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ABSTRACT

This article presents a series of examples on the differential
geometric approach for the design of Variable Structure Con-
trollers (VSC) leading to sliding regimes (Emelyanov [1]) in
nonlinear smooth dynamical systems. New properties, inherited
from the geometry of the sliding manifold, are obtained in the
controlled system for which the sliding manifold is ideally
invariant. The control action consists of oportune, drastic,
changes among available structures in the feedback loop.

1 INTRODUCTION

The theory of Variable Structure Systems (VSS) and their
associated sliding mode behavior (Emelyanov [1]) has under-
gone exlensive development in the last quarter of a century.
Contributions embrace a wide range of applications that covers
from aerospace design problems (Utkin [2]. Calise [3). Vadali [4]
) to power systems control (Young and Kwatny [5], Bengiamin
and Chan [6]. Chan and Hsu [7] ). robot manipulators ( Young
[8]. Slotine and Sastry [9]. Morgan and Ozguner [10] ) and
hydropower generation (Ershler er ol [11] ). Survey articles
(Utkin {12], Utkin [13] ), and several books (Iikis [14). Utkin
[15]. Utkin [16] ). contain lucid expositions on the state of the
art and the potentials for the future of this simple and yet
robust design methodology.

We shall briefly review a differential geometric approach ( Sira
{17] ) o the sliding regime creation problem and present a series
of simple examples in which the main features of nonlinear VSS
are exposed.

11 PROBLEM FORMULATION AND MAIN RESULTS

Consider the nonlinear dynamic system :

‘;_’[‘ = f (x)4g (x Q.

where x is a local coordinate system on a smooth n-dimensional
manifold M which we usually take as an open set in R". The
vectors f and g are local representations of smooth vector fields
in M. We denote A; (x ) the linear span of g(x ) in the tangent
space of M ; T, M. Let x be partitioned as x = col (x1.x,)
withx,€R"™' , x, €R .
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We are given an n-1 dimensional smooth submanifold of
R" represented by :

s={xeR" :5(x)=x, —m(x)=0} 2.2

and refered 10 as the sliding manifold § . Ag(x) will denote
the tangent subspace of § in 7, M, while 1, & denotes the direc-
tional derivative of the scalar function o with repect to the
vector field k.

It is desired to prescribe a VSC of the form :

- Jut(x) for s(x)>0
SIS ~u(x) for s(x) <0 23

such that ideally . once the state trajectory reaches the surface
§ . the invariance conditions:

s=0: Zs=1 =0 Q4
are satisfied for.an indefinite period of time, thus creating, on the
average, an ideal sliding dynamics constrained 10 the surface S.
Notice that the second invariance condition is equivalent to :
/ +gu € Ker ds = Ag . Notice also that if g € Ag then. unless
/ €Ag the invariance conditions can not be met with finite
values of u. We assume that the transversality condition
g £ 4 is satisfied.

If system (2.1) is in regular form, ( Luk'yanov and Utkin

[18])
Lsv= 11, x, )
I_l 1 14,
%x,, =f,@x, ) tu g, (ayx,) (2.5)

and the surface equation is given by (2.2). the transversality
condition takes the form g, (x;.x, )0 ,and then, there exists a
smooth control function, known as the equivalent control and
denoted by ug, for which the invariance conditions are satisfied.

From the definition of S and (2.5) it follows that the
equivalent control is :

= Gom @)+ & e m @)

uEQ(LI)= )
&n &1 m@]))

(2.6)
The reduced order ideal sliding dynamics is governed by :
L= mG) @7

which may be viewed as :

d

—x;=fx.v)

7 v =m(x,) (2.8)



Since, according to (2.2) the function m (x ;) completely defines
the sliding manifold S . it is seen that the sliding manifold
specification problem, for a required ideal sliding motion. is
equivalent 1o the specification of a desirable feedback controlled
behavior on the reduced order equations (2.8). {(See Utkin and
Young [19] for details concerning sliding surface design methods

for linear systems )

Sliding manifold reachability is accomplished, locally, if
and only if the resulting velocity vector field of the controlled
system is made to point towards the manifold in ils immediate
vecinigy . In terms of the directional derivative of the surface
coordinate with respect to the velocity vector field [ + gu
these conditions are given by :

lim Ly,,.s <0 and lim L; s >0 2.9)
s=0*

s=07

The proof of this fact is obvious from the geometric considera-
tions already furnished above.

Using conditions (2.9) we obtain immediately :

%‘]/,ul.mw)-uu,.mm»

u*(x,) < =ug(xy)
gn(il-mﬁl))
%fx&l-m(ll))_/n(&pm(gl))
u(x,)> =1 =ugy(xy)
g, (xym(xy))
(2.10)

The stipulation of the variablé structure feedback gains is
highly dependent upon the equivalent control and takes its value
as a reference level in order to produce a convenient " tilting " of
the controlled vector field such that surface reachability is
guaranteed from any "side " of the sliding manifold.

1 EXAMPLES

Example 1

In this example it is shown how to sinthesize a sustained oscilla-
tory motion from two asymptotically stable structures.

Consider the system descirbed by :

4 _1 .
7I.x—i(1+z)[y+oz.)czu]
d_ _ 1 . ,
I_\’—7(1+~)[x+0z)zu]
d_ _1 2442
Iz—7(1+z)[x +yu

The trajectories of this system evolve on the three dimensional
sphere of radius 1, irrespectively of the value of the control
input ¥ . The sysiem has two equilibrium points at x =y =0
and |z| = 1. For u = —1 the trajectories converge, in an asymp-
totically stable fashion, towards the "north pole " of the shpere
from the unstable " south pole ™. For u = +1 the Lrajectories are
reversed and the south pole is now a global attractor.( See Fig. 1)

Consider the possibility of inducing a sliding motion on
z =K = constant —1 < K <1 .1In order to bring the system
10 regular form, we proceed in 1wo steps : first we transform the
system 1o stereographic coordinates onto the equatorial plane and
then we use a transformation to polar coordinates.

The transformation to equatorial stereographic projection
coordinates £ . mis given by : § =

ad =Y Iiseasy t
TETRRN R F R
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=

e &
il el P

Fig. 1
verify that the inverse transformations are :
P - =g
1+£2+7? 1+£24n? 1+£2+7?
The transformed sytstem is obtained as :
d,_ —ntadu in=§+a'nu
de 1482402 dt| 148+

A sliding motion on z =K in R? is equivalent to producing it on
a circle of radius 8 = %1(; on the coordinate plane §-7. For

equatorial sliding K =0 and 8 = 1. However, the system is not
yet in regular form. If we further transform the £—m coordi-
nates to polar coordinates by means of :

p=VE+n | 9=tan"(£—)

The system is now represented as :

d d 2acp

~6=1 p= 5P

dt dt 8 1+p° ¥

The sliding line equation is now s =p~pB=0. With < 1 a
sliding line is obtained in the northern hemisphere, contained in a
plane parallel 1o the equator. If 8 > 1 then the sliding line is in
the southern hemisphere. For equatorial sliding 8= 1. The

tangent line to the sliding line is simply : A5(p,0) = span { 9 ).

The  defining  vector  field for  the
[i] + 2ap

s system is
f +ug = u] L H f +ug €Ag .ideally. th h
2 ¥ T4 % / +ug s .deally. then the

equivalent control must anihilate the radial components of the
controlled field. We therefore have : ugy =0 . Reachability of
the sliding surface is accomplished by a controller that takes
u =0 as a reference level control.

From the fact that the sliding line coordinate evolves
according to :

ds _ 20a(s +B)u

dt 1+(s +8)?

the reachability conditions (2.10) translate into : u* < O for
p>p u~ >0 for p < B . Translating these conditions in
terms of the original cartesian coordinates we obtain the VSC in
terms of the z coordinate. u* = +1 for z < O and v~ =—1 for
z > 0. Fig. 1 shows the time responses of the individual struc-
tures and those of the controlled system.

Example 2 (Finite Time Reachability of a Limit Cycle )

This example shows that a limit cycle on the sphere, which
strictly speaking is reachable in infinite time. is made reachable
in finite time through VSC while ideally preserving the nature of
the oscillatory response.

Consider the system described in conventional spherical coordi-
nates p .0 & ( radius, longitudinual angle and azimuthal angle ):

d

- dg_1 .
IP'O E_O 7(1+|cosdl|) :

dl-b:%sinw[(l—costb)—u (1 +cosd )]
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This system has an equatorial limit cycle for ¥ =1 and both
poles are-unstable equilibrium points for the azimuth coordinate
angle Y. The system is already in regular form. For
u = constant < 1 the limit cycle is shifted to the southern hem-
isphere. while for u = constant > 1 the limit cycle appears in
the northern hemisphere. We take as a sliding surface the equa-

torial line : s = ¢—% =0 . The tangent subspace to the equa-
torial line is simply A = span { 9 } ( Notice A, is a subspace of

t&‘e tangent space T (44,8 = span {_@+% } ). Sinceons =0

D)

the defining

=1¢0
[ tug = .i(_
dition (2.4) implies ugy = 1 . From (2.10), it is clear that a slid-
ing motion exists on s =0 for a VSC of the form :u* =8> 1
for s >0 while u"=a <1 for s <0. With &, 8 constant
inputs. Fig. 2.  depicts the intervening integral curves for each
fecdback control structure and the sliding motion.

> ©
il

Example 3 (Harmonic Van der Pol Oscillator )

vector field is given by
4 i) it follows that the invariance con-

Al

=X

This example shows how 10 create a "perfect” sinusoidal response
on a VS controlled Van der Pol Oscillator. i.e., VS Control has
the capability of changing the nature of a limit cycle which is
periodic but not harmonic.

Consider the structure controlled Van der Pol equation :

1=x, ;5 %= 2L w(1=ux x, u —wy’x .
When u =+1 a stable limit cycle { unstable origin ) exists sur-
rounding the origin of coordinates. With u=-—1 an unstable
limit cicle ( stable origin ) is obtained . This limit cycle is the
mirror image on the x, axis of the preceeding limit cycle . ( See

Fig. 3(a) and 3(b) )
In this case we have :

9 8

o= xy w2
[ 9x 2

1 4 =2§‘“0(1—#’512)1253—2

The distribution Ag (x ) is given by the span {(1—pux ,7)x2axl} .
2

We take as the sliding surface a circle of radius » in the nor-
malized coordinates (x;.x/w,) ( an ellipse in the unnormalized
coordinates (x,.x,) ). The tangent space to the sl(i’ding manifold .
o T, _ 2

or sliding distribution.is :Ag(x) = span {x, e Wy’ X 6"’2]
Since in this case f € Ag(x) . the equivalent control must
anihilate the components of the input field along A (x ). Tt fol-
lows immediately that ugy =0. The ideal sliding is governed by :

9= xp Lxo=owix

ki 2 g% 0" X2

whose solution is known to evolve in a circle of radius r in the
space of normalized coordinates Notice that eventhough
g(x)=0 on x,=0 . the sliding condition ‘is not violated,
thanks to the fact that f (x) is tangent to the circle at these
points. The variable structure gains which locally guarantee
reachability are given by the conditions :

,li?*L/ +eus = 2w{l1=px x,u* < 0
UmZ, s = 2w(1—pxDxu™ > 0
s =0

The above conditions imply that the switching logic is simply :
u==1 for s >0:u=+1 for s <0 .M is %lso clear,

from above. that the sign of the term (l—p.xlz) remains
This in turn implies.that
r <1/vu

Fig 3(c) shows that a sinusoidal response is obtained by
switching among two Van der Pol systems. The sliding motion is
robust inside the region covered by the
Pol oscillator limit cycle.

unchanged inside the band |x,] < 1.
the sliding circle must satisfy the constraint :

" reverse time " Van der

Fig. 3(2) Fig. 3(b) Fig. 3(¢c)

Example 4 In this example it is shown how an asymptotically
stable system is obtained out of two unstable structures which
evolve on the three dimensional sphere.

Consider the system of differential equations :
dia 1l-un-H] . 4 _1[26+ntun]

a1 g a2 gy

representing the equatorial stereographic description of a
dynamic system evolving on the sphere. With u=-1, the north
pole of the sphere is a saddle point for the unstable trajectories
that emerge and die at the south pole (See Fig. 4(a)). For u = +1,
the south pole of the sphere is a stable equilibrium point of the
spiral trajectories arising from the unstable north pole. This is
illustrated in Fig. 4(b).

It is easy to show that there exists a meridian line (
obtained as the intersection of the sphere with a plane containing
both poles ) on which an asymptotically stable sliding motion
can be created. This motion leads all trajectories to the north
pole which acts now as a global attractor ( See Fig. 4 (c) ). 1
stereographic coordinates this meridian line is represented

S={(£.M):5s =M+K¢E=0 ;1<K <oco }. In this case we
have :

n=

ds _ 1 [s +26+uls —2Ks +2K%%)]
14824+ (s — K £)?
From above, it follows that the equivalent control is sim-
ply:

da 2

__ 1

v T %7

and the equivalent dynamics is given by either:

d,_1[x2-2K -1] _1 [K?-2K 1]

FrA il Ry dt Y iy s kv
1+(1 + K2)¢2 K2+(1 + K9

which represent an asymptotically stable system for any value

of X €(—0.4142 ,2.4142), i.e., our design may use any value of

K €(1,2.4142) = (—0.4142 ,2.4142) [ ] (1.e0) . The switching

logic is sinthesized as :

+1 for sm>0
-1 for sm<0

u =




If we propose a state coordinate transformation of the form
t2y=Ty(Em) : 2, =Ty(€m). The system will be in regular
form whenever :

61 1 62 1
-2 —__n=
ﬁ—(ﬁ 0+ n=0

The solué.ion to this partial differential equation is given by
£

2y =m% " . If we further let : z,=¢§% 7 The inverse transfor-
mation is easily seen 1o be :

SN N
- 3 - - —_—
=z, e 1 m=z,e 2V D
Using these transformations, the differential equation describing
the system is put in regular form. One may procecd as in previ-
ous examples.

u=sign{sn)

AN

Fig. 4(a)

Fig. 4(b) Fig. 4(c)

Example 5 ( Reduced Order Feedback Linearization )

Using a nonlinear sliding surface. and VS Feedback control, this
example shows how to obtain a reduced order linear model for
an externally controlled spacecraft undergoing a single axes
reorientation maneuver.

Consider the kinematic and dynamic model of a single-axis
externally controlled spacecraft whose orientation is given in
terms of the Cayley-Rodrigues representation of the attitude
parameter, denoted by £. The angular velocity is represented by
w while 1 stands for the moment of inertia :

d 1 d 1
St=_(1+Dw ; Sw=_71
dt ¢ 2 & dt 7
Given arbitrary initial conditions a slewing maneuver is required
which brings the attitude parameter to a final desired value £,
and the angular velocity to a rest equilibrium. For tghis. a non-
d
=0

linear sliding surface of the form s =w—=2X\

2
proposed with A < 0. The reduced ideal slidingltglnamics is
given by £ = A (§—¢,) i.e.. £, is an asymptotically stable equili-
brium point for the attitude parameter differential equation.
Moreover, the proposed surface yields w = o when the attitude
parameter converges to the desired value. The tangent space to
the sliding surface Ag is given in this case by:

(1-242¢ ¢,)

= 9 s Thse 9
Belbwd = sponigr + 20 —omw g !

and the vector field defining the controlled motions of the system
aregivenby f +g7= % (14+£DHw

that the ideal sliding condition f +7g € Ag is satisfied with the
equivalent control given by :

_ 2N -84 2 L)
(1 + &2y

The reachability conditions (2.10) are satisfied whenever a con-
troller of the form :

+T i It then follows
1 §w

TEQ

T=—k|rgo| sign(s) 1 k > 1
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is used. In ‘practise a saturated controller is used which avoids jet
thruster sign torque switchings and the associated chattering of
the controlled trajectory. Figs. 5(a).5(b) depict the time
responses of the attitude parameters and the angular velocity,
clearly showing the linear nature of the sliding qotion.
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Fig. 5(a)
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Fig. 5(b)
IV CONCLUSIONS AND SUGGESTIONS FOR RESEARCH

In this article we have explored the possibilities of address-
ing the problem of inducing sliding regimes in nonlinear systems
governed by variable structure feedback controllers. using
notions from differential geometry.

A number of interesting applications may come out as the
result of using VSS theory on nonlinear dynamic systems.
Aerospace applications of control theory usually deals with sys-
tems naturally described on differentiable manifolds ( tumbling
satellites, rest to rest maneuvers etc. ). The Van der Pol
oscillator limit cycle has been used in the induction of periodic
coordinated motions in joints space for the biped locomotion
problem. The simple example addressed in this paper shows that
some robustness may be gained for that particular application if
a VS Controlled Van der Pol Oscillator is used.
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