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Abstract This article develops a generalization of Wohnam's Geometric Theory of Linear
Multivariable Control ( Wohnam, 1979 ) by introducing a fuzzy subspace formulation into
the conventional theory, This generalization allows for treatment, within a convenient
mathematical framework, of inescapable issues in systems analysis and design such as :
vagueness or imprecision in control restrictions, disturbance description and design
objectives., We furnish an appropiate fuzzy geometric basis for the restatement and so-
lution development of problems treated by the conventional Geometric theory for the con-

trol of linear multivariable systems.
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I INTRODUCTION

The purpose of this article is to introduce and de-
velop the fuzzy set theoretic context within the
Geometric theory of linear multivariable control
introduced by Wohnam ( Wohnam, 1979 ).

At the very hea®t of this generalization lies the
concept of fuzzy subspace of a real vector space.
Its introduction allows for the convenient and ma-
thematically tractable modeling of: subjective or
vague control restrictions, imprecise disturbance
knowledge and fuzzy design objectives. Statements
and requirements expressing a subjective knowledge
of systems variables and design specifications can
be adequately modeled by this technique in a way
that enlarges the solution possibilities even from
a practical viewpoint. This power is not sheared
by the conventional "crisp'" theory.

It is noteworthy that fuzzy set theory, invented
by a control theoretician (Zadeh, 1965 ),has ra-
pidly evolved in directions out of the control sys-
tems discipline ( Cognitive Processes, Grammars,
Graph theory, Risk analysis, etc. See: Zadeh, Fu,
Tanaka, and Shimura, 1975 )} while questions rela-
ted to utilizing fuzzy sets or fuzzy subspaces as
a modelling device for describing poorly defined
variables, signals and objectives, have only been
partially explored (Dubois and Parade, 1980; Sira,
1979,1980).

Geometric theory,on the other hand, has reached a
state of maturity and rapid growth bridging, day
after day, with old and recent areas within the
control theory arsenal. Recent contributions, es-
pecially by Willems (1980,1981,1982), point out to
the necessity of relaxing some of the basic con-
cepts in Geometric theory so that some degree of
freedom and approximative characteristics are in-
troduced in the formulation of problems succesful-
ly treated by the Geometric theory of Wohnam. Our
viewpoint touches, tangentially, on this phyloso-
phical necessity and coincides, although in a non-
technical manner, with the theory developed by
Willems ( op. ¢&t. ) of " Almost controlled inva-
riant and almost conditionally invariant subspaces'
This article presents in its section II all theba-
sic definitions and results related to the proposed
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generalization, We introduce there the definitions
of: fuzzification of a linear vector space (sub-
space ), fuzzy subspace, fuzzy images and fuzzy ker-
nels, fuzzy invariant subspaces and fuzzy factor
spaces. These definitions allow, in turn, for the
corresponding generalization, to the fuzzy set theo-
ry context, of concepts such as : reachabl;jsubspa-
ces, (A,B)-invariant (controlled invariant,or A-mod
B invariant) subspaces, (A,C)-invariant ( conditio-
nally invariant, or AIKer C-invariant )subspaces,
unobservable subspaces and controllability subspa-
ces, All these definitions, though, are based in
the elementary fuzzy-set operations of vector addi-
tion of fuzzy subspaces, intersection of fuzzy sub-
spaces etc, We also present formulae needed in the
algorithms that produce fuzzy maximal invariant sub-
spaces, maximal reachability and maximal unobserva-
ble fuzzy subspaces lying within a given fuzzy sub-
space.

In essence, all the variety of problems treated by
the Geometric theory of linear multivariable control
could be restated in terms of the fuzzy-geometric
generalization. Nevertheless, we shall only formu-
late one such problem; the Fuzzy Disturbance Rejec-
tion Problem (FDRP), in section IIT of this work,
as an example of the possibilities of the proposed
generalization.

A1l the background results and material about fuzzy
sets, as needed in this work, are collected at the
end of the article in an appendix. The article also
presents some conclusions and suggestions for fur-
ther research in this area.

IT NOTATION AND BASIC DEFINITIONS

In this section we introduce the basic definitions
needed throughout the entire article. These defini-
tions are centered around the idea of fuzzy subspa-
ces. We introduce this concept by simply adscribing
a membership function (m.f.) defined on the support
subspace. This concept joined to all known elemen-
tary operations on fuzzy sets permits the "recons-
truction" of the Geometric theory within a fuzzy
set theoretic context.

Definition 1 A fuzzy vecton space (subspace) is de-
fined as a pair (U,u) usually denoted by U, , where
U is a vector space (subspace) and v is a member-
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ship function (m.f) (i.e, a map y +[0,1]) defined
on U . We shall refer to U as the Support space
(subspace) of U . Simbolically, we express this
fuzzy space (subgpace) by means of Zadeh's notation
as:

u, = fuu(!)/y_ (m

a v-fuzzifdcation 0§ X is understood as the ads-
cription of a m.f., v to a subspace (or space ) X.
When confussion could develop, we denote a m.f. v
adscribed to a subspace X as vy

Definition 2 Let B be a linear map B: U > X and
let U be a fuzzy subspace defined by a p-fuzzi-
fication of U . The fuzzy {mage 0§ B or the wu-i-
mage of B in X is determined by :

B, ={xeX: x = Bu for some u er} (2)

B, is then a fuzzy subspace whose support subspace
is B and its m,f is inherited from the fuzzifica-
tion of U, According to the Extension Principle

( Zadeh, 1965 ) we have :

B, = fgu 87'x )/x 3)

We shall often use the composition symbol to ex-
press the m,f inhertitance,through certain linear
map, adscribed to an original space. In the precee-
ding case we would write :

ug = moe 8! 4)

Definition 3 Let VY5 denote a &-fuzzification of
V by means of the m.f & representing the quali-
tative statement:" Yy is the set of vectors veay

close to zero in. Y " i,e. §(0) = 1 while &(y) 20

¥y #0. Wecall Y5a {4uzzy zero and it — will
be usnally denoted by 0y .
Definition 4 Let C be a linear map C : X + V, then

the fuzzy kernel of C, denoted by Kerg C or &-
ker C, is the fuzzy set :

Ker6C=(£:C£efg6} (5)

The m.f. of this fuzzy set is inherited from that
of the fuzzy zero. By virtue, again of the exten-
sion principle (Loc.cit.] we have:

6KerC = §o(C (6)

u , we say V,, is an A-invariant fuzzy subspace if:
A Vu Cfvu (7

Definition 5 Let V be a fuzzy subspace with m.f,

This condition implies two relations, one involving
the support subspace and the other involving the
m.f, :

AVc ¥ and Hay S Uy OT ny oAl <y (8)

Definition 6 Let R~ and S, be fuzzy subspaces,
we denote the fuzzy addition of thses subspaces by

R, + S, and define it as:

Ru+Sv = {x+y : xe Ruand Y& Sv) (9

where the sum is understood in a fuzzy set-theore-
tic way. Adopting the definition of fuzzy adition
given in Sira-Ramirez (1979) (See also the Appendix)
we have:
R +S = [ sup[u(u-v)A v(v)]/u (10)
LS v - -7

+.
. we shall express shortly the m.f., of this sum as:
TReg PR ¥Vg OF R+ S =(ReS), (11)
where the symbol * stands for convolution of the in
volved m.f's according to the formula (10) above,

Definition 7 Let V, andR,be two fuzzy subspaces,
then the intersection of these subspaces is a fuzzy
subspace defined as :

NR =(UNR
vu Rv (VNR )u I (12)

space of X . The u-inverse (maage of S under A is
defined as the fuzzy subspace given by:

-1 ~ .
Asu‘(l'Al‘,‘:f Su) (13)

According to the extension principle we have :

-1 -1
ATS = (TS, , (14)
Definition 9 Let X be a fuzzy subspace and $ CFX
We denote by Xu/S the factor space (or sub- LA
space) of Xu moduTo Sp.(also denoted by Xu(mod Su)'
The support subspace is X/S and.it constitutes a
vector subspace with elements denoted by either {x]

or x(mod S).

Using the definition of equivalence classes as the
sum of a singleton and a subspace, we can, after
using the formula for fuzzy thansfation of a fuzzy
set (in this case of a fuzzy subspacé], -determine
the fuzzy factor space as the fuzzy subspace :

X /S = supl  V [(ulS)(u-p)ru ()] [x] (15)
W8Ty y e xS FARCAC 2R S 12 ed

In conventional Geometric control theory, when one
defines the reachable or controllable subspace
<A|B> , use is made of the fact that u(t) , the
control vector, can take any value in the set of
allowable control functions over the infinite time
interval. It is not difficult to see that a u-fuz-
zification of the control space U yields a fuzzifi-
cation of the reachable subspace through the u-ima-
ge of the control channel map B and the systems dy-
namics. It is left to the reader show that actually
the subspace of fuzzy reachable states in this case
is given by :

R 2<AlB>=8+a8+4% +..+a"!3 (16)
o u u H u u

and then : i
n- R
= = ® =
MoalB >T PBTHaBT cer M an-1gTilovgthT (17

Definition 10 A fuzzy subspace X in R" is said to

be u-controllable or p-reachable if and only if :
<A|Bu> Dva i.e it is simultaneously satisfied :

<A|B>2 X and vy (18)

u<‘.’\|B > =
Definition 11 V is (A,B) -invariant ( also called
A(modBu)-invariar\{t or u-Controlled invariant sub-
space ) if there exists a map F, such that V, is
(A+BFu)-invariant, i.e, (A+BFU)UV Ce Vy.

As a counterpart to Wohnam's theorem on (A,B)-inva-
riant subspaces, we also have:

Theorem 1
only if :

Vvis (A’B)u -invariant subspace if and

AV V +8 (19)

v Cf v u
In terms of the support subspace and the m.f. this
means :

AVEV B and vy e AN g u e (20

Definition 12 A fuzzy subspace S, is said to be
(C,A)g-invariant ( also called A|Ker6C-invariant or
§-conditionally invariant subspace ) if and only

if

A(S\)ﬁKer‘sC) c Sv (21

f

This condition implies the simultaneous verifica-
tion of :

A(S 0 Ker C) csm[vs/\(aecn»,\'l <y (22)

=S
We now make use of the fuzzy kernels to define fuz-
zy unobservable subspaces.

Definition 13_ A subspace Z¢ is S-unobservable if
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and only if:
n-1 4
Zc ¢ N A Ker, C (23)
i=0
This condition implies :
-1 -i n 1
2cif__‘0A KerC and 0 [ & o(cal )] 2 (24)

In conventional Geometric theory of linear systems,
it is shown that the class of (A,B)-invariant sub-
spaces of a vector space N , denoted by T(A,B,N)
or simply I(N), is an upper semilattice relative to
subspace inclusion and addition. As such, if I(N)
is non-empty, then it contains a unique supremal
(A,B)-invariant subspace U*, This subspace can be
computed in a finite number of steps according to
the following recursive algorithm:

v an aai8e VY, den ;s OeN (25)

Let Ng be a fuzzy subspace and R} a u-fuzzifica-
tion of R™, The supremal ( or largest ) (A,B) -in-
variant subspace contained in Ng is obtained recur-
sively by means of :

" . - -1 i-1 ., PRI
v o= V11m *oow g W- NNA (Bu+ Vw'_l)‘ i=j in n
J J J J i=n,j;n*1
. 0
with Vw0 = N6 (26)

The above algorithm splits in two algorithmic pro-
cedures; one defined on the support subspaces and
the other defined on the m.f.'s. The first one con-
verges, necessarily, in n steps at the most. The
second algorithm needs, in general, a larger number
of iterations, For this reason, the subindices are
equal in n but from the nth step on, the subindex i
stoos at n while the subindex j continues growing
until convergence of the m.f. The support subspace
algorithm is the same given by (25) above, while
the m.f. algorithm is represented by :

vt =1”"J+oo'”3 by =84 [(ug * wj_l)e Al d=1,2...

with by = 6 27)

The dual notion of V*, the smallest A|KerC-inva-
riant subspace ( or (C,A)-invariant subspace) con-
taining a given subspace K, is denoted by J, and
the algorithm that produces this subspace (Wohnam,
1979) is :

J=I% 3=k AL 30 Kercd, ien; 7%0.(28)
The fuzzy version of this algorithmic procedure is
stated as follows: Let K be a fuzzy subspace and
05 a fuzzy zero in RP, Let us denote by 3(u) the
Dirac unit impulse function centered at u, i.e 3(u)
= 1 and 3(v) = 0 % v # u, The infimal (smallest)
(c, A)6-1nvarlant subspace containing K is obtained
recursively by means of :

i-1 A A :
J'w'{lim. v J\l)'= Ku+ A[Ji' aner C] i=j inn
P ) -t i=n, j2n+1
0 _
Jvo- {0}3(0) (29)

i.e the m.f. algorithm would be given by :

ve = lim, _v.; v.= u‘([vj_]A(GoC)]oA-l)

jo0 73 )

§=1,2,... with v_ = 3(0) (30)

0
One of the crucial concepts in Geometric control
theory is that of a Controllability Subspace (C.S).
The fuzzy version of these important subspaces is
characterized by the statement given in the follo-
wing definition.

Definition 14 A fuzzy subspace R,is a p-controlla-
bility subspace if there exists a matrix Fy, such
that:

R, = <A+ BFulBu NR, > (31)

According to this, the m.f. satisfies :

n-1
vt ol(ul\v)e (A+BF )™ ] (32)

The fundamental theorem which allows characteriza-
tion of fuzzy C.S.'s is the following:

Theorem 2 Let A, B, R be fixed; R¢X, Ryis a fuzzy
T.S. of [/ (A,B) if and only if R, is (A,B)}rinvariant

and R, = Sy where Sy is the Ynfimal subspace such
that : A R

S.\)! = RN (AS:W + Bu) (33)
furthermore:
_ A i-1 Vil s
S‘v:slimjmvj’ S\)j Rvn (As"j-; Bu) ;i=j inn

i=n, j2n+l

with -~ s"v = {0} (34)

3(0)
i.e the support subspace satisfies the algorithm :

R=Se; Se= RN (AS,+B): St-rn (a sTLiBy 5 s%- 0
(35)
while the m.f, satisfies:

-1 .
=lim, _v.; v \)A[(vj_l*’A ).UB];J=1,2,...

00”5 4 V5T
vp® 3(0) (36)

This procedure allows one to check whether a fuzzy
subspace Rv is a fuzzy C.S.

Let RE be a u-fuzzification of R" and let V*y be
the largest (A, B) -invariant subspace contained in
Ks « Then, the suprema] fuzzy controllab111ty sub-
space algorithm (FCSA) which renders Vw. is given
by:

[ L S S i-1,. ., .
RE‘-Rlim-mE-’ RL Vg,.n(ButARg_-l), j=l inn
g J 2 J i=n, j 2 n+l
. 0 _
with Rgo = {0}8(0) (37)

The support subspace is generated recursively via:
R*=R; Ri=v*n(B+ AR ;ien; R0 =0 (39
while the m,f. is computed by means of:

Beslimg  £5E0= 4A [ug #(8; 1°A D15 3212,

with 0 = 3(0) (38)

Another important concept in Geometric control
theory of linear systems is that of detectability
which turns out to be a property weaker than that
of observability and closely related to it (Wohnam,
1979 ). This property is established when it is
found that, for a particular system, the subspace
of unstable modes is observable.

Let the minimal polynomial (m.p) «(A) of A be fac-
tored as a(A) = a*(1) a”(1). where the zeros of

a* (1) ( respectively o~(A) ) in the complex plane

lay in the closed right ( respectively: open left)

half plane. Let :

X*(A) = Ker a*(A) ; XT(A) = Ker o”(A) (39)

a pair (C,A) is detectable if :
n-1
n A"l kerc ¢ X“(A) (40)
i=0

i.e. A is stable on the unobservable subspace of
(C,A).

Let 1x- denote the m.f, of the crisp set X“(A) a-
long the subspace indicated in the second formu-
la of (39). This m.f. has the value of zero else-
where, Using this m.f, and adscribing it to X (A)
we can propose the concept of a fuzzy detectable
pain whenever, given a fuzzy zero characterized by
the m.f. § in the output space, it is verified
that : n-1

A secAl £ 1y- (41)
i=0



IIT FUZZY DISTURBANCE DECOUPLING
PROBLEM

In this section we shall formulate the Fuzzy Dis-
turbance Decoupling Problem (FDDP). This problem
is concerned with decoupling in an approximate (i.
e, fuzzy ) way the effect of exogenous disturban-
ces on the output of the linear plant, We deal
with two special cases; the first one assumes un-
restricted control actions in R™, This case repre-
sents the closest formulation to that of Willems'
approach ( Willems,1980 ) to geometric problems
within the methodology of 'almost invariant sub-
spaces’, We remark however, that our generaliza-
tion does not englobe Willems' theory ( notice
that a fuzzy controlled invariant subspace does
not generalize the concept of almost controlled
invariant subspace). The second case we shall deal
with, assumes fuzzy restrictions on the control
space. These two problems could be termed : Fuzzy
Disturbance Decoupling Problem with Unrestricted
Controls (FDDPUC) and Fuzzy Disturbance Decoupling
Problem with Restricted Controls (FDDPRC) respec-
tively.

Fuzzy Disturbance Decoupling Problém with Unres-
tricted Control

Consider the linear dynamic system:
x(t) = A x(t) + B u(t) + D q(t)
y(t) = € x(t)

(42)

where the term g(t) is an exogenous disturbance in
Q= RP whose structure is not precisely known ex-
cept for the fact that only a qualitative state-
ment is at our disposal about the nature of such
acting signal (i.e. only a fuzzy description of
the signal is available. e.g. " q(t) is a biased
unknown signal whose value §fuctiates around such
value " or else, " q(t) is a small disturbance
which oscillates veay rapidly ", etc. ). This dis-
turbance in RP is,thus,best modeled by prescribing
a, let us say, y-fuzzification of Q . The control
vector u in U = R™ is totaly free, while the out-
put vector y(t) lies in ¥ = R? for all t.

It is required to find ( if possible) a state feed-
back gain F such that the influence of the distur-
bance signal q(t) is very 4malf on the output y(t).
(Alternatively, we could say that it is required
that the zero input response of the system, i.e.
the response for u(t) = 0 ¥ t, be very close to
zero or almost zero ).

Formally, we are given a fuzzy zero in Y characte-
rized by a m.f, & (i.e., we are given a 6-fuzzifica-
tion of ¥ ),and it is required to find a feedback
gain F such that ifD_is the fuzzy image of D, in
the state space, of the y-fuzzification of Q ,
then:

f §

This condition constitutes the fuzzy distutbance
decoupling condition for our problem. Because we
have not imposed any (fuzzy or otherwise ) restric-
tion on the input signals, this problem has an im-
portant conceptual similarity with that treated by
Willems (1980). One of the differences is that Wil-
lems' constraints on the output values, due to the
disturbance action on the plant, are of the 'hard
type'", thus forcing the norm of these outputs to
become smaller than a preassigned quantity, On the
other hand we impose a "soft" type of constraint
on the zero input response allowing it to stay
around the zero value so as to be able, at least
from a qualitative viewpoint, to asses our control
effectiveness, by a mere subjective evaluation of
the disturbance influence on the observed output,
The other main difference stems from the fact that
our definitions of fuzzy invariant subspaces and
fuzzy controllability subspaces do not generalize

< (A + BF) \DY > c_Ker C (43)
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those of almost invariant and almost contvollabili-
ty subspaces, Our definitions relate to properties
(whether qualitative or vaguely known ) of elements
which do belong to certain subspaces while Willems'
essential concepts relate to properties of subspa-
ces with respect to points of the space which do
not belong to these subspaces and which together
conform a systems trajectory very close to the sub-
space.

Condition (43) signifies a pair of mathematical re-

quirements: one on the support subspace and the o-
ther on the m.f.'s. These are :

<( A+ BF)|D> ¢ KerC (44)

n-1

*

i=0

The solution to the FDDPUC is solvable if and only

if

yeolassm ™t < soc (45)

»
Vw. jfvy R (45)
where V*is the supremal (A,B)-invariant subspace
contained in the Ker C ., This subspace is given by
the algorithm in (25) with N = KerC, while the co-
rresponding m.f. is generated recursively by means
of (27). According to (45) this m.f, must satisfy:

vy (46)

Fuzzy Disturbance Decoupling Problem with Restric-
ted Controls.

This case, slightly generalizes the preceeding one
by adscribing a p-fuzzification to the input space
U, We now make use of the (A,B)u-invatiant subspa-
ce concept, in order to propose a solution to our
problem. In the preceeding problem only (A,B)-in-
variance had to be invoked due to the '"crispness"
associated with the input space.

As before, the solution to the problem exists if
and only if :

Vi 2.0 (47)
where Vﬁ‘ is the supremal (A,B)u—invariant subspace
contained in the fuzzy kernel of C ; KerGC vt s
given by (27).

IV CONCLUSIONS AND SUGGESTIONS
FOR FURTHER RESEARCH

In this article we have given initial steps towards
the establishment of a "Fuzzy Geometric Theory of
Linear Multivariable Control", We have provided ba-
sic definitions that range from fuzzy subspaces and
fuzzification of linear vector spaces to fuzzy con-
trolled invariant subspaces and fuzzy controllabi-
lity subspaces, This framework allows for the ade-
quate treatement, within the fuzzy geometric tech-
nique, of whichever problem has already been formu-
lated and solved by means of Wohnams' theory. We
can therefore parallel the developments of the Geo-
metric theory in a fuzzy-theoretic frame.

The results, thus far obtained, generalize those of
the existing Geometric theory of Wohnam. This gene-
ralization actually represents a needed relaxation
of the concepts that researchers have been using
both in the geometric approach and in fuzzy systems
theory ( Britov, 1981 ). This relaxation has a sig-
nificance, not only from the phylosophical view-
point, but even from a practical standpoint. This
is demonstrated by the closely related line of work
initiated by Willems with his "almost invariant
subspace theory"., Willems methodology, which is ra-
pidly expanding into a new and original approach to
a number of classical and modern control problems,
could have important inter-relations with the ap-
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proach we are proposing in this article. Eventhough
we did not puy much attention to the similarities
and parallelisms that could be exploited and ex-
plored with both theories at hand, we are convin-
ced that an area for further research could be
constituted by the bridging of both approaches.

As mentioned before, a wide variety of problems al-
ready treated by the conventional Geometric theory
remain unexplored within the Fuzzy Geometric con-
text presented here., Specific examples remain to
be worked outand the variety of solutions obtained,
analyzed from both a theoretical and practical
viewpoint. Problems such as the Decoupling Problem,
the Output Regulation Problem, the disturbance de-
coupling with measurement feedback and stability
problem, the disturbance decoupling with measure-
ment and pole placement problem, the unknown input
observer problem ( also known as the disturbance
decoupled estimation problem ), etc. deserve atten-
tion from a fuzzy geometric viewpoint,

Finally, a natural particularization for the m.f's
appearing in this work, is the case of "Gaussian
Fuzzy m.f.'s " defined over the entire space or
subspace ( See Sira-Ramirez, 1979,1980 for more
details )., Interesting connections already exist
among Fuzzy Sets or variables and random variables
and Probability theory. The exploitation of these
bridges could shed some light on the developments
of "Stochastic Geometric Theory' mentioned in Woh-
nam (1979).
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APPENDIX

In this appendix we present the basic notation and
definitions we use in this article. These defini-
tions were given in Sira-Ramirez (1979) with minor
modifications.

Definition Al We denote a fuzzy set A with m,f,

V. (), defined over the universe of discourse U in
the n-dimensional euclidean space R", as :

A= fy e/ (A.1)

A non-fuzzy set will be termed "crisp". Its m.f.
has the value 1 over the entire domain of the set.
We usually denote this by means of 1, indicating
that outside A the m.f, has value zero. We use the
simbol ee to indicate fuzzy membership,

A straightforward application of the Extensdion
Principle ( Zadeh, 1965 ) allows us to define li-
near transformations, crisp translations, sums, etc,
of fuzzy sets in R",

Definition A2 We define a caisp translation of a

fuzzy set A, in the direction of the vector v, the
fuzzy set given by:

A+ {1/vY= | wp(u-v) /u (A.2)
A+ v

where A stands for the support of the fuzzy set A

(i.e. the set of points where the m.f. of A is not

zero ) " + " denotes the vector sum of the involved
sets,

As a generalization of the preceeding definition,
consider the fuzzy singfeton v with m.f. UB(EQ'
i.e B = (“B(Y)/X Yo

Definition A3 A fuzzy translation of the fuzzy set
A in the direction and extent of the fuzzy single-
ton B , defined above, is a fuzzy set described by:

A+ fup(v)/v b= IA+ g App(1/u (AL3)

where the symbol " A" stands for the infimum func-
tion of the two function values specified to its
sides.

As a generalization of the previous definitions, we
introduce now the direct sum or vecton sum defini-
tion of two fuzzy sets. This definition generalizes
that of a vector sum of two crisp sets.

Definition A4 Let A be a fuzzy set with m.f. u, ,
and similarly let B be a fuzzy set characterized by
b,. We define the vector sum of A and B as the fuz-
2y set specified by:

A+B = [, o supu, (u-v) Aup(V]/u (A.4)
v

where A + B denotes that the universe of discourse,
where the fuzzy sum is to be defined, is the vector
sum of the crisp sets that serve as supports for
the fuzzy sets A and B respectively. The "sup" o-
peration is necessary to eliminate the possibility
of having ill-defined membership values for those
elements that can be expressed in a non-unique fa-
shion as sum of elements in A and B. This supremum
operation usually results in a maximization opera-
tion.

The above formula (A.4) constitutes a natural "con-
volution operation'" on the m.f,'s of the fuzzy sum-
mands. Naturaly, this definition includes the case
where A and B are both crisp sets., The formula (A.4)
is, not surprisingly, reminiscent of that which es-
tablishes the probability density function of the
sum of two independent random variables, Note also
that the roles of u and v can be interchanged.

Remark It is a basic principle that the result can
never exceed the exactitude of the data. Equally
true, the sum of two fuzzy sets can not be a crisp
set. This fact is established by simple inspection
of (A.4). For this reason the difference of two
fuzzy sets is not always defined.

As a simple application of the extension principle
we define now the direct and inverse images of a
fuzzy set A in R" under linear transformations.

Definition A5 Given a non-singular linear trans-
formation P, and a fuzzy set A with m.f. 1wy, we
define the dinect image of A under P, the fuzzy
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set given by:
-1
P = [pa)aPT w/u (A.5)
Definition A6 The {nverde image of a fuzzy set A
with m.f, under the linear map Q, not necessa-

u
rily invertiéle, is the fuzzy set described by
means of :

-1
Q) = fglgyualQu) /u (A.6)



