sense that the pairs (A[k]’Gk)
are observable for all k.

The asterisks in the observability matrix corres-
pond to elements, not shown, which complete the
matrix to its 12th row.

According to well established results, there exists

a matrix HO such thath[Z]-HOG2 is stable and all

its eigenvalues can be chosen at will within the
complex left half plane, modulo symmetry with res-
pect to the real axis. This means that there exists
a unique solution for equation (23) which is also
positive definite for each positive definite ma-
trix Q.

It is easy to see that a necessary condition for
the existence of a mon trivial solution to equa-
tion (24) is that ( B, 2]-H].G2 ) (i=1) has
either a zero eigenva]ué or “at least a pair of
opossing eigenvalues, In our example the matrix in
question has a zero eigenvalue for any value of Hl
thus fulfilling this requirement.

CONCLUSTONS AND SUGGESTIONS FOR
FURTHER RESEARCH

In this article we have examined a class of nonli-
near state reconstruction problems defined on a li-

near dynamic plant with nonlinear multinomial out-
puts describable by appropiate state tensor power
equations. An observer is proposed by viewing the
plant and measurement device set-up as an equiva-
lent bilinear dynamic system describing the state
tensor family of powers evolution and a linear
output equation defined on such "state vector'.
This problem is solved by already well known re-
sults on bilinear observer theory.

The equivalent problem is, generally, of a much
higher dimension than that of the original plant.
This dimension is precisely determined by the "de-
gree' of the nonlinearity present in the output
map.

The advantage of our approach lies in the fact
that a bilinear state reconstruction problem re-
quires more readily available hardware for analog
computer implementation, than the required by a
nonlinear problem.

Conditions for the existence of an asymptotic ob-
server are of the algebraic type, represented by
Lyapunov equations whose solution can be obtained
by standard computer routines extensively availa-
ble.

The ideas and results developed by Loparo and Blan-
kenship (1978) allows one to extend the results of
this article to more general situations. In parti-
cular, output maps of the analytic type can be con-
veniently approximated to any desired degree of
precision by use of series expansions in terms of
a sufficiently 'large" family of tensor powers.
This would permit approximate asymptotic state re-
construction for rather general classes of monli-
near output maps. The unavoidable estimation
error for these kind of problems could even be
precomputed and trade-offs established with the
dimension factor present in our approach.

Following the ideas in Loparo and Blankenship
(1978), for an unrelated problem it is straightfor-
ward to extend our results to the case of, so cal-
led, linear analytic systems ( i.e systems of the
form :

£+ 1T vy

y = hx)

with £, g. ( i=1,2,...,m ) and hranalytic nonli-
near maps ). The defree of approximation for the

mode] whose state is to be reconstructed has been
fully considered by those authors.
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