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Abstract

A Variable Structure Control (VSC) approach is presented for
muiti-axial spacecraft reorientation vers. A I
sliding surface is proposed which results in an -asymptotically
stable. ideal linear sliding motion of Cayley-Rodrigues attitude
parameters. By imposing a desired equivalent dynamics on the
attitude parameters. the approach is devoid of optimal control
considerations. The single axis case provides a design scheme for
the multiple axes design problem. Illustrative examples are
presented.

INTRODUCTION

]
Multi-axial large angle ers d for sp ft
reorientation generally pose a complex nonlinear dynamic con-
trol problem which must be solved on line with limited on-

board computational capabilities.

Over the years. a number of approaches have been proposed
for the adequate treatment of this problem. Classical lineariza-
tion techniques around a nominal point were extended to suc-
cesive operating point linearization to handle multi-axial large
angle maneuvers following a prescribed nominal path (Breakwell
1981, Hefner et ai 1980 ). This scheme. although rather accurate.
is also time consuming. Typically a sequence of single axis
maneuvers eliminates the nonlinear nature of the problem at the
expense of underutilization of actuators.

Nonlinear optimai control theory has also been applied to

this class of problems ( Junkins and Turner 1980 ) with various
degrees of -An immediate advantage is the possibility of
considering multi-axis rotations without resorting to a single
axis decomposition strategy. The computational burden is how-
ever significantly increased and off line two point boundary
value problems (TPBVP) have to be solved for each required
maneuver. Other works ( Vadali and Junkins 1982 ) address the
same problem by using the method of particular solutions on the
intrinsic TPBVP.

Other direct solution methods involve a combination of
optimal control theory and polynomic feedback control approxi~
mation (Dwyer 1982, Carrington and Junkins 1983 ).

Recently. the so called exact feedback linearization
approach ( Hunt et al 1983) has found a number of extensions
and applications in the spacecraft attitude control probiem ( Bat-
ten and Dwyer 1985 . Dwyer 1986a ). In this approach the non-
linear slewing problem is soived by setting exact nominal com-
mands based on an equivalent Brunovsky canonical version of
the system obtained through nonlinear state space coordinates
transformation and nonlinear feedback ( See also Dwyver 1984 ).
The effect of elastic deformations can also be taken into account
(Monaco and Stornelli 1985. Dwyer 1986b) but only rigid body
motion will be considered here.

In a recent article (Vadali 1956 ) the vse of Variable Stryc-
ture Controilers (VSC) for large angle rotational maneuvers has
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been proposed. specially when pulsed width. pulse frequency
modulation thrusters are available ( Wie and Barba 1984 ).
Using an optimal control approach for the sliding surface syn-
thesis problem. the resulting surfaces were shown to be linear,
thus achieving a design simplicity which also resulted in a
robust controlled motion. However. the stability characteristics
of the ideal sliding kinematics can not be independently
prescribed for each orientation parameter but rather, an homo-
geneous asymptotic stability is achieved with a common pre-

selected exponential rate of decav for the attitude parameters
evolution.

In this article we propose a general VSC scheme based on
nonlinear sliding manifolds. defined in the spacecraft full state
space coordinate functions comprising the kinematic and
dynamic variables. The design problem for the ideal sliding
regime is formulated in terms of a desirable reduced order
dynamic bebaviour of the controlled system.

We show the possibility of using sliding regimes resulting
in a controlled reduced system on which the rapidity of the
maneuver can be totally chosen at will. in an independent
fashion for each attitude parameter. The design freedom is
enhanced 10 a point where rest to rest maneuvers, detumbling. or
arbitrary spinning ( periodic tumbling or nutation ) regimes can
be imposed using the same basic conceptual framework. In this
instance. however. we shall only present the reoritentation prob-
lem.

In section II of this paper we present the state space model
for the control of a spacecraft undergoing multi axial rotational
maneuvers. A sliding surface is considered on which the con-
trolled ideal dynamics can be forced to exhibit independent
exponential rate of asymptotic stability for each orientation
parameter. A nonlinear static torque feedback profile is gen-
erated. through the equivalent control problem ( Utkin 1978 ).
Wwhich sares as a reference level for the gain specification prob-
lem leading to sliding surface reachability.

The use of well known results ( Slotine and Sastry 1983 )
to0 avoid the chattering probiem is proposed for the synthesis of
thé actual commanded torque generation through variable thrus-
ters ( See Batten and Dwyer 1985 ).ie. saturating torque
effectors are assumed rather than ideal torque switchings. This is
done at the expense of velocity of surface reachability.

Section Il contains two application examples demonstrating
the design flexibility achievable through the use of Variable
Structure Control.

The last section contains the conclusions and suggestions
for further research in this area. The appendix summarizes some
usefu: formulas closely related to the manipulations that are
usually carried out when designing VSC for spacecraft whose
attitude parameter evolution equations are described in terms of
the Ginbs vector of Cayley-Rodriguez parameters.

II BACKGROUND AND MAIN RESULTS
2.1. Models for momentum transfer reaction wheels and
external symmetric thrusters controlled spacecraft
A spacecraft driven by reaction wheels. aligned with the princi-

pal axes of inertia. is governed by the following kinematics and
dynamics equations :
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and £ is the Gibbs vector ( See Wertz 1978, Dwyer 1986a )
defined as :

ta .m.(iz’;) 2.3)

denoting the result of a virtual rotation of ¢ radians about a vir-
tual unit axis vector ¢ . with reference to a preselected inertial
reference system. Q = col[Q,.Q,.Q;] where Q; is the angular
velocity of the i-th reaction wheel. about the i-th principal axis
of the sp aft, ed in radi per d
w = col{wwyw,] is the vector of angular velocities of the
spacecraft with r t 10 its inertia axis. J° denotes the system
inertia. [ = diag [/°,J°,J9,] with [°; representing the axial
moment of inertia of the i-th wheel. measured in Xgm? ;7=
col (7;) where 7, is the reaction torque generated by the i-th
wheel motor. I stands for the identity matrix in R3 and (§ x ]
denotes the matrix defining the vector " cross * product operation
in spacecraft coordinates.

The matrix C(§) represents the change of variables matrix

taking the inertial coordinate system into the rotated ( body )
coordinates. .

On the other hand. the kinematic equations of an externally
controlled spacecraft using symmetric et thrusters with locked
wheels are the same as before. The complete model is then given
by :

d,_1
FiolI+8 +éxlw

IO%W =(["w )xw +7 (2.4)

where 7 represents now the externally applied torque. The
matrix /" . is . as before. the matrix of moments and products of
inetia for the complete spacecraft system about its principal
axes.

We shall restrict our developments to the external sym-
metric jet thruster controlled case. Due to the structural similar-

ity of both models. the results derived for this case are readily

extendable to the reaction momentum wheels control case.
2.2. Variable Structure Control on Nonlinear Systems

The theory of Variable Structure Systems (VSS) and their
associated sliding mode behavior (Emelyanov 1967) has under-
gone extensive development in the last quarter of a century.
Scientists from both. the Soviet Union and the United States
have contributed with a wide embracing range of applications
that cover from aerospace design problems ( Utkin 1968, Calise
1984. Vadali 1986) to power systems control { Young and
Kwatny 1982, Bengiamin and Chan 1982, Chan and Hsu 1983 ).
robot manipulators ( Young 1981 . Slotine and Sastry 1983 ) and
hydropower generation ( Ershler et al 1974 ). Survey articles (
Utkin 1977, Utkin 1983 ), and several books ( Itkis 1976 . Utkin
1978. Utkin 1981 ). contain a detailed account on the state of the
art and the potentials for the future of this simple and yet
powerful design methodology.

A surface or manifoid in the st_te space represents static
relationships among the different state variabies describing the
behavior of the system. If these relationships are enforced on

the dynamic description of the system, the resuiting reduced
order dvnamics may contain highly desirable features. The idea
is to specify a feedback control action. of variable structure
switching nature. which guarantees reachability of the
prescribed manifold and. once the manifold conditions are met, it
proceeds to mantain the system’s motion constrained to this slid-
ing or switching surface. The task is usually accomplished by
oportune drastic changes in the structure of the feedback con-
troller which induce velocity vector fields invariably directed
towards the sliding manifold in its immediate vecinity.

Consider the nonlinear dynamic system. which captures the
essential features of the spacecraft models (2.1).(2.4) :

d.
.} = Flxx,
dt

dx,

— = f (2, x)+G(x;x5) u (2.5)
dt

where x; (i = 1.2 ) are locaily smooth coordinate systems
defined on open sets of R" respectively. F(x) is an invertible
smooth nxn matrix . G is also an invertible n x n matrix. f isa
smooth n-dimensional vector field. We usually denote the pair of
vectors (x; ,x, ) by x.

The control function u: R" -~ R* is a discontinuous func-
tion whos¢ components are of the form :

u; *(x) for 5;(x)>0

u(x)=
u, (x) for 5,(x) <0

(2.6)

where s; : R — R is a smooth function for which the set
S; ={x €R* :5;,(x) = 0} defines a smooth 2n —1 -dimensional
smooth submanifold. S; is called the i-th sliding submanifold .
S is defined as the n-1-di ional i ion of the sliding

submanifolds : § = hS; . We refer to this manifold as the

sliding manifoid .

The collection of surface coordinates {s; } is rep dasa
vector of functions s =col(s ;53 ....5, JR? = R*?

The specification of 2 smooth feedback control function
which makes S into an invariant manifold is known as the
equivalent control problem .

It is assumed. without loss of essential generality (Luk-
yanov and Utkin 1981, Sira 1986). that the sliding manifold is
of the form :

{xeR> .5 maxy=m(x,) =0} (2.7

The equivalent control function describes the motion of the
system in an average sense. The ideal invariant motion resulting
from the equivalent control is the ideal sliding dynamics or the
equivalent reduced dynamics

The actuai motion of the system. when constrained 0 S ,
under the persistent action of the VSC is called the siding
regime.

We formulate the sliding regime creation problem as fol-
lows :

A smooth sliding manifold S and a VSC of the form (2.6)
are desired so that the integral curves of the system locally
approach S and remain constrained to this surface thanks to the
active switchings of the feedback controller. The average. invari-
ant, motions in S are deemed desirable in the following sense :
An asymptoticaily stabie motion is obtained on the marifold
which converges towards a prespecified equilibrium point located
inS.

In the context of spacecraft maneuvering problems. typi-
cally. the class of problems which fall into this category, are
reorientation maneuvers and detumbling.

The effects of the control input functions on the reachabil-
ity of S. as well as the explicit expression for the equivalent con-



trol. are better assesed from replacing the x, coordinate func-
tions by the " surface coordinate functions * s . From (2.5) and
(2.7) we obrain :

ey m Fx) (s 4m(xy)
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f(xl .5 )= %F(xl)(:+m(x,))+f(xl.s +m(x,))

=-31x°’lr(xl)(:+m(x,))+/(x, s +m(x))
1

Glxy.5 )2G(xy.s +mix,)) (2.9)

The ideal sliding motion corresponds to having null com-
ponents of the drift fields along directions not lying in the
tangent space 10 the sliding manifold

Clearly. the sliding manifold S will be locally invariant if
and only if the following pair of conditions are satisfied :

1) s =0

5) ds
2) @ 0 (2.10)

The role of the equivalent control is to anihilate the com-
ponents of the drift vector field along directions which are
transversal to the sliding surface. Using conditions (2.10) in the
second part of (2.8) we obtain. after using (2.9). the equivalent
control as :

ugg(x ) = —G"Hx, .0) f (x,.0)

=G Ux, . m(x,)) [= %—F(x,)m(xlhi (x1.m(x )]
1

(2.11)

The existence and uniqueness of the equivalent control is a
crucial factor in the determination of the necessary gains that
achieve sliding conditions.

Using the first of conditions (2.10) on (2.8) we see that the
ideal sliding motion is governed by :

ixl=F(x,)m(x|)

rn (2.12)

The design problem is particularly simple if we realize that
a desirable induced ideal dynamics:

Loey= G0 (2.13)

can be obtained by letting the desired vector field substitute the
reduced dynamics in (2.12) i.e:

mx)= F W) f,(xy) (2.14)

The design options are various. at this point. If stabilization
of the system is the main objective, then f, should have a stable
equilibrium point in the desired location.

A second possibility is the creation of an arbitrary periodic
response in the attitude parameters serving a specific design pur-
pose. For instance. a periodic (limit cycle) behaviour of the state
variables x; may be desirable in certain scanning maneuvers.
This is known as induced nutation.( See Weiss et al 1974 ).
Tracking and detumbling are also within the scope of the method
with minor modifications. We shall present these design options
elswhere.

Reachability Conditions For a sliding mode to exist in the
intersection of the discontinuity ( sliding ) surfaces s; =0 it is
necessary that the equivalent control exists and each of its com-
ponents satisfies the condition (Utkin 1978) :

min (u;* u;") <u;gg <max (;* %) (2.15)

The problem of determining the domain on which the tra-
jectories converge towards the sliding manifold is equivalent to
the problem of assessing the stability domain of the nonlinear
system represented by the evolution equation for 5 in (2.8).

The specification of the variable structure gains (2.6) which
achieve reachability of the sliding surface can be handled in a
relatively simple manner if one does not insist upon having a
sliding regime on each of the sliding submanifolds comprising
the sliding surface S . To this end. it then suffices to consider the
relative stability problem of (2.8) with a Lyapunov function of
the form :

V(s)=sT Ps (2.16)

where P = PT > 0 isa positive definite symmetric matrix.

Several design schemes have been proposed for the sliding
surface reachability in linear multivariable systems ( Utkin and
Young (1978). While for nonlinear systems Utkin (1978), pro-
vides a good account of the available methods.

in the single input case. the reachability conditions are well
known ( Itkis 1976, Utkin 1978 ) and are conceptually clearer .
These conditions. in its most rigorous form are given by :

. ds . ds
,h-t:'ﬁ <0 x1:_13):_-“? >0 (2.17)

Geometrically. this means that on each side of the sliding surface
the definig vector field has a projection sign onto the normal to
the surface. such that the trajectories point. locally. towards the
manifold. A sliding motion is thus guaranteed 1o exist.

A second interpretation exists in terms of the Lyapunov
function V(s) =52 which is only positive semidefinite when
expressed as a function of (x ;.x,) . If the time derivative of this
Lyapunov function is made into a negative quantity ( ie
s% < 0 ) then reachability of the surface is guaranteed possi-

bly in an asymptotic sense. This approach is known as the “rela-
tive stability approach °.

For multivariable systems. the exisiting methods generally
group into two broad categories: Diagonalization methods, and
the Hierarchical methods (Matheus ez al. ).The diagonalization
methods. in turn. belong to one of two sub-categories. Input
space diagonalization by input coordinates transformation or
diagonalization by surface coordinates transformation. The
reader is refered to Utkin (1978). Utkin and Young (1978) and
Matheus er al. for more details on the available methods.

The hierarchy of controls method ( Utkin 1978. Young
1978 ) is based on the specification of individual control laws
that achieve submanifold reachability under the assumption that
a hierarchical order has been established a priori among the con-
trol inputs. The occurrence of the sliding motions taking place
first on those submanifolds corresponding to controllers higher in
the hierarchy.

The diagonalization methods concern is to solve the
interaction among the inputs from the input to surface map
viepoint or else from the input to state map viewpoint. The
“invariance principle * ( Itkis 1976 ) guarantees that the ideal
sliding motion is immune to these coordinate transformations.

In the diagonalization method one considers the Lyapunov

function (2.16) and obtains the time derivative of this function
using (2.8)-(2.9) :
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Let sign (s ) denote col (sign (5;)] then. the choice :
=G x5 +m (x DU f (x5 +m(x 1))—3‘%;(: Jm(xy)
1

- ri s +P-1K sign (s)]
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results in a negative definite time derivative in (2.18), whenever
K is a positive definite. diagonal, matrix.

The above controller is, however, quite maneuver-oriented
( via the gradient of m . given by Eq. (2.14) ). For this reason.
ad hoc approaches are preferred, especially when the controller is
10 be computed with limited resources and. generally. on line.

If the region of attraction to the sliding manifold is not
required to be large, a different option may be considered by
eliminating part of the required surface coordinates feedback and
using instead the equivalent control plus additional switching
feedback. This option is simply characterized by letting the
value of s be close to zero.

2 2 =G xy mx)Nf (x, .m(x;))-g-'xn—-l"(xl)r'n(xl)dn
1

P-UK sign (s)]

Hupy =G x, . m(x ) )P™IK sign(s)

A simple scheme. borrowed from the single input case. tries to
create a sliding regime on the basis of using a controller of the
form : :

u; = =k Ju; go| sign (s;) (2.20)

In this case. the parameters k; are adjusted to create a sliding
regime on either s, =0 or s =0

23. VSC of Spacecraft Reorientation Maneuvers

In this section the Variable Structure Control of spacecraft
large angle reorientation maneuvers is presented in the context of
externally controlled vehicles using symmetric jet thrusters. We
present the relevant problem equations in terms of the desired
reduced order dynamic behaviour. and the sliding surface that
achieves such ideal behaviour. Both the equivalent torque profile
and the variable structure controller that achieves surface
reachability and sliding motion (quasi-invariance) are computed
using the general formulation given in section 2.2.

Reorientation Maneuvers

Recrientation maneuvers are characterized by a desired
orientation parameter vector §(z, ) = £, and a boundary condi-
tion of the form w;(r, ) =0 : i =1.2.3 where z, denotes the

, final maneuvering time and w; represents the angular velocity
about the i-th principal axis.

A VSC approach to this problem starts by considering £, as
an equilibrium point for the reduced order ideal sliding motions
taking place in the sliding surface s = w = m(§) =0 ; ldentify-
ing § with x; . using (2.14). and the nonsingularity of F(£) it
follows that m(§,) = 0.

The ideal sliding dvnamics is governed by the vector field
fu(€) which must have £ = ¢, as an equilibrium point. i.e
ti€s)=0.

If a linear behavior of the sliding motion is prefered then
the desired vector field is of the form :

fa(8) = A(E=¢,) (2.21)

where A is an arbitrary constant stable matrix. The desired
ideal sliding kinematics will be governed by :

d = —
Le=A-e) (2.22)

thus obtaining an asymptotically stable motion towards the
desired orientation parameter vector.

By virtue of (2.14), and according to (2.7), the sliding sur-
face is represented by :

S={(Ew):s 2=w=FUEA(E~E))
= {(Ew)is 2w=201+ I —&xAE-E) )
(2.23)

where Eq. (A.2) of the appendix was used. It then follows that :
m(£) = 2(1+£ £ [A(§-E, -6 x A(§—¢,)]  (2.29)

If A is diagonal ( A =diagA A2 03] @ A; <0 foralli ).
the sliding motions are decoupled and arbitrary speed of
exponential convergence can be individually imposed on the
controiled kinematic motions towards the desired final orienta-
tion.

The equivalent control is obtained using (2.24) in (2.11)"
with the appropriate values of G, F and f . in accordance with
(2.1) or (2.4). Thus. for the externally controlled spacecraft, the
equivalent torque is:

rag = =1 S LFHOAE-EE=E,)
+HI"Y MU FUEA(E=E, ) x (F-UEAE=E, D] (2.25)

The VS Controller can now be sinthesized by any of the previ-
ous methods.

, For the sake of reference we summarize below some of the
equations that make possible the consideration of a muitiaxial
slewing maneuver with ideal linear sliding dynamics. indepen-
dently chosen for each attitude parameter.

The kinematic and dynamic equations for the modei (2.4)
are given expiicitly by :
%fl = %[ U+ Dw  HE b o=Es)waHE s +Ew, ]
28 = 2L Girbw H1HE7Iw (i€ ]

Lty = S Gkt Gt bw (1467w ]
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10 -10’ T .

iwl = L_']wlw :+—] (2.26)
dt [03 1“:

With A diagonal. the linearizing sliding surfaces (2.23)
are explicitly given by :

2 s IN(E1=E 1y YHAoE(Eg=Eng IMaEa(E3=63s ) ] + w,
1+{iglP
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(2.27)

with [[§]F = §7+£,2+€4?

The equivalent torque equations are. in this case. complex
and impractical expressions, on which the design can not be gen-
erally based. For this reason we shall rather propose a crude esti-
mate of the equivalent control obtained as if the maneuver were
of the single axis type. This idea. although rather ad-hoc. is in
the same spirit as the method of the hierarchy of controls. Thus.
using the above expressions for the linearizing sliding surfaces
we propose the following controllers: ( the singie axis rest-to-
rest maneuver equivalent torque is derived in Example 3.1 )

T, ® =k |? golsign(s;) 1k >1. i=123 (228)

where

- 2190 2(1=§; 2426 £ XEi=6is)

TigQ ; iml2

(14§28

(2.29)
can be considered as a crude estimate of the actual equivalent
control (2.25).

The ideal sliding motions of the controlled attitude parame-
ters. evolve according to the d pled linearized dy ics:

-;‘—é.- =X 6 I N<0 i=123

In order to avoid high frequency firing of thrusters and
their associated chattering problem in the sliding dynamics, a
saturated controller is proposed ( See Slotine and Sastry 1983).

T ==k [ golsat (s L€ ) (2.30)
where saz (s;.¢;) is the saturagion function defined as :
sat(s .6 )m ng::; for |5;[>¢ 23
+—= for |5;|<¢ 2]

€;

€, is a small positive parameter

This VSC guarantees reachability of the sliding surface for
any trajectory reasonably close to the i ion of the sliding
submanifolds to account for the approximate nature of Eq.
(2.29). Example (3.2) demonstrates the validity of this con-
troller for the creation of sliding motions.

Il DESIGN EXAMPLES OF VSC SPACECRAFT MANEUVERS
Exampie 3.1 (Single Axis Rest-to-Rest Maneuver)

Cofxsider the single axis rest to rest maneuver control problem
defined on the Cayley-Rodriguez kinematic description of the

externally controiled spacecraft :

d,_1 .
Ifaf(l‘#ﬁ)w
dw - 1
rradiaia (3.1)

In this case a linear system may obtained by choosing the
angular displacement as the orientation parameterer ( in which

case the doble integrator system = w ;w = .l_la.r is obtained ).

However, we shall use (3.1) 1o stress the viability of using the
VSC approach directly to the nonlinear model. On the other
band, it can be shown that by using the linear model and a linear
sliding surface. not only the globality of the sliding mode
existence is sacrified but also, by resorting to a nonlinear sliding
surface. which guarantees globality. one also loses the comand
over the rapidity of convergence towards the desired rest orien-
tation.

In synthesis, addressing the nonlinear model from the outset

provides us with a definite advantageas far as the design problem
is concerned.

Consider as a sliding surface :

S=l(Ew)is =w -zr}g(e-g,)-o :

A <0, & =constant } 32)

With £, being the final desired value of the orientation parame-
ter. In this case, it is clear that all singularity problems are con-
veniently avoided. The nonlinear sliding surface is shown in Fig.
1a. Its obvious advantage is that it provides a linear reduced
order ideal sliding dynamics. as can be easily seen from substitu-
tion of w. from (3.2), into the first of (3.1) :

d .
Ti?('f) =r(§-4) K <O 3.3)

i.e.. £ = §, is an asymptotically stable equilibrium point.
Using (2.8)-(2.9). we obuain. in this case:
ds | DMNI=E42660) 2 NGEE 1~E42%E) | 1
CE (1+892 (1+822 1
3.9)

'l‘h; Ae(?_n?l)ent control is obtained either using (2.11) with
m(§) = =—=_2_ or directly enforcing the ideal sliding condi-
tions (2.10?::‘%3.4) 3

o 2N -8428E, XE-4,)

(a+&2

(3.5)

1 TEQ

which. roughly spesking. establishes the fact that faster
maneuvers require larger applied controlled torques. The
equivalent control consitutes . reference level for the computa~
tion of the actual VSC feedhack gains. as it is readily seen from
(2.15). Using the reachability conditions (2.17). these gains can
be synthesized as :

7=k |rgylsign(s) ; k> 1 (3.6)

or. if a saturated controiler is used. the " sign " function is sim-~
ply replaced by the " saturation " function :

T ==k Iz sat (s .€) a3.n

Using the expression (2.19). or solving from (3.4). we
obtain an alternative expression for the controller :
=1 +ri{§is—k sign(s) : k >0 (3.8)
with
M O(1=£2+2£E,)

(1+¢*¢

r(£)

This results in the stable surface dvnamics :—j=—k sign (s) for

which the reachbility condition :‘:_‘: (=~kls|) < 0 is always
satisfied. We prefer, however, the controller (3.7) for its

inherent simplicity.



In the simulations shown in Fig. 1b-1e : we have used con-
troller (3.9a) on a spacecraft with design parameters
1°=114.562 Kgm* §, =0 : A ==0.1d4sec™} . k =12 .
These figures show the phase portrait. the time responses of the
state variables, the surface values evolution in time and the
torque profile. The value of € in the saturated controller was
chosen as 0.01 units of the surface coordinate. Simulations were
run using the Simnon interactive simulation package developed
for nonlinear systems analysis and design ( ELmquist 1975 )

Due to the fact that we have a denominator bounded away from
zero in the equivalent control (3.5) . we obtain feedback gains
devoid of singularities which may cause infinite torque values
for finite vaiues of the orientation parameters ( this is a common
feature when Euler angles or quaternions are used to describe the
kinemtic equation ).

Example 3.2 (Multi-axis Rest-to-Rest Maneuvers )

Consider the spacecraft model of (2.4), controlled by exter-
nal jet thrusters. characterized by the following parameters :

114.562 0. 0.
%= 0. 86.067 0. 3.11)
0. 0. 87.212

In this case a rest-to-rest maneuver is attempted using a VSC for
each symmetric pair of jets. as if a single axis maneuver were to
be performed. i.e.. the control law (2.33) is used for the VSC.

The desired attitude parameters values are all zero. Each
attitude parameter ideal evolution equation is forced to be linear
with an independent time In this case we have chosen
Ay = =0.15 sec™? Ay = =020 sec™! Ay = ~0.16 sec™! and
also the magnification gains for the " equivalent control estimates
"arechosenas:k, =15 ;ky=14 :ky=17 . The valueof
€ in the saturated controiler was taken as 0.01 units of the sur-
face value.

Fig 2a-2f depict the different phase portraits of state vari-

ables corresponding to each axis as well as the time evolution of
the control torques.

CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

A Variable Structure Control approach for the multi-axial
rest 1o rest reorientation maneuvers in externaily controlled
spacecraft has been presented. which allows for a decoupled
linearization of evolution equation for the attitude parameters.
Each attitude parameter can be forced to evolve according 10 a
different asymptoticaly stable linear dynamics. with time con-
stant entirely chosen at will. The simplicity of the approach
makes it attractive for on board P control d gen-
eration options. A saturated torque effector with variable thrus-
ter capabilities was assumed to avoid the high frequency firing of
jet thrusters. The latter technique would also be especially suit-
able for internally controled spacecraft using momentum
transfer reaction wheels.

The multiple axes reorientation maneuver was shown to be
solvable using a "decentralized * approach. in which each pair of
controlled symmetric thrusters carries a control program based
on its single axis maneuver equivalent control law. This greately
simplifies the design demands. while possibly restricting the
range of angular maneuvers.

The approach enjoys robustness properties with respect to
parameter varuations or uncertainty and external disturbances.
The computational complexity is well within the capability of
modern on board computer control generation options. Indeed.
only a bound is needed for the equivalent control torque. and
only a sign comparison ( with single bit assesment per input
channel ) is required to impiement the switching function. This
compares favorably with the otherwise required exact computed
torques previously proposed.

Other i pp ions are also possible within this
approach. Among them . detumbling, constant spinning, path
tracking and induced nutation programs.

ing
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APPENDIX

Some basic formulas

Let £ denote the Gibbs vector representation of the Cayley-
Rodriguez attitude parameters and :

Fl&)= gu e e ] (A1)

where x sands for the vector " cross * product operator and
the superscript T stands for vector transposition. then :

FNE) =201+ &) 1-£x ] (A2)

The following formulas are useful in carrying out some of
the details involved in the application of Variable Structure Sys-
tems theory to the controi of sp aft vering probl
whose attitude Gibbs vector is described in terms of Cayley-
Rodriguez pzrameters. Similar formulas for the Euler-quaternion
parameters sre given in Dwyer (1986b) :

E%F(E)w = F(§) (4.3)
%[F(é’)w]: %[f’w I +éwl —wx ] (A9)
FFEw=tgwares (a9

w .r[F(f)w]=-;-[-wr£(l+§x w+wiwél (A6)

FUOE =201+ 81 = ¢ x ] = 201+£7£)'¢ (A7)
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MULTI-AXIS REST TO REST MANEUVER
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