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ARSTRACT

This article generalizes, in a mathe~-
matically tractable fashion, the concept of
stiding planes associated with the variable
structure control [1] of linear and bilinear
dynamic systems. Explicit conditions far the
reachability of the non-linear manifold and
the stable sliding operation are achieved by
using linear restrictions on families of p-
tensor powers [2]1 af the state vector as
sur face models.

I. INTRODUCT ION
Over the last twenty years, a complete
body of theory and applications of Variable
Structure Systems (V8S) and their ‘“sliding
maxde  control  has been developed by many
researchers and institutions among them

Barbashin [3],Gerashnenka [4),Emeiyanav [5],
Utkin CE€1,Itkis (7] etc.A detailed survey of
the vast amount of literature, and an excel-
lent account of the status of this impor-
tant branch of control systems theory, is
available in Utkin's work [11,083,05].

The class of VSS have found over the vyears
an  increasing number of practical applica-
tions. Among these, we have : the Overspeed
Protection Control for farge steam turbines
[10], Automatic Generation Control of steanm
electric power plants [1131,012],Aircraft
Control  Systems design [121,Automation of
Hydraulic FPower plants (141, Contraol ler
design for a manipulator L[15] etc.

The main issue in the design of sliding
mode  operation for VSS is to provide a con-
venient switching surface in state space
which can be reached by the state trajectory
thanks to appropriate structural changes of
the controlled system. Once the surface
conditions are satisfied by the state tra-
jectory an active switching of the
variable structure controlier, or compensa-
tory mantain the state within the switching
sur face in what is known as the ‘"sliding
regime " . This motion is designed to force
the state trajectory of the controlled sys-
tem towards its stable equitibrium. The
design methodoiogy is thus confined to
finding a suitable tiding surface usually
of linear nature. (See Utkin and Yang [161)
The use of more general switching surfaces
has been restricted due to a lack of a
mathematical ly tractable model capable of
producing explicit structural switching
conditions which ensure surface vreachabili-
ty. Also, the generation of a closed form
expression for the sliding dynamics and the,
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£81 did not

so called, "equival ent contral"

seem to be readily available for the nonli-
near case.

In this paper we develope an approach
for the treatment of sliding operating mode
in V88 with' nontinear switching surface
expressible as scalar homogeneous multino-
mial forms of the state space variables.

Using affine restrictions on "families of p-
th tensor powers" of the state space coor-
dinates (See Brockett (21, Sira [171,0181),
a mathematically tractable model of a rather

general non  tinear surface is achieved.
We take as a case study bilinear dynamic
structures obtaining as a byproduct the
relevant results pertaining linear dynamic
systems.

Section Il presents the characteriza-
tion of sliding mode regime, for single

input bilinear dymnamic systems, on a nonli-
near switching surface. In this section we
also outline a design procedure for ob-
taining a stable sliding motion based on
Lyapunov?’s Second Method. The results of
this section are particularized for the
linear dynamic case in Section III.

Section IV contains the conclusions and
suggestions for further research. In the
Appendix, we collect a number of basic re-

to homageneous tensor powers
vectors. (See [21,0171,0181)

sults related
of n-dimensional

II FROBLEM FORMULATION AND MAIN RESULTS
We are given an  autonomous bilinear
dynamic system @
XxCt) = A x(t) + u B x(t> (2.1)

with x(t) in R~ , A and B are nxn matrices,

U is a scalar control input function of the
form ¢

u = Gr(x) + Gulxykd (2.2)
where Gr(x) is a fixed feedback gain and

Golxrk) is a variable structure compensating
control signal given by Gulx,k? k¥x. Where
k is a feedback gain vector whose component
values switches from ohe limit to ancther in

certain regions of the state space to be
deined latter. i.e B, 3 ke ¢ X4
Let " s " denote a nonlinear switching

mT %P =
canstant
x!ﬂ'l

mani fold represented by s
where m™ is an N*(n,pli~dimensional
row vector with zero first entry and
is the “pth famitly of tensor powers of the



state vector x "{ See the appendix for nota-
tion,definitions and assumptions oh m  and
x€P3 ),

We must specify a manifold s such that @
1) s =0
back control
and GBo (%sk2.

is reached by appropriate feed-
action excercised through Be(x)

) Sliding operation conditions of stable
nature are ensured once the surface s = 0
is reached by the state trajectory.

We will use Utkin's reachability «ondi-
tions in the vecinity of the sliding (swit—
ching) surface (8] and obtain a variable
structure gain specification which gqua-
rantees reachability of the non linear
mani fald. Secondly, the equivalent control
method will be used for the specification of
a stable sliding operation regime. A Lyapu-
nov design squeme is presented for the ap-
propriate choosing of a nonlinear stable
sliding manifolid.

Sliding_Manifold Reachability

The sliding manifold reachability 1is
achieved by an appropriate selection of the
feedback control action that guarantees the
necessary and sufficiency conditions (7] for
sliding manifold reachability. This condi-
tion is simply 3 s ds/dt < O and as a
result of it we obtain the following pro-
position.

Propesition_<.1

The reachability condition is satisfied
whenever Beix) = — (nTArpax P2/ (M Bepax®F?)
and ky =0, > 0 for & x3 w(s) < 0 and k; =

s 40 for 8 x4 w(s) > O where wi(s) is
defined as wis) = (mT Bepax®F?).
Moreover, Be(x) rvepresents the so called
"equivalent control" (Utkin [11).
Broof.

The proof of this proposition easily
follows by considering the product s ds/dt
and using the results of vhe appendix on
dynamic systems associated with derivatives
of tensor powers and enforcing the
equivalent contral condition ¢ ds/dt = Oy
see Utkin [1] ) on Bulxd.

Remark 2.1
An additional switching condition, repre-—

sented by w(s) = O ,appears for the case of

honlinear sliding manifolds which is not
generally present in the linear sur face
case. An intersection of w(s) =0 with
the sliding manifold causes an undefined

right hand side in the ideal sliding dynami«c
equations. Farticulariy, in the equival ent
control specification. It is therfore manda-
tory to avoid such intersections at least in
the operating portion of the state space
where the sliding regime is taking place. It

should be pointed outy however, that the
flexibility generated by a nonlinear mode |
in sliding surface design allocws one to
circumvent, o a rather large extent, any
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statement,
the linear

undesired intersections. This
certainly, rcan not be made in
sur face case.

to obtain the equations for
it is necessary to solve
equations given by s = O
for the control and the n-
The solution

In order
the sliding mode,
the system of
and ds/dt = 0 ,

th state vector component Xm.

for u constitutes the "equivalent control
problem" as defined by Utkin [B81.

It is easy to see from lemma A.2 in the
Appendix, that the bilinear dynamic system

represented by d/dt 2 = Agpa 2 * U Bepa 2
where 27 = (11239221002 9Zn1Zn+s2r0s=1ZNcn-P>)
is equivalent to the bilinear dynhamiz system
d/dt  xCP3 = AcpaxfP3 + u Berax®®? provided
the initial conditions for z are properly
chosen ¢ i.e whenever z(0) = xEP3(0) , z(t)
= xEP3 3. Also, in terms of 2, the sliding
surface is simply expressed as m7z = O.

Notice that abaove only the first n+i
equations are truly independent. The rest of
the equations , i.e those defining
through Zmcmers> » are redundant .

Zhey

Assuming m, is different from zeros 2n
can be solved in terms of all the components
of z from mT z = 0. Discarding the (n+l)-st
equation in the system defining z (i.e the
ohe originalily defining z, ) and substitu-
ting zm» in the remaining equations results
in
d/dt z* = A*epaz® ¥ u B*¥cpaz*® (2.3

the components of 2
B*¥cpa are thus

where z2* contains all
except for z. and A%cpa o
implcitly defined by (2.3).

Notice
entails

that this substitution process
an implicit substitution of x. by
it substitution

The actual explicit

would reguire the consideration of  the
possible real solutions of a highly
invalved algebraic equation represented by
the surface condition, 0O, thus
complicating matters unnecesarily. Below, we
opt for redundancy in order to circumvent
this problem .

of
Ken

several

Zn-

mTxEP3 =

of gz as independent and adscribe their ac-—
tual interdependency to the appropriate
chonsing of the initial state. After substi-
tution of 2z, in the system defining z only
the n-first differential equations are pro-
perly independent while the rest of the
equations are to be regarded as auxiliary
equations. This process is carried out  for
the sake of "closedness" in the description

of the sliding dynamics.
1t should be pointed out that some of the
redundant differential equations can be

discarded while preserving closedness in the

description of the sliding dynamics.
Moreover, if uw is a function of x©P3

(i.e of z)ythe equations definig zZn-a =

(1yZayenearZineaa? & Xn-y are wWritten as 3



dZm-1/dt = A%¥nsZaetr * WS 2y B¥caZpme-
(2.4

where W*(gen-1) = ui(z) with 2z, obtained
from 8 = 0 while A%,y and B*,., are matrix
blocks of appropriate dimensions, extracted
from A*epas and B*eps respectively.

In terms of %, equation (Z.4) is simply @
dxn-2/dt = A% 1Xn—1 + UR((XCPII*)IB* . Xn—2
where evidently (xtP3)* # (x¥)fP3 , Thisg
differential equation does not conform a
"clnsed" system we defined it previously.

The ideal sliding dynamics governing
the systems operation on the nonltinear mani-
fold s = O satisfy the following system of
nonlinear differential equations:

d/dt Xm—-12 ® A¥noiXe-1 +

(MTA* g (LXEP I/ TE* e p s [XEPIT* ) B* ey Kprma

(2.5

Notice that the possibility of  unde-
fined right hand side in equation (2.8 can
be avoided by the fact that the dynamic
behaviour described by this equation is
necessarily confined to the sliding surface
s = 0. Consequentiy, the quantity in the
denominator of the equivalent control func—
tion is generally non-zero on the sliding
sur face, ewcept at the intersection with the
sur face wis) = 0 . As  pointed out
before,those intersections must be aveoided
in the design pracess. On the other hand,
such a quantity is identically zero in the
event of having B = I (the identity operator
in the n-dimensional vector space’. Aside
from the unnatural condition possed by such
an  event, the class of systems arising in
this case has already been studied in Sira
£181. It was shown there, that systems des-—
cribed by these differential equations pos-
sess an explicit solution .o It is therefore
perfectly possible to precompute any finite
escape time. The designer would be aware of

the imminence of a singular behaviour in
the sliding trajectory. In such an event,
a small but significative change in the

vector m would define a new sliding surface
where this bebaviour no longer subsists.

Only in very special circumstances ohe
may desire to provoke an unstable sliding
dynamic regime. No reason,other than rea-
ching a second stable sliding manifold
seens to justify such a practise (See Jobn-
son [201).

The design techniques in sliding motion
control  are devised to produce stabte sli-
ding operation by finding a sliding ptane as
the outcome of a quadratic functional mini-
mization problem defined in terms of the
siiding state trajectory or else by a para-
metric optimization procedure leading to> &

minimum equivalent contral effort (See Utkin
and Yang [16]l. Some other approaches use
Lyapunov functions for the design of stable
sliding motion or simply resort to the tra-
ditional pole placement desigh procedure.

We have found particularily suited for
the design of nonlinear sliding manifolids,
the use of Lyapunov stability theory and
the associated methods for generating appro-
priate Lyapunov functions. One such method
is the " Variabile Gradient method"
[211.

The simplest way to proceed in desighing
V88 with non-{inear sliding manifolds is:

1> Obtain the ideal sliding dynamic equa-
tions in terms of the surface parameter m.

2) Propose a suitable Liapunov function
for the stability assesment of the idea
sliding dynami:s and compute its time deri-
vative in terms of m

3) Find a vregion for m in which the
design is stable by forcing the time deri-
vative to be negative definite ar  semi-
definite. Choose any value that succeeds in
avoiding undesired intersections, in the
osperating range, with surface wi(s) = 0.

IIT LINEAR DYNAMIC SYSTEMS AND NONLINEAFR
SLIDING MANIFOLDS

In this section we particularize the
results obtained thus far to the case of
Iinear dynamic systems.

We are given a single input linear
dynamic system described by:

d/dt x = A x + b u (3.1)
and a nonlinear manifold s = mT™x = 0 where
m satisfies all the conditions and remarks

included in the Appendix .

The next proposition follows dirvectly from
Lemma A.Z and Corallary A.1

The reachabifity condition for s =0 is
satisfied whenever the control action on the
system (3.1) is specified as :

p
Grix)= ={ I MTcai>Aca>x*>1/ L ET<L>E<1;§(hq)
i=1 i=1
(3.2
by = ™y =0 if 8 x4 wWis) » O and kg =
B < 0 if 8 %y wis) £ O where we define
. p B
wig) = CF mTear>beanrxct™22)
i=1

and x¢** is the i-th ftensor power of x,
mea> and beas> are defimed in the Appendix.

Immediate from Froposition 2.1 and
Lemmae A.1, A.2 of the Appendix.




The ideal dynamics governing the
tems operation on  the nonlinear
mani fold s 0 satisfies the
system of nonlinear differential

( Xp-1 = Zp-1 ) !

sYyS—

sliding
fol lowing
equations

d/dtxem—13

= A%n-a ¥n-a

P
MTA%,,.y (x<32)%/ T Th*cq o35 (X€222)%0D

P
[
=1 i=1

i
(3.32

where the expressions containing
"ok " imply a substitution of xn.
defined in the previous section
example 32.1).

the symbol
as it was
(See also

In terms of all redundant

is expressed as @

equations,
(3.3

d/dt (xcPI)* A¥cpy(gtPIr™

— EMTA%epa (xEP A%/ mTE* e (K EPIIXT (xERPI)*

(3.4

Remark 2.1

Notice that for x = O the vight hand
side of equation ((3.4) is well defined.
According to Lemma A.1 the identity
mTBepaxtP3 = mTXEPI  can never be satisfied
for all x due to the structure exhibited by
B:”:-

The restorative action of Gu(x,k) would
force the trajectories back to the sliding
surface if small deviations from the mani-
fold should eccur. Ideallyy, on the sliding
mani fold only the “equivatent control "
takes place while the variable structure
feedback is standing by. .

Consider the doble integrating piant @

dxs/dt = x= ; dx=z/dt = u with u Up(xd) +
 xa . k being a variable feedback gain.
taking one of two possible values 5 k = + 1
or k = —1.
curve of the form :
O3 "me #0 is pro-
m'ra:a: 0 wlth mT

A nonlinear switching
& = Xi-Ma¥XzNMeXz
posed. i.e 1 S

(Oply=mayCyQyQy0y0yQy—mMud.

The contral actions implied by the
reachability <conditions will induce trajec—
tories leading to the switching curve when
the state is either above or below it . A
straight forward application of the formulae
leads tor up(x) ®=z/(hiz + 3 s Xz)

(for & = 0 ), k =+ 1 for s xi wis) < 0O
and k = —1 for & %2 w(s) » O where w(s)
me + me %22 (for s # 0 ).

3

The ideal sliiding motion is thus described
by @ dxa/dt %=z j dxz/dt %/ (Ma+3mex=?)
while the sliding curve equation yields the
implicit representation for x=2 as x= %Xy
Me X2%)/ma

Therefore the ideal sliding dynamics expres-—
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sed in terms of the minimum number of diffe-
n

rential equations that conform a -] osed
system is given by @

dza/dt = (1/mz)zy ~ (Me/M=z)s

dze/dt = 2 ze/(fz + 3 Mo 2w

dze/dt = 3 ze/(hiz + 3 M Zw)
where 2z, = Xiy Ze = X222 and Zs = X2

Notice that ,upon integration, the equa-

tions for z, and ze yield back the switching
mani fold equation s = 0 while the equations
for 2e and 2z simply represent the algeb-
raic relation connecting the second and
third powers of x=.

Consider the positive definite Liapunov
function defined on the redundant system of
differential equations :

V(Zyi9Zw?

where there is no need for consideration of

zs by virtue of its algebraic retation with
2m. The time derivative of V(zisze) is sim—
ply given by = dv/dt = (2/m=z)za= =

(Zhiw/M2)2128 + S2Ze®/(mz + 3mes Zw). where, as

it is evident from the definitions, 2ze and
2y, 2w are positive quantities. Therefore,
having mz and ma < 0 yields a negative

definite Liapunov function and thus a stabl e
design. Notice that choosing m= and mes nega-—
tive vyields no surface at all which may
cause an undesired intersection with the
siiding curve and thus the switchings oocuy
at the x= axis and the surface s O itself.
i.e k -s5gn(%y St

far
in

Several procedures may be fol l owed
chossing m=z and mes 3 One may consist
optimizing a cuadratic cost penalizing the
equivalent control effort and the state
deviation from the origin [161.A second ave-
nue is simply try to guarantee the existence
of the stiding regime in all of the
switching surface. In our particular case
this is easy to achieve as lang as we avoid
intersection with the stable eigenvalue line
of the variable structure plant (k 1.

After few experiments, we have chosen as

parameters defining the sliding curve the
values: mz = —1.5 5 ma = — 4.0, Figure 3.1
depicts the behaviour of the state va-
viables xi1 and %= in the phase plane. Fig
3.2 represents typical trajectories in  the
time domain for both x. and x=. Fig. 3.3

shows the time evolution of the variable

structure controller both outside and on the
sliding curve .

IV CONCLUSIONS

In this article we have investigated the
possibility of using nonlinear sliding mani-—
falds in the variable structure feedback
control af linear and bilinear systems. A
mathematically tractable methad has been
presented for the modeiing of a large «<lass
of nonlinear surfaces. These models are
exclusively based in considering affine
restrictions on a multinomial homogeneous p



form of the state vector ( also known as a
p—~th family of tensor powers ). Explicit
conditions were also found for the reachabi-
lity of the sliding surface in its immediate
vecinity. The ideal sliding equations are
showh to substitute the linear or bilinear
nature of the original controlled system by
a nonlinear set of differential equations.
Stability conditions on the ideal sliding
regime can be established in terms of Lya-
punov functions. For this class of problems,
the structure of the sliding dyhamics make
it particularly suitable the use of the
Variable Gradient Method for the determina-
tion of an appropriate Lyapunov function.

the
a

treated
left

In this instance we have not
multiple input case and it is
research suggestion.

as

For the non-linear case the assignement of
an arbitrary fast response to the sliding
dynamics is far from solved . Only the ini-
tial steps have been taken in this article.
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VIl AFFPENDIX

If x is an n-vector with components X179
X2y s aay%n we denote xP> the ("*B~2)-dimen-
sional vector whose elements are homogeneous
p~forms in the components of x . By conven-
tion we set x<©? 1. We define
N¢ny p? (r*B=3) . We shall often refer to
this "power" of x as the "p-th tensor power
of the vector x".

We denote by Ace, the infinitesimal ver-
sion of the above defined power, i.e if x
satisfies the differential equation dx/dt =
A x then d/dtx<P> Acp> x°P2. Some proper-—
ties of these tensor powers are 3



1> (AB)tP> = ASPIECP>

2) (A 4B Jcp> = Acps + Bepos
3) (AT)CP> = (ACP2)9

4) (q A dep> = q Aces

S (AT)IP2 = (ASP>)T

E) (AT)c¢p> = (Acp>)T

We extend these definitions by considering
vectars which are an ordered arrangement of
increasing tensor powers of a vector x. We
denote this vector as xEP3 = (1, xT, (x<=*)7T

geeas (xSP2OTOT.  We call this vector "the
p-th order family of tensor powers of x".
The dimension of x is N*(n,pd) = (ﬂFP)

Let b be an n-dimensional column vector.
Dencte B the matrix whose first column
vector is (O,bT)7 and the rest of entries
are all zeroes then the matrix Bepa has its
hon-zero entries in blocks immediately below
the main zero diagonal blocks (See Sira [17]
for details 2

Lemma_A,Z. Let dx/dt = Ax + u Bx be an n-
dimenional bi-linear system. Then x®P? evol-
ves according to dx®P3/dt = Acpa x°F?

+ U Bepa xEP?

Nonlinear Manifolds_and_families_of _Tengor
pavers

A linear type restriction on a p-th fami-
ly of tensor powers of the state vector X
produces a nonlinear manifold yof a rather
general nature, in R™ . The equation :
s = m'xfP? = 0 is by itself a nonlinear
reilation among the state coordinates capabie
of representing smooth manifolds of the most
diverse type and shape. On the other handy

this surface mode! can also be regarded as a
truncated approximation of p-th order to an
analytic surface of general nature.

Remark _A.1 mT is an N*(n,pr-dimensional row
vector with the follawing structure:

mT = (mosMTca>rMTez> ore MTcp>) where Mow>
is an element of RN¢n x> and mo is a scalar.
For the case of surfaces containing the
origin, it will be assumed that the first
component of m ; Mo 1S zero.

Remark_A,2 We shall assume that the surface
equation s = 0 allows one to define without
ambiguity at least one original state
variable, say xm» . This definition could
even be of the implicit type i.e. in terms
of the state variables and some of their
respective homogeneocus powers including,
possibly, expressions involving Xn itsel f.
An expression Mx®P? subject to the condition
s = O can be written as M*(xFP3)* yhere we
indicate by means of the symbol "¥" that
substitution of x,. » has been carried out.

The author is indebted to Professors E.
Colina, 0. Ostos and E. Chacon for their
valuable assistance in the preparation of
this paper.
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Phase Portrait of 2nd. order
Variable Structure System
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Fig. 3.2

State Trajectories in Sliding Regime

Fig. 3.3
Variable Structure Stabilizing Control






