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We consider the design of robust stabilizing con-
trol laws for nonlinear systems which are
equivalent under C *-state space coordinate
transformations and nonlinear feedback to con-
trollable linear systems. We are motivated by
the problem of nonlinear control given simplified
or uncertain system models. Assuming that cer-
tain structure matching conditions are satisfied
betwecn the plant and the model of the plant, we
reduce the problem to that of stabilizing a per-
turbed linear system and discuss several design
schemes that can be used to guarantee stability.
An example of robust tracking for a robot mani-
pulator is given.

1. INTRODUCTION

In this paper we consider the robust control for a class
of nonlinear systems which are fecdback equivalent to
controllable linear systems. The basic idea behind the
notion of fecdback linearization of nonlinear systems is
that there exists a suitable coordinate system in which the
nonlinearities in the system may be cancelled and replaced
by linear terms. Such cancellation of nonlinearities how-
ever leaves open many issues of sensitivity and robustness.
In addition, the required nonlinear fecdback may be com-
putationally difficult to perform in real-time and it is
desirable therefore to consider fecdback linearization based
on simplified or uncertain models.

In this paper we discuss several design schemes that
can be used to guarantee robust stabilization subject to
norm bounds on the extent of model uncertainty. We first
discuss a Variable Structure Controller (VSC) using the
hierarchy of controls method. For comparison we then
discuss two other techniques, one based on Lyapunov’s
second method, and the third a linear dynamic compensa-
tor designed using the method of stable factorization.

2. MODELING
‘We consider a class of nonlinear systems of the form:

i=f(x)+égl(x)ul(t) 2.0

=f(x)+Gxu

The vector fields f (x),g,(x), -+ g, (x) are assumed to
be C*® on a dense submanifold M of R™, with f (0)=0.
We assume that the plant is globally equivalent under
C - state space change of coordinates and nonlinear fecd-
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back to a controllable linear system. Necessary and
sufficient conditions for this global equivalence are
known(2], and in particular, our assumption implies that
there exists a diffeomorphism 7(x ) on M and nonlinear
functions olx ), B(x) of appropriate dimensions, with
B(x ) invertible, such that

F () +G(x)adx ) =T, AT (x) (2.2)

G(x)Bx)=T1,""B (2.3)

where 7, is the Jacobian of 7 at x. If such a transforma-
tion exists then with change of coordinates

z=T(x) (2.4)
and nonlinear fecdback
u =olx)+ Blx v (2.5)
the plant becomes
z =Az +Bv. (2.6)

The pair (A ,B) is taken as a controllable linear system in
Brunovsky canonical form with controllability indices
Ky, oo v is an additional input which is designed
to control the linear system (2.6).

Given the plant (2.1), we therefore assume an avail-
able model of the form

s Koy

F=F G+ 58,y ()

i=t

=f ) +6(x

2.7)

In general f G are simplified and/or nominal ver-
sions of f ,G respectively. We assume the following

Structure Matching Assumption 2.1 : The plant
(2.1) and the model (2.7) are in the same orbit under the
action of the nonlinear “fecdback group” and this orbit
contains the linear system (2.6) with Kronecker indices
(kpy = oy )

Remarks 2.2 : Roughly speaking, assumption (2.1)
says that we can choose our model of the plant with the
same controllability indices as the plant. This is a reason-
able assumption. Even if certain parameters are unknown
one usually has some knowledge about the system struc-
ture. For example, many physical systems such as
mechanical systems have a natural Lagrangian or Hamil-
tonian structure and it is natural to assume that the model
has the same structure.

Let

Af (x)=f(x)=f(x) (2.8)



AG(x)=G(x)-G(x) (2.9)

denote the mismatch between the plant and model, so that
the plant can now be written as

F=f@)+Af )+ (G +86(xNu (2.10)
Since (2.1) and (2.7) are transformable to the same linear
system, they are themselves fecdback equivalents by tran-
sitivity. This implies that
Af(x)e &
AG(x) e &
where ¥ denotes the distribution on M defined by
81, .8, Itfollows (after a posible coordinate transfor-
mation in the plant) that there exists smooth functions

D(x),F(x)onM such that,
Af (x)=G(x)D(x)

(2.11)

AG(x)=G(x)Ex), (2.12)
Note from (2.12) that
G =GU+E) =G (x)5(x) (2.13)

It follows that (2.7) is of the form
F=f ) +6GNul)+ Dx)+E(x i )i2.14)

Remark 2.3: It is important to note that the conditions
(2.12), which are similar to the marching conditions in the
literature on uncertain dynamical systems,[5],[7],[9] are
not a priori assumptions on Af (x) and AG (x ), but fol~
low from the assumption that the plant and model share
the same controllability indices.

We next choose the control u to linearize the model
(2.7). That is we find a diffeomorphism 7 (x) and func-
tions &(x ),B(x ) such that the input

u=ax)+ Blx W (2.15)
and change of coordinates
z=T(x) (2.16)

transforms the model (2.7) into the linear system (2.6).
Now, applying the control (2.15) to the plant (2.14) yields
after a short computation

2 =Az +B{v + n(z v)} (2.17)
where
nlz,v)= {3_’(0 +AE (& + 3:: ) |:=,_l(z) oy
=B7'D +B'E&+ B EBy
which we write as
Mzyv)=d(z)+ ¥(z)v . (2.19)

with obvious definitions of ® and ¥. Note that the system
(2.17) is still a nonlinear system since 7 is a function of
both z and v. Thus the new control input v must be
designed not to stabilize the Brunovosky form (A,B)
which is trivial, but to guarantec stability of the nonlinear
system (2.17). However the form of (2.17) is that of a
nonlinear perturbation of a linear system. Moreover the
nonlinearities lie in the range space of B, and so several
design schemes can now be employed to stabilize the sys-
tem (2.17) by suitable choice of v .

We make the following assumptions on the function
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7 in (2.19)

1) There exists a positive constant o < 1 such that
forz €R™

H¥(z)l € o (2.20)

2) There exist positive constants @ and b such that
for z €R™

Nez)Il €a +blizl) (2.21)

3. OUTER 1.LOOP DESIGN TECHNIQUES

In this section we discuss the so-called outer loop
design for the system (2.17), that is the design of the con-
trol input v for robust control of (2.17). We shall survey
several schemes which may be used to guarantee stability
under the assumptions (2.20),(2.21). The approaches that
we consider in turn are variable structure control, the
second method of Lyapunov, and a linear design based on
the method of stable factorization.

3.1 VARIABLE STRUCTURE CONTROL

In this section we propose a design scheme for the
robust stabilization of (2.17) using a Variable Structure
Controller (VSC) design based on the “hierarchy of con-
trols method” [25]. For extensive surveys on VSC the
reader is referred to Utkin [21],[22] and, for developments
closely related to the present work, to {23],[24].

Our aim is to stabilize the nonlinear perturbed model
whose linear part is in Brunovsky’s canonical form. Upon
inversion of the diffeomorphic transformation 7 (x ), and
using (2.15), the original nonlinear plant is provided with
a nonlinear VSC compensator which locally stabilizes the
motion toward the local origin of coordinates.

Define the following partitions of the state variable z

according to the values of the Kronecker indices:
z =220, - 27) withz, €R" fori=1,2,--- ,m. Let
Z; = (255, 24 -4) and F=(zT,--- ZT)). The i-th

switching surface, corresponding to the i-th subsystem
(i -th string of integrators) of (2.17) is defined as:

= (mT 1l =mT5
s; =[ml 1)z, =mlz, + 2,

&, -1 3.1
=3 Mzt zy
j=1
Then (2.17) can be written as
47 =Xz +Bs ZeR™™
dt
d (3.2)
=S =Ms + Nz +7 +¥(z,s)b +0(z,5)
with s = col(s,, **-,s, ) and
A, O 0
0 A, 0
A_ =
0 0 A,



0 1 0
0 0 0
A= - . . ¢ R(x,—l)x(x,—l)
—My mis -m; Ky
0
. 0
B =diag(F,,-+-8,) ; b, = || e R%!
i
M =di(1g (m 1x—1° e ’mmx,,,—l)
T 0 0
0 ct 0
N =
00 o
, =My o)y E=leom P =10k, —1
mo:=0
Y(z,s)=V¥(z )|Z, =s,-m2
(3.3)

SO0 7
=s,-—mlz,

&(z,5)=d(z), .

In correspondence with the i -th entry position in the
vector v we shall also use the following partitions for v
and the matrix / +¥.

VI =[0I v (BT

(T +9), =¥ 1+¥, ¥/ *]
with )
LA (ZPRRER N ERAh ] (DUVUEEERS
. (3.4)
vitl= (W, ¥,,4)

~ e
vit= ”’z,xn"l’;,uz- A ,m]
(-); denotes the i-th row vector of the enclosed matrix.
Each input v; is synthesized as
v, ==flz—d, ;i=l,.m

with

0(3.5)

a;; for s,z,;, >0
B,; for s,z;; <0

_|d;>0fors; >

Ty —
)= v |—d, <0 for s, <

where o;; >0, 8; <0;i=1..m ; j=1,.r; <k,—1.

The VSC design problem consists in specifying the
gains o;;, B;; and the relay terms d,, so that a sliding
motion takes place on the intersection of the m switching
surfaces : s,=0 for all i. Notice that if a sliding motion

occurs, then the ideal trajectories (equivalently, the ideal
dynamics) are governed by zZ=AZ, which represents m -
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uncoupled subsystems of order k; ~1 given by:

0 1 0 0
d 0 0 1 0
e B . Z:  (3.6)
=My TNy Mg -1

i.e., each subsystem dynamics is totally governed by the
design coefficients specifying the i ~th switching surface,
and the nonlinear interactions are eliminated.

ds; .
_dt.=0 for all i are known as

“ideal sliding conditions”. The contro! function obtained
from enforcing these conditions constitutes the “equivalent
control” [21). Due to our lack of knowledge about the
matrix ¥(Z,s ) and the vector ®(Z,s ) the equivalent con-
trol can only be specified as a sez. The assumptions (2.20),
(2.21) can be expressed as set containments ¥(z }€ Q and
®(z)€Qq, where Qy, Qg are compact subsets of R"
defined implicitly by the constraints (2.20), (2.21). Note
in this design it is not necessary for (2.21) to be defined by
an affine function of 11z | I. Any compact set will suffice.
We now define the equivalent control set as:

Qo (2)={v (Z)ER™ LT +W(z Db (2 40(Z 0)+NZ =0
for some W(z,0)€ Qy and ®(Z,00€ Q42 )} .

Conditions 5,=0;

Although this set is, in general, non-convex even for
convex Qy and pointwise convex Q4(Z,0), it is always
possible to produce a bounding convex set sufficiently tight
containing 5o (Z). We denote this set by Qg,(7). For
the computation of the appropriate gains of the VSC a
bounding hyperbox is necded for the sets Qg0 (Z), Q4(Z,0)
and for the set associated with the uncertain i -th row vec-
tor Qy of the matrix [7 +¥(Z s )]

Let the symbol “*" stand for any of the subscripts
FQ , ®or ¥, and let ¢; denote the i -th unit vector of R™ .
Then

Tv

< maxe; (3.8)

w, ()= v, €R : minelv v,
o vEQ, vEQ,

defines an interval on the real line. The set product of all

intervals determines a bounding hyperbox for these sets ;

i v, ()20.¢).

We define the set {$¢*!} as the finite set of values
which can be taken by the components of
=y, (2,5 ) vy (F5)]
according to (3.5), for a given pair of vectors (Z,s ).

Several methods have been proposed for inducing
sliding regimes in multivariable systems [261,[22]. They
generally group under the ‘diagonalization” and
“hierarchical” categories. The first class relies on either
state coordinate transformations, for appropriately chang-
ing the sliding manifold equations, or else by input space
transformations. The idea is to decouple surface coordi-
nates interaction as much as possible. For our particular
case, either one of the two versions of the diagonalization



method is not suitable. These methods amount to being
able to invert either the input channel matrix or some
linear function of it. The uncertainty surrounding our
knowledge of the input matrix precludes these possibili-
ties.

The hierarchy of controls method is better suited to
handle uncertainty in general while providing a ‘“single
input” approach for the creation of a sliding regime
[211,[251[26]. The collective sliding motion is obtained as a
consequence of sequentially ordered individual efforts by
the inputs to drive the state trajectory towards its indivi-
dual sliding surface. The individual sliding conditions are
enforced under the assumptions of having all members in
higher positions of the hierarchy already in sliding regime,
while those in lower positions use one out of a finite set of
possible fecdback control structures. An off-line procedure
for computing the necessary gains can then be started from
the bottom of the hierarchy working up towards the
higher positions of the hierarchy. These computations
require, in general, knowledge of the state in the form of a
priori bounding estimate set defined in the vicinity of the
sliding surface itself.

The following procedure outlines the steps to be con-
sidered for the computation of the gains that result in the
creation of an appropriate sliding regime stabilizing the
nonlinearly perturbed system (2.17).

Step 1: Assume that the hierarchy s,—s 2= S,
has becn chosen.

Step 2: leti=m

Step 3: Suppose sliding motions occur on the surfaces

;=0 for j=1,...i—1.

Step 4: For the surface s,=0, find ;.8

d; ; j=1,...,r; such that
ds,

s5— <0

7 3.9

If (3.9) is satisfied, the state trajectories of the system
move towards the surface s;=0 along the intersection of
s;=0; j=1,.k—1. Once 5,_y is reached, the VSC will
maintain the trajectory on this new surface.

Step 5: Let i=i—1. If i >0 go to Step 3 ,else Stop.

If condition (3.9) is satisfied, then, it follows that

minl14+¥, (2,5 No; 2 my(;py=my -1y,

WW,I '

max[1+¥, (z,s)]B,; < m,(;_1ym;-1ym;; (3.10)
\VW" '

j=loar 5 i=l,.m

and fori=l,-+-,m
min[1+¥,(Z s, 2
ku

max)[<1>, (Z,5)+ Uz s W (2,5 ) + W 7HE Wi (E))
(Z,s

(3.11)
- max[1+¥,(Z,5))d,) €
‘VWH

Tm)kp, (2,8 4T NZ 50970 F 5 H T HE iGN (D)
LEs
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m
with £ (Z,s)=we (Z,s)x T wy (Z,5)x{vi*)
t j=i+1 Y
o o (3.12)
X}EIW\;',](E )XHj =1¥;EQ (z).

This procedure allows for the computation of the
required gains and relay terms for the robust control law.
In (3.11) the relay terms handle the interactions among the
subsystems and the uncertainties as disturbance terms
while the fecdback portion of the controller with Variable
Structure gains is primarily concerned with cautious regu-
lation of the linear structure of the model. Caution is
exercised by the enhancement of the gains through “worst
case” parametric uncertainty effects on the individual slid-
ing conditions. If the interactions are significantly strong,
one may show that the relay terms could become
unbounded or unable to guarantee appropriate sign
requirements and, as a consequence, sliding motions may
not exist.

3.2 DESIGN VIA THE SECOND METHOD OF
LYAPUNOV

The next two design schemes have appeared in [20} for
the general case and in [6] for the robot control problem.
Our intent here is then merely to survey these ideas and
our discussion in the next two sections will thus be less
detailed than in the previous section. The interested reader
is referred to the references for the details of these results.

Definition 3.1 : Given a solution
2(:):ltg00) 5 R, 2z(1y) =2z,
of (2.17), we say the z (-) is uniformly ultimately bounded

(u.u.b.) with respect to a set S if there is a nonnegative
constant 7'(z,S) < oo such that z(z) €S for all
1215+ 7.

Since the Brunovsky form (2.6) is unstable we first
choose R so that A +BK is stable and set v = Az + Av.
Then (2.17) becomes

z =Az + B{Av +n(z ,Av)}

(3.13)
where A = A +BK’, and
Nz, Av)=®(z)+ V(z )Kz + Av)
(3.14)

=&(z) + ¥(z)Av

‘We shall henceforth drop the overbars in (3.14) for con-
venience and assume that A is now a Hurwitz matrix.

Suppose that we can satisfy simultaneously the ine-
qualities

IHinl)l <plzp) (3.15)

Havil < plz,1) (3.16)

for a known function p(z 7 ). p can be determined as fol-
lows. Suppose first that Av satisfies (3.16). Then from
(3.14) we have

Hnll S 1@ E+ 1 W iplz,e)

Sa+btlzll +oaplzt)=p(z,) (3.17)

Thus, p is defined implicitly via (3.17). This
definition of p is well defined since @ < 1 and we have

plzz)=Q0—a)Ya+b 11z 11} (3.18)



Since A is Hurwitz, choose a symmetric, positive
definite matrix Q and let P be the unique positive definite
solution to the Liapunov equation

ATP +PA +Q =0. (3.19)

‘We can now prove the following

Theorem 3.2: The system (3.13) is w.u.b. with respect to
the set S (defined below) if the control Av is chosen as

T
—p(z2)— B P2 it BTz >
TiBTPz I X
(3.20;

P2 ) BT P, it (1BTPz 1) < e
€

for a given e€>0and p,P,B,z as above.

Proof: Note that the control Av in (3.20) does indeed
satisfy (3.16) and hence p satisfies (3.15). The basic idea
of the groof is then to show that the function
V{(z)=z" Pz, which is a liapunov function for the
linear system (A4 ,B ), remains a Liapunov function for the
nonlinear system (3.13) provided that 7 satisfies (3.15).
The details of the proof can be found in [6][9], where it is
shown that the uniform ultimate boundedness set S is the
ellipsoid

S(f?)={z ER¥™ 1 2TPz <k (3.21)
with £ = A, (P )o? and o defined as
1
_ €b €b €a z
©= mein(Q ) T;‘min(Q j 7)‘min(Q ) (3.22)

where Apni(-), A\..(-) denote, respectively, the ‘minimun
and maximum eigenvalue of a matrix.

Remark 3.2: The control law (3.20) is continuous for
each ¢ > 0. Looking at (3.22) we see that for any values
of @ and b the uniform ultimate boundedness set S can be
made arbitrarily small by decreasing e For ¢= 0 the sys-
tem is asymptotically stable. In this case the control law
(3.20) is a discontinuous or ‘“chattering” control law [6).
However, for nonzero ¢ the uniform ultimate boundedness
result of Theorem 3.2 remains valid even if there is meas-
urement uncertainty (noise, etc.) present in the system.

(sec [6])

It is also possible to show using these techniques that
a strictly linear high gain control law can result in uni-
form ultimate boundedness of z in (3.13). Specifically, we
can show
Theorem 3.4 There exists y > 0 sufficiently large so that
the state z (¢ ) governed by (3.13) is u.u.b. with Av chosen
as

Av(i)=—yBT Pz (3.23)

Remark 3.4: Theorem 3.4 follows from the work of
Thorp and Barmish [7] in the case that there is no measure-
ment uncertainty present in the system and follows from
the results in [8] in case there is measurement uncertainty.
We refer the reader to references [7)[8] for the calculation
of y and the ultimate boundedness set S in these cases.

3.3. LINEAR DYNAMIC COMPENSATOR DESIGN

Our third design methodology is a linear dynamic
compensation scheme based on the method of stable factor-
ization. This scheme is detaited in [18],[20].

In what follows R, will denote the set of nonnega-
tive real numbers, and R™ will denote the usuwal n-
dimensional vector space over R endowed with ihe
Euclidean or 1., norm
1/2.
x|l =

(3.24)

n
T ix; 12
j=1
If Ais an nxn matrix over R, [IA |l will be the
corresponding induced norm

1A H =[x, (AT A))172 (3.25)
Let L7, (R,) denote the set of Lebesgue measurable func-

tions F:R,-»R"™ such that the L2 -norm
[1f 11, < oo} defined by

I f 11, = es: I

- A

is finite.
The so-called extended L7, -space is defined as
Lie ={f:R,-R™| f; € L% forallT }
where

t, 0<:<T
1=, 1<t

For conv-nience, we use the notation 11 | | 7 to denote

(3.27)

the quantity I fp 11 .

Set G(s)=(sI ~A)'B. Note that G (s) represents
a set of m uncoupled chains of integrators of length
ki ,j=1,---m since A,B is in Brunovsky form. g(z)
will denote the corresponding impulse response function of
G(s).

With slight abuse of notation we will use the conven-
tion that if M(s) is a transfer function matrix and
x =x(t) is a (Laplace transformable) signal then by Mx
we shall mecan (msxx )z ),where m(r) is the impulse
response of M (s ) and % denotes the convolution operator.
With this notation then the sysiem (2.15) may be
described by the block diagram of Figure 1 where the
lower loop has been closed by a linear dynamic compensa-
tor. = = =

z2=Ge,e=n+v,v=_Cz, (3.28)
n=d(z)+ ¥z .
The first threc equations represent the linear part of the
system, while the last equation represents the nonlinear
coupling between m and the other signals. The first three
equations can be solved to give

z2=GU—CG)'n

(3.29)
v=CGU~CG)n.
let P,=GU-CG)', P,=CGU~CG)!. Define
the norm of a transfer matrix as follows[10):
LR L Nnexil, o
o= sup - — 0 .
S sel oo | 1x g

Finally, let 8; denote [ 1 P;  {. Then [10,15]
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HPvIlp, B 1HvIIg, (3.31)
foralli,v,T.
From (3.29)
Hzllp, B MHlig,, (3.32)
v il S Bylinlly,. (3.33)

Combining the above inequalities with (3.28), (2.24),
(2.25) yields

) e € 11O )5+ 1TW(Z 0 14y,

Sa+blzllp +oallvily, (3.34)
SGBB+aB)linlly  +a
Thus from (3.34) we sec that if
BB+ aBy < 1 (3.35)
then setting
A=1-08B—aB, (3.36)
and letting 7 — co we have
IInllmé-Z— (3.37)
||v||w<ﬁzaf (3.38)

The above result is actually a special case of a multi-loop
version of the small gain theorem[10] first proved in [12]
and shows that the control signal v(r) and the “‘uncer-
tainty” m are bounded in L provided the modeling
assumptions and (3.35) are satisfied. Since the output z (¢ )
is given by

(3.39)
a simple calculation gives an explicit bound on z as a func-
tion of the uncertainty (represented by n)
Bya

Nzl <

z =Pn

(3.40)

Thus the condition A > 0, i.e., (3.35) is a sufficient condi-
tion for tracking with internal stability of the system
represented by (2.18).

It remains to show that a compensator C (s ) can be
designed in such a way that the stability condition (3.35)
is satished. It can be shown (sec [18]) that it is possible 1o
choose a compensator making B8, arbitrarily close to zero
while making B, arbitrarily close to one simultaneously.
Thus under the assumption o < 1 we sec that the stability
condition (3.35) can be satisfied. Note that is also follows
from (3.40) that the L., norm of the output z can be made
arbitrarily close to zero. The basis for the design is the
stable factorization approach developed during recent
years by various researchers and given an exposition in
[15). The reader is referred to [18] for the details of the
calculation.

4. EXAMPLE: RIGID ROBOT CONTROL

Consider, as an illustrative example the problem of
trajectory tracking for an n-link rigid manipulator whose
equations of motion are given by [1],

M(g)j +h(gg)=u (4.1)

M (g) is the n xn inertia matrix, & (¢,§ ) is the vector of
Coriolis, centrifugal, and gravitational terms and u{r)
represents the input torque to each joint at time z .

Let
gt ) =(gd ), -+ @2 (4.2)

represent a desired path in joint space that we wish the
manipulator to track. We shall assume that ¢¢(r ) is con-
tinuously differentiable with ¢¢ , ¢, §¢ belonging to
L7, (R,).

For the problem of tracking the desired trajectory
(4.2) and its velocity we form the position and velocity
error vectors

iy=q=q% , Z,=¢ —¢* (4.3)
The error dynamics may then be written as a first order
vector differential equation

i,=1z, (4.4)

(4.5)

so that in “error space” the problem of path tracking
reduces to the problem of stabilizing the system (4.4)-
(4.5).

‘We define a so-called “‘available model” of (4.1) as
Mg +Ag.4)=u (4.6)

where M, R represent simplified or estimate values of M,
h, respectively.

Given the plant (4.1) and the available mode! (4.6)
the fecdback linearizing control (2.15) is given by

ult)=M@NG® +v)+Alg,q)

Zy==M7Th + M7l - §¢

4.7)

Equation (4.7) must be computed in real-time for a
given sample rate (typically 60-100 Hz) for a six-link
manipulator. Thus it is necessary both 1o consider care-
fully the micro-processor architecture chosen to imple-
ment (4.7) and also to simplify (4.7) as much as possible
while still guarantecing an acceptable response from the
system.

Substituting the control law (4.7) into (4.5) we have

Zy=1z, (4.8)
F,==M TR M TN (G v 4R )=G¢ 4.9)
Set
v=MN -] (4.10)
A straightforward calculation shows that
Zy=v +1 (4.11)
where 7 is given by
n=VG? +v)+ M WA —h)
(4.12)

=¥v +&

with & = WG + M~ A —h ) Finally, the error equations
(4.8),(4.9) may be written in matrix form
z2=Az +B(v +7) (4.13)

where
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0 7 Z 1

o of’
and we have recovered the form of (2.18) to which our

design schemes can now be applied. The modeling assump-
tions become in this context,

0 -
HE

Z 2

1) There exists a nonnegative constant o < 1 such
that for ¢ €R™
M) M(g)—T11 €« (4.5)
and

2) There exist nonnegative constants @ and » such
that forg ,§ €R"

G + M7 —r) Sa+biizIt (46)

Now we define the sets
Qu(z)={R¥>2: W)l € e< 1}
Q(z)={d(z)ER2: 11z )1 I1<a+b 11211}
with a,b > 0. We define the switching surfaces s; as
{z:m; 2, + 2;,=0} ; i=1,2. In ideal sliding conditions, the
resulting dynamics are simply
2=y
23==m; )7,y
which represents an asymptotically stable motion of the
state trajectory to the origin when m;, , m;, are positive.

Let 7 =(z4,25,)". In this case the set Qgol(z) is
equal to the set

EER: 1vENIKLL la+G+IINIDNEZ ]
o 1
with IN [1=( T m4)?
i=t
A controller of the form
Vi ==fnzn—d, ; i=12
Y a;;>0 fors,z,,>0

B11<0for sz, <0

Fo= oy, >0 for 5,25, >0
217 18,5, <0 for 5,2 5, <0

d, =dsgn s,

d,,=d,sgn s,

achieves sliding motions on s,=0,s,=0. Under the
hierarchy s, — s, the required gains and relay terms are
obtained as :

(1-Qa; 2 —-m2

> 1+e

(+ad, 2 e+ +1IN 1OVIIZ 1124115112

T—e
=h,(11Z211,8

—(14+8d ,2—h (1121,

(which is automatically satisfied)
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(1=0d, > (a+b+1IN TDVTIZ 124115112
+e/T max{o, BF) 117 11+4d,)
=h,(11Z 11,0

(1+ed, $~h,(1'z 11,0
(which is automatically satisfied).
Given a set of initial positions
HZ112=z ] +2} <&

st+sf<p?

the required relay terms are established.
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