Proceedings of 25th Conterence
on Declslon and Control
Athens, Greece - December 1986

VARIABLE STRUCTURE CONTROL OF NONLINEAR SYSTEMS THROUGH SIMPLIFIED UNCERTAIN MODELS!

Hebertt Sira-Ramirez?

Coordinated Science l.aboratory
University of llinois at Urbana-Champaign

Abstract

A Variable Structure Control (VSC) approach is proposed
for the outer loop robust stabilization of feedback equivalent
systems whose available model lies in the same structural orbit

of a linear system in Brunovsky's canonical form. A simple

illustrative example is presented.

1 INTRODUCTION

The robust stabilization of exactly linearizable systems
through uncertain models is studied in [1] under the assumption
that a simplified available model of the plant is in the same
orbit, specified by the action of the nonlinear “feedback group”.
containing the linear Brunovsky form of the equivalent plant
{2). As a consequence of this, the model and the plant have,
roughly speaking. the same Kronecker controllability indices.
This is physically appealing and philosophically sound in realis-
tic control oriented modeling strategies. But, probably, the nicest
consequence lies in the fact that matching conditions, similar to
those connected with controller design for uncertain systems
(3).[4)(5). emerge as a natural consequence of structural
equivalence among the model and the plant. rather than as a
priori assumption. Both Lyapunov-based and high-gain controll-
ers are developed in [1] for the stabilization of a nonlinearly per-
turbed Brunovsky model resulting from model-based lineariza-
tion.

Here. we shall propose an alternative design scheme using
VSC design. For extensive surveys on VSC, the reader is referred
to Utkin [6)[7). As most recommended books. the reader is
referred to Utkin [8], and also Itkis [9]). For closely related
developments to the particular application of this article is
devoted to, see [10}{11].[12].

Section II of this article develops a variable structure con-
troller to stabilize the nonlinear perturbed model whose linear
part is in Brunovsky's canonical form. The original nonlinear
equivalent plant is thus provided with a nonlinear VSC compen-
sator which locally stabilizes its motion towards the origin of
coordinates. The linear sliding surface, expressed in linearizing
coordinates, actually represents a nonlinear smooth switching
manifold in the original state space coordinates where the sliding
motions take place.

Section 1II is devoted to the VSC feedback stabilization of a
single link robot manipulator with a flexible joint coupling the
DC motor actuator and the link [13]. A robust controller is
specified using the results developed in section 1. bt

Section IV contains the Conclusions and Suggestions for
further research in this area.
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11 MAIN RESULTS

2.1. Simplified Uncertain Models of Fecdback Linearizable
Systems

Consider the nonlinear system:

dx _
s f (x)+g(x 2.1)

where f (x).g(x) are smooth (ie either C* or analytic )
representations of local vector fields on a smooth, Hausdorff real
n-dimensional manifold M. which we usually take as R" .

The available model of (2.1) consists in a simplified ver-
sion of the local fields and it is written as:

dx _ ¢ ~
¥ f(x)+g (x (2.2)

The main assumption about the plant (2.1) and its
simplified mode! (2.2) is the structure matching assumption-[1]
by which the plant and the model are both feedback equivalents
of a linear system :

dz _
v Az +bu (2.3)

with (A.b) controllable in Brunovsky canonical form. This is
more explicitly stated by saying that : using u = alx )+8(x v
and ¥ =alx )+B(x Jv in (2.1) and (2.2) respectively, with B(x)
and B(x ) nonzero, followed by the same diffeomorphic coordi-
nate transformation z =T (x ) one obtains. in both cases, exactly
the same linear model (2.3). This assumption implies that the
mismatch or error fields :

8f(x)=f(x)—f (x) . 8g(x)=g(x)§(x)
(2.4)

lie in the span of the model input field g(x) , i.e there exists
scalar _functions d (x) = &(x )—a(x )—(B(x )=B(x))B~! and
e(x)=B(x)B~Mx)-1 for which g(x)d(x)=8/(x) and
g(x)e(x)=8g(x). As a consequence of this. the plant equa- .

"tions can be reformulated in terms of the model equations as :

%;=f GG GOMu @ )+d (e e (xu(€)) © (2.5)

Applying to the actual system the lipearizing feedback con-

trol derived for the model : u=a(x )+B(x v is equivalent to
using it on (2.5), thus obtaining the nonlinearly perturbed model

dz _

= Az +b[v +¢(z)+¥(z v] (2.6)
with :
o(z)= d_(x’_)_te (e Jalx) [4arte
B(x)

= &(x )B~"(x J-ax B M (e J4B7(x =B Mx )|, < e
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Wz)=elx) | v =T z)
= PP = 1|, g, @n

The control input v must be designed to stabilize (2.6) in
spite of the modeling errors ¢(z) and ¢(z). These errors are
often expressed in terms of appropriate interval or absolute
value bounds. We shall assume that such bounds exist in the
form of point-wise compact sets in R, given by :

ey z):={pe R :|lp(z)]| € h(z) JCR"!
Wz)eguz):=lyeR :|p(z) S €< 1icR (2.8)
2.2. Equations for a Variable Structure Controller
Define a partition of the state vector zas :
z =z, 2,V 2,5 (20200 20 (2.9)

The switching function for the sliding dynamics is defined
as:

n=1
s=mT Dz =mlz 4z, = Tm;z; +z, (2.10)
j=1

The set S = {z € R" :s(z) = 0} defines the sliding surface .
The function s is frequently taken as the " surface coordinate
function ". It is useful to obtain a differential equation for its
time evolution. Eq. (2.6) can be rewritten as :

—dt-_;ﬁwi Z+bs 1 z,€R!

d
fd_:_ =ps+n 2y + [149(2,.5)) v +elz,.s) (2.11)
with:
0 1 0
0 0 0
A =1 . ot € Rin=bxln-1)
1
—m, —m, -m, _y
5=[(00.---.1F erR"' ; p=m,_,
sl =tmme M)
and '

n =mgoy=me-nm; j=1.2..n=1ime=0

Vers Y, ety ¢ B8 )= |y,

(2.12)
The input v is synthesized as :
v=—fTz,~d, (2.13)
a; for 52; >0: 0<a
(5= —a; for sz; <0; j=12..r <n-1
2.14)

—d (z,)

d(z,)>0 for s >0
. = for s <0

The design problem consists in specifying the gains «a; B
and the relay term d, so that a sliding motion takes place on the
switching surface S .
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2.3. The ideal Sliding Mode and the Set of Equivalent Gains

The feedback control action of the VSC is to be designed in
such a manner that reachability of the sliding surface is
achieved, possibly in finite time. Secondly. the controller is to
maintain the motions of the system on the sliding surface so that
its static characteristics prevail as the defining field for the
dynamic behavior of the reduced order controlled plant.

The ideal sliding conditions are simply :

1)s=0
ds
e =0
2) i S

The first condition leads to the determination’of the ideal
reduced dynamics:

2,=A 2, (2.15)

SES

i.e. the system dynamics is totally governed by the design
coefficients of the switching surface 8. As a result, the controlled
system enjoys a robust stable motion with preassigned rapidity
of convergence towards the origin.

In the above equations. full feedback of the systems state
variables is necessary in order to synthesize the surface values
although the controller function (2.13) may require limited state
feedback. In the appendix, a procedure is developed for the
appropriate stabilization of the sysiem based in this particular
conception of "limited state variable feedback”. The constraints
that this fact imposes on the ideal sliding mode stability
specification are also shown explicitly.

The second condition is responsible for producing the
Equivalent Control [6] and represents the average control
action that takes place by effect of the “infinite frequency”
switchings exercised by the VSC. The equivalent control
represents the smooth feedback control that would keep the state
trajectory on the sliding surface, ideally satisfying the invari-
ance conditions. However, due to the lack of knowledge about
the scalar quantity ¢(z) and the disturbance ¢(z) . the
equivalent control can not be uniquely specified. Substituting
(2.13) in (2.11) one obtains :

5 =ps HI—(1 492,15 NS Tz, +H bz, =142y D ()]
(2.16)
Define the sets :
F={f eR"7': ¥(2,.00e0,(z,.0) sz. n—[1+4(2,.0)]f =0

=lf €R"V:|f,] € l:_"_el j=12..n-1) 2amn

D(z)=ld eR"7V: ¢(2,.0) € 04(z,.0) and ¥(z2,.0) € 0,(z,0)
st §(2,.0) — [149(2,.0))d =0 }

=lde R :|d, (2))] € "’_l%_‘e'?l; j=12..n—1)

(2.18)

The set of equivalent gains is defined as : 2

Qpoz))= Fx D(zy) (2.19)

Notice that the elements in the set of equivalent gains represent
those values of the feedback gains and relay terms for which the
invariance conditions s =0 ; 5 =0 might be satisfied. In speci-
fying the actual gains and relay term values that achieve sliding
surface reachability such set of values must be avoided.



2.4. Reachability Condition

Accessibility of the switching surface, on the part of the
state trajectories. is a crucial task in designing sliding modes for
Variable Structure Systems (VSS). The necessary and sufficient
conditions for a sliding regime to exist are: [6]

5 ds . ds
1 — <0: 1 —-— >0
o dr BT (2.20)
which are equivalent to the more compact form [9] :
. ds
—<0 5
Jh_rr:] s = (2.21)

If this condition is satisfied. the state trajectories of the system

move towards the sliding surface S and once it is reached, the
VSC will maintain the trajectories in the vicinity of this surface
in a chattering motion that eventually leads to a stable equili-
brium at the origin of coordinates. It follows from (2.16) and

(2.21) that the necessary gains for the linear controller (2.13)"

are given by :

n‘ikin (1492, 0] o, =[1-Elo; > |m;_y=m, _ym;|
'y

j=12,.r <n-1 (2.22)
and the relay term is given by :
nrl’in [1+9(z,00d;(z))=[1~8&d;(z)) >
v :
nTé-’,‘o) #,(21.0) =, (2,.0)
(2.23)

The set of gains and relay terms in (2.22),(2.23) delimits a
region in the gain space which contains the "set of equivalent
gains” (2.19). This set inclusion constitutes a necessary and
sufficient condition for the existence of a sliding motion on S (See
also [6]). Once a synthesis for the VSC has been achieved by
means of (2.22)-(2.23), a nonlinear Variable Structure feedback
compensator is obtained as an outer loop controller in combina-
tion with the inner loop feedback linearizing control law :

v = &0 )HBx v () (2.24)

with v(x) given by (2.13),(2.14) and'(2.22),(2.23). The switch-
ings occur on the surface S represented by (2.10) with z =T (x ).

1l EXAMPLE

Consider a single revolute joint with elastic gears coupling
a2 DC-motor actuator and a rigid link with inertia J, about the
rotation axis, such as the one shown in Fig. 1.( Marino and Spong
[13). Spong [14] ). The elasticity associated with the gears is
modeled as a torsional spring with stiffness coeflicient k . Let
x-1.x 3 denote the angular position of the link and the motor shaft
respectively. Defining x, = X, and x4 = X, the state space form
of the model is :

X =x;

. Mgl . k

Xy=— ]f smxl—J—l(xl—x;)

X3=x,

. k 1

x‘=ﬁ(xl—x3)+ T u 3.1)

where M is the total mass of the link. ! is the length measured
from the link center of mass to the axes of rotation, g is the
gravitational constant, J,, denotes the rotor inertia and u is the
torque applied to the motor shaft by the actuator. (See Fig.1)
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The global state coordinate transformation represented by
the diffeomorphism :

Z;=x,
Z=1x,
Mgl . k
;3= -—f?smx .—-J—l(x 1=x3)
= Mgl k
z,= --jf—x;cosx,—',—l(xz—x,) (3.2)
and the associated inverse transformation :
X1 =2,
X,=2z,
7, Mgl .
X3 = —l-‘—-z_‘+z.+—kg—smz.
J Mgl
X4 = T’:z‘+:z+Tg-:2cosz. (3.3)
lead to the open loop transformed system :
3i=z4 1 i=123., (3.4)
Ze=pl2 gz u=y
with :
_ Mgl o, k. k 7y
p(z) = =8 [(2F ——)sinz ;—z yc082 ) -z ,(1+22) ;
PP Mt e A
k
g(z) = o—— 3.5)

s

It is clear from (3.4) that the feedback linearizing control law is
simply :

u=alz )4+p(z v = [~z )p (2)]+[g~'(z)]v (3.6)

Remark.

System (3.4) is to be regarded as the plant. Simplifications lead-
ing to the available model are 1o be carried on p(z) and ¢(z)
to obtain p{z) and §(z). These values lead 10 the simplified
linearizing control law :

u =&z )z v =[—§7Hz ) (2)+HG (2 v

Use of this feedback control law on the plant yields the per-
turbed Brunovsky model :

I =2y o i=123

Ze=v +d(z) + ¢z ) (3.7)

with
$2)=4Ip()gz) = ¢~ M2)p (2 )g(2) + G Nz )g(2)
Wz)=¢"Nz)g(z) -1

A sliding surface is proposed which renders asympiotically
stable closed loop trajectories for the reduced order sliding
dynamics.

3
s=Ymz vze=mlz +z,

i=l

(3.8)

A variable structure controller is prescribed as :

v = —i fizi—d.(z))

i=l



with d, being a relay term and the gains f; (i = 1,2,3 ) are
assumed 1o take only one of two values {~a; .« ; ). The equations
for a sliding motion result, in this case, in :

Zi®z 0 i=12
Ey= —m 2 =Mz ,~mazyts
§ = mys +l—m ym =149k )z | +[m \—m ym 3=(1 44k )z,

+[ma=m =149k 3)z 3 +[p(z )-(1 +9)d, | (3.9)

The ideal sliding dynamics is readily obtained from (3.9) by
enforcing the invariance conditions s = Oands =0 :

i3z i=12

23==mz \—myzy—m iz,

(3.10)

where the constant coeflicients m, .m,,m3 are chosen as
my>0.my>0,mym3;>m,; 1o guarantee asymptotically
stable behavior of (3.11). .

The reachability condition of the sliding surface 55 < 0
results in the following gain and relay term prescription :

l’"} -1"Mmm; |
e

o; > for sz; >0
k, = —a;  for 5z, <0 Pj=123
d">£(i‘)- for s >0
d = 1-€ ] (3.11)
L A for s <0

Several model simplification options can be proposed on
(3.4)-(3.5). We shall adopt the one suggested by the open loop
Brunovsky canonical form of the linearized version of (3.1) (
with sinx; = x; ). We also include modeling uncertainty on the
value of the link inertia J, to account for the range of possible
load values handled by the manipulator. Thus, p(z) , §(z)
result in : . .

a

ﬁ(z)=—£[1+§i+f_€£k,—ﬂ
7, " J1Jm

. k

q(z)=J.J (3.12)
Wm

with these simplifications the perturbation terms in (3.7) are
given by :

W2)=p(z,) = j_‘-l
1

#z)=lz)) = 1‘.]"L8’[.J‘_z L sinz M85 2 6inz
m 1 7, 7,

1 I 1 jl Mgl k1 1
+k T.(1~t—..===)+__(1+..__+—)‘—3 W =]
“l 1 m 74 I Im Jy J1

(3.13)

An upper bound for the absolute value of the function ¢(z) is
readily obtained as :

()] <€ kMgl Izl + Mgl 2+ k(e+Mgl?
Jidm 7,(1-8) 7 J, (18
+. kl, + 1+€)+J,, Mgl
k(7 J”..) J o +kJ ,(14€)+],, Mg Yool = k(2
J 1 (1-8) A

(3.14)

"A nonlinear variable structure control logic and an associated
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-[11]

nonlinear sliding manifold would be obtained upon use of the
inverse diffeomorphic transformation which takes the z variables
back to the original variables x. However. due to the uncer-
tainty present in the system parameters this is not possible and
the control scheme is to operate by either direct measurement of
the z variables or its accurate on line estimation. In this case. as
pointed out in [14], these variables have physical significance and
they represent position, velocily , acceleration and jerk values
for the controlled link. Progress has been reported in both direc-
tions : solid stale accelerometers are becoming available and
results are also available for the exact nonlinear state estimation
problem [15]). Combination of both of these possiblities must be

considered for actual implementation.

IV CONCLUSIONS

A Variable Structure Control approach has been presented
for the robust stabilization of feedback equivalent nonlinear sys-
tems whose proposed model lies in the same structural orbit of a
linear system in Brunovsky's canonical form.

An attempt to exactly linearize the nonlinear plant on the
basis of the fecdback control law derived for the available
model results in a nonlinearly perturbed canonical system with

which account for the expanded class of possible equivalent con-
trol functions. Conservatism tends to grow as modeling errors
become larger.

In order 10 preserve internal controllability structure of the
plant, it has been proposed that model simplification be carried
on the open loop transformed system. As an example, a con-
troller was developed for a single link manipulator with elastic
joint.
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APPENDIX

In this section we treat in detail the problem of specifying a
stable dynamics on the controlled reduced system (ideal sliding
dynamics) when a "limited state variable feedback” compensator
of variable structure is sought. Notice that such a name is inap-
propriate since, at the end, all state variables are needed for the
synthesis of the surface coordinate s .

Let r=n~1in(2.13)-(2.14) 5 is written as:

=
s =mays + Flmyo ~m, ym; —[1+ (2,51 ;]2
j=1

+ ¢(zy.5) = (14425 ))d, (A.1)

If the f; 's and the relay term d, are chosen in such a
form that the limit condition (2.21) is satisfied. then a sliding
motion exists on 5. However, if only a smaller number of state
variables is allowed in the synthesis of the control signal ¥ and
r <n =1 then, the above equation resultsin :

S =m, s+'2[mj_, —m,ym; = (2,5 )f )z
=

+ T Iy amy 12, 46208 = (149205, (A2)

j=r+l

and the condition :

my_y=m, _ym; =0 j=r+1r+2,..n-1 (A3)

has to be enforced in order to satisfy (2.21). This has an immedi-
ate consequence on the ideal sliding dynamics modes of the con-
trolled system. Indeed, since now the coefficients in the matrix A
in (2.12) are no longer free, it is not possible, in general., to com-
ply with an arbitrarily chosen dynamics.

The problem is reduced to finding the effect of (A.3) on the
behavior of the ideal sliding dynamics. We may thus consider
the full version of the Brunovsky canonical system, free from

parametric uncertainties and nonlinearities. Consider then :

iz—=A z +bu

= (A.4)

The following design procedure generalizes some low dimen-
sional examples presented in Utkin [8).

Procedure
1) Find a linear control function of the form :

v=Y vz (A.5)
1=1

Wwith y; constant and r <n—1 such that the resulting closed
loop system (A.4) has one of its eigenvalues real and say equal
to A which will be necessarily positive. while the rest of the
eigenvalues have negative real parts.

2) Equate the coefficients of the "equivalent control *:

vK =—£[mj_l—m,,_|mj]2j (A6)

1=1

to the corresponding coefficients y; of the linear control law in
(A.5). Equate also X to m, _, and obtain :

mp=NT o jEr e 4ln -1
-
m; =A"‘/+Z'7J,‘. A= =12, -1 (A.S)
i =]
3) Define now :
YIZAW Y SAw—w | Y =hw =,
Y = A W =W,y = AT+ —w,
(A.6)

4) The characteristic polynomial of the closed loop system
can now be factored as :

(P_x)(Pn L Y Pn-z + A2 p" -3 4 AN pr-l

W, 1p" 24 twp+w ) = 0 (A.7)

S)Withwy > 0:wy > 00l M *1>w 5 ete. all
roots of the second factor of (A.6) have negative real parts. Sub-
stitution of the defined y's in (A.5) allows one to obtain the
sliding surface coefficients for the system in terms of the w;'s.
These are evidently :

my=w; i my=w, . LM =W,

MmN e e imy = imy = (A8)

The design procedure for the ideal sliding dynamics should now
be clear. The second polynomial factor of (A.7) contains all the
stable eigenvalues of the idea} sliding dynamics for the reduced
order controlled system.
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Fig. 1

FLEXIBLE JOINT MANIPULATOR



