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Abstract

This article presents a differential geometric appro?ch for
the design of feedback Variable Structure Controllers (VSC) act-
ing on smooth systems whose trajectory evolves on a smlO(_)Lh
manifold in R®. Complete characterization of the ideal sliding
dvnamics and local reachability conditions are obtained in terms
of genmetric conditions which are intuitively appealing.

1. INTRODUCTION

Applications of differential geometry concepts to the solu-
tion of nonlinear control problems has been the subject of inten-
sive research in the past few years. The theoretical and practical
implications involved in the amount of available research is the
topic of excellent surveys [1],[2]. and books [3], where the reader
is referred to for more detailed information.

The theory of Variable Structure Systems (VSS) and their
associated “sliding mode” behavior [4] has also undergone exten-
sive and detailed studies in the last twenty-five years, especially
in the Soviet Union. Survey articles {5].[6]. and books [7].[8]
contain lucid expositions on the state of the art and its potentials
for the future.

A surface. or manilold in the state space represents static
relationships among the different state variables which describe
the system. If these relationships are enforced on the dynamic
description of the svstem, the resulting reduced order dvnamics
may sometimes contain highly desirable leatures. The idea i
then to specify a feedback control action which guarantees acces-
sibility ol the prescribed surface and then proceeds 1o maintain
the systems moticns constrained to this surface. The task is
usually accomplished by opportune, drastic changes on the
structure of the feedtack controller which induce motions
invariably directed towirds the surface.

In this article we explore, within the differential geometric
framework, the pircblem of designing VSC leading o sliding
regimes in nonlinear, stationary smooth plants with multiple
inputs.

The approach allows for a well-defined characterization of
the “equivalem control" and the ideal sliding dynamics
representing the invariant motions of the system on the sliding
submanifold. A genmetric interpretation of the submanifold
invariant condition calls for the annihilation of drift vector field
components along airections not spanned by the sliding distribu-
tion (tangent space to the sliding sub-manifold). The sliding
submanifold speciri:ation can then be viewed as an optimal con-
trol problem. a fee.dback stabiiization problem. or simply as an
algebraic nonlinear root-solving problem for the reduced ideal
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sliding system. For the single input case. general reachability
conditions of the sliding submanifold can be proposed in a local
sense. The relation of these conditions 10 the geometry of the
surface and to the equivalent control are both transparent and
appealing.

In Section 2 we formulate and sclve the sliding motion
creation process for a large class of nonlinear stationary smooth
systems. In this section the interpretation of the equivalent con-
trol and the equations for the ideal sliding regime are obtained
through a regularization procedure of the system equations. We
obtain general existence conditions for the sliding submanifolds
which renders desirable dynamic behavior of the reduced ideal
sliding motions.

Section 3 ix devoted to some illustrative examples. Section
4 contains the conclusions and suggestions for further research.
Bac[ki;round material on differential geometry is used in the style
of {3).

2. PROBLEM FORMULATION AND MAIN RESULTS

2.1. Notation, Definitions, and Main Assumptions
Consider the nonlinear dvnamic svstem:
o

D— X

f(x) + G(x)u
dt

sox(L) = x,
2.0

Li

f(x) + X g()ulx)
i=t

where x i~ a local coordinate system on a smooth n-dimensional

manilold M which we usually take as R". The vectors f and g; (

i€em=:{12,...

tor fields in M.

. m}) are local representations of smooth vec-

We center bur analysis on an open neighborhood N of x, in
M on which the set of vector fields {g(x)} is linearly indepen-
dent, i.e.. everywhere in N. they span a full rank smooth m-
dimensional distribution of T,M. This distribution is denoted
by Ay(x). In our assertions. a property is local whenever it is
valid only on N.

The control functions u;: M = R are real valued discon-
tinuous functions of the form
-0 (x) for s(x)>0
u(x) = (2.2)
s(x) <0

—-u;7(x) for
where s;: M = R(i € m) is a smooth function for which the set
S, = {x € M :5(x) = 0} defines a smooth submanifold (hypersur-
face) of M. §; is called the i-th sliding submanifold. T. 8 isa
smocth distribution of the tangent space and coincides with
Kerds, We denote this distribution as AS(x). The

m

sliding submanifold § is defined as $ = N §; and it is assumed
e =1

10 be a smooth m-dimensional submanifold. T,8 is an n-m
dimensional smooth distribution which we call the
sliding distribution and express it by
— T I i
Ag(x) = nl Ag, nl Ker ds;.

= 1=



The functions s; . i € m may also be regarded as local coor-

dinate functions. When this is the case we refer to them as the
surface coordinates. The m-~dimensional vector
s = col(s)(x).sa(x). . . . . s(x)) is used to denote all surface coor-
dinates at once.
Remark 2.1. According to the relative value of the state coordi-
nate functions with respect to the value of the functions s;, a
unjgue structure will be valid for E. However. notice that the
prescribed action for the VSC (2.2) leaves undefined the nature
and value of the velocity vector field of £ on the surfaces
$,.i € m, and hence on 8. The specification of a smooth feed-
back  control  function which makes 8 into an
invariant submanifold is known as the "equivalent control prob-
lem" [4]. The equivalent control function describes the motion
of the system on § in an average sense. The actual motion of T
in 8 under the persistent action of the VSC is the gliding regime.
The ideal invariant motion resulting from the equivalent control
is the ideal sliding dynamics or the equivalent dynamics [9]).

2.2. Problem Formulation

We are required to specify a VSC of the form (2.2) so that
the integral curves of I, locally. approach the smooth submani-
fold § and stay constrained to $ thanks to the drastic active
switching of the feedback controller. The average motion in § is
deemed 10 be desirable in an appropriately formulated sense
(stability. asymptotic stability. sustained oscillatory response.
etc.).

2.3. Adaptation of Coordinates and Regularization

Definition 2.3. We define £ to be in regular form (10} whenever
a local coordinate system can be found in which the system is
expressed as
= Xz
‘, £1(x;.%3) o1ey
X5 = £(X.X2) + Gy(xy.x;)
with x; and x;, n-m and m-dimensional vectors, respectively. of
local coordinate functions.
Theorem 2.4. A local coordinate system exists in which (2.1) is
in regular form if and only if. locally. Ag(x) is
constant dimensional and involutive.

Proof: It is easy to see that T can be put in regular form if and
only if Ag(x) is completely integrable {3]. By Frobenius theorem
Ag(x) is completely integrable if and only if it is involutive and
constant dimensional. [w]

Notice that from the constant dimensionality assumption
on Ag(x) it follows that det Gy(x,.x,) # 0 in N.

Proposition  2.5. du[ﬁx G()}=0 if and only if
Ad(x) N AG(x) = 0.

Proof: Let del[% G(x)} = 0 then either G(x) or Ex are not full

rank m. Since G(x) is assumed to be full rank, then the span of
the unit vectors ds; in the co-distribution that annihilates Ag(x)
is rank k < n—m. It then follows that Ag(x) is also rank k and
the span of Ag(x) ¥Ag(x) is rank m+k <n. Therefore.
Ag(x) N Ag(x) # 0. On the other hand. the null intersection of
the annihilating distributions is equivalent to
Ag(x)F Ag(x) = T, M, ie. Ag(x) and Ag(x) are full rank. The
annihilating co-distribution of Ag(x) is also full rank and then

g; and G are both full
rank. a
Corollary 2.6. dez[aé‘;_ Galx,.%2)] 2 0.
2
Proof’. In local coordinates

A 3
Xy.X5 ! 5;G HO"'EGZ(X,.Xgl a

"the nonsingularity of the Jacobian matrix 3
X

Lemma 2.7. Let § be a smooth m-dimensional submanifold of
M satisfying the assumptions of Section 2.1 then, locally. 8§ can
be always expressed as

$={x€M: s=x,+m(x,) =0}. (2.4)

Proof. By virtue of our assumptions on the smoothness of $
and the [ull dimensionality of T\8 = Ag, which is equivalent to
S

. then, the implicit

Tunction theorem [3} guarantees. locally. the existence of the
function m(x,). [m}

Without loss of generality we shall assume that 8 is of the form
(2.4).

2.4. Ideal Sliding Dynamics and the Equivalent Control

In order to be able to relate the effects of the control input
functions on the reachability of §. as well as to have an assess-
ment of the "equivalent control” and its associated ideal sliding
dynamics we replace the x;, coordinate functions by the surface
coordinate functions s and let x, = s — m(x;). We then obtain

= T(x,8)

(2.5
§=Ty(x;.8) + Ga(xy8) u )
where
Tixys) = [1(x.s = m(xy))
Tolx1.8) = f(x18 = m(x,)) + %_ (x5 = m(x,))
t
= (x5 = m(x,)) + _gxﬂl £(xy.5 = m(x,))
Ga(x.5) = Gy(xy.5 = m(x,)) . (2.6)
We let
_ | _lo
T= i and G = l(,—]2 .

Geometrically, this new change of coordinates amounts o con-
sidering Ag(x) and A¢(s) as projection subspaces of the tangent
space T M. Thus, the velocity vector field defining § is the sum
of the projections of the involved vector fields onto Ag(x) along
Ag(x). On the other hand, f;(x;.s — m(x,)) is the projection on
Ag(x) of the component [,(x,.x,) of the drift field. along Ag(x)
(Fig. 1 illustrates the geometry of the problem).

Thus, in the local coordinate frames I'\(x,.5) is the com-
ponent of T+ Gu on Ag while Fo(x;.8) + Ga(x,.5)u is the com-
ponent of T + Su on Ag. This fact allows {or a simple interpre-
tation of the role of the equivalent control and the nature of the
ideal sliding dynamics.

Proposition. § is a locally invariant manifold for the system
(2.5) if and only if the following two conditions are satisfied

(1) s=0

(2.7)
(2) T+ Gu € ag

Proof. If § is invariant it follows that the manifold condition s
= 0 is satisfied and that in order to have the integral curves of
the systen: confined to 8. the velocity vector field is an element
of the tangent space of this submanifold. The conditions are also
easily seen to be sufficient.

The 'deal sliding motion corresponds then to having all the
components of the defining velocity vector field annihilated on
directions not corresponding to the sliding distribution Ag. The
equivalent control role is then to nullify all the components of
f) and f; along 4. i.e..

ug(x)) = =G M x—m(x ) [[x(x.—m(x,))

Q28
+ ml‘l(x,.—m(x,))]. —
9%,



It is seen that a necessary and sufficient condition for the
existence of a unique equivalent control is that
det Gy(x;,=~m(x,)) # 0. This condition was previously linked to
the transversality of A and Ag. The particular form (2.4)
adopted for § makes this condition appear as independent of the
geometry of §.

The existence and uniqueness of the equivalent control is a
crucial factor in the determination of the necessary gains to
achieve a sliding motion. The cases where either
Gy(x;.—m(x;)) =0, or det Gy(x;,—m(x,)) =0, are known as
singular cases and an equivalent control does not exist or else is
nonunique. In these cases the sliding condition can be lost by
excursions of the velocity vector fields along directions not
spanned by the control input map on T,M. If. in the case:
rank G, = k < m, the condition

Falxp~m(x)) + ng £1(x;.=m(x)) € Im Galx;.—~m(x,))
1

is satisfied. then a nonunique equivalent control exists which

makes $ invariant. Namely. Ugg = ugg + u with u € N(G,). the

nuli space ot G, is also an equivalent control.

‘The ideal sliding dynamics is then governed on Ag by

%y = f(x.—m(x))) (2.9)
which may be viewed as
u=0xv) 0 v=—mixy) (2.10)

Since according 1o (2.4) the function m completely defines the
submanifold $. it is seen that the manifold specification problem
for the sliding regime is equivalent to the specification of an
appropriate  smooth feedback control law of the
v = —m(x,) on the ideal sliding dynamic equations (2.10).

form

Several approaches have been proposed in the literature of
VSC design in connection with this problem [7],[11]. Among
these, the most important are: optimal control, parametric
optimization and pole placement in the linear case. The most
simple minded approach is to try to "solve” for the control lunc-
tion v (i.e.. x5 ) once the desirable dynamics has been established.

2.4. Existence of a Sliding Submanifold with Desirable
Equivalent Dynamics

Assume X; = f4(x,) is a reduced order dynamics defined as
a desirable ideal dynamic behavior for the given plant. The fol-
lowing theorem answers the question of existence of a submani-
fold where such ideal evolution may take place.

Theorem 2.9 . Let f4(x,) be a given local smooth vector field of

dimension n-m, defined on an open neighborhood N of R®. Then

a smooth submanifold exists where f,(x,.x5) = {4(x,). locally. if
f1(xp.%5) = f4(x,

the Jacobian matrix — —————— iy nonsingular.

Proof. [Let g:M— R be defined by

g(x1.x2) = f,(x.x5) = f4(xy), then it follows from the implicit

function theorem that g(x,.x,) =0 defines a submanifold

xp = @lxy) if .éa.;g- is nonsingular. The result fol-
1

lows. a

The above theorem provides only a sufficient condition for
the existence of a submanifold with desirable ideal sliding
motion. The following simple example stresses the fact that the
conditions are not necessary.

Example 2.10.7 Consider the system
X=X Fuglxex. L x"=1) where (n) denotes
the n-th time derivative. Suppose the reduced order system
x'l=mx.x, ... L x™?) has a desirable behavior that one
would like to emulate as close as possible. By defining
XpEX . X3 = %,.. ., Xy = Xx7!" the plant and the desired dynam-

ics are both in regular form

i€n—1

=1y, 1) +uglagoxg) 8 x) =0

[T XpopoXp) = col(xp.X3, . - .. Xp)

while
felxy .. Xpot) = col(xpXs oo o Xy mUXXos e Xgp)) It
is easy 1o see that the Jacobian matrix of f; —f, with respect to

x,=(xp ... %)) is  singular.  Yet. the manifold

X, = m(xy.Xz, . . . . X,—y), Obtained by direct comparisen of f; and
fy. yields exactly the desired sliding dynamics with the
equivalent control given by:

ugg = ={f(x;.~m(x,)) - 'axﬂl falx)/g(xy.=m(x,)) .

[

2.5. Local Reachability Conditions

Here we shall address the problem of specifying the vari-
able structure controller gains (2.2) in order to guarantee, at
least locally. reachability of the sliding submanifold. The
geometric nature of these conditions is better understood in the
context of single input sysiems while providing us with a good
feeling of what to expect in the more complex case of multiple
inputs, and how to go about it.

Let m = 1. then g(x) is one-dimensional and therefore invo-
lutive, Ag(x) is n-1 dimensional and Ag; is a one dimensional dis-
tribution. The vector x; is reduced to the last scalar component
function x, of x. The ideal sliding dynamics conditions for this
case reduce t0 s =0; Lr,,s =0 where L is the Lie derivative
(directional derivative) of s in the direction of the vector field
f + gu. It follows that the equivalent control exists and it is
unique whenever g,(x;,—m(x,)) # 0. In this instance we have

= om -
fa(xy. @(xl))+ a f,(x).~—m(x,)) O

Ve ® (Km0

In order to have surface reachability the velocity vector field has
to be pointed towards the surface at points in the neighborhood
of s =0. In other words. the directional derivative of the scalar
function representing the surface with respect to the velocity
vector field f + gu must have different signs on both sides of the
surface. In the limit these conditions must hold and we have

lim Lryys >0

lim Ly, s <0 and
-0 s=0"

s
i.e., if the trajectories approach § from negative values of s, the
control function is to produce a positive rate of approach to the
surface in order to hit it. If the trajectories approach 8 by posi-
tive values of S. the control function should make S decrease and
therefore have a negative rate of approach, in order to achieve
s=0.

Notice that

Lo s ugs = O T1(x08) + To(x,.9) + 2,(x,.8)u
0xy

= .g:%“. £,(x).5—m(x,)) + £,(x;.5—m(x,)) + g, (x,.5~m(x,))u
1
lim Ly, s < 02 M 1(x, ~m(x,) + f,(x, ~m(x,))
e a1
+ g,(x; —m(xu* < 0
dm fi(xp.~mix)) + f(x;.-m(x,))

dx;

ut(x,) > =

2. (x;.—m(x,))

= ugglxy). 2.12)



Similarly
lim Lyyys > 0>

§=0

g;“—l fi(xy.~m(x,) + f(x,.~m(x,))

ulxy) < - 2.(x;.—m(x;))

= uge(xy) - (2.13)
The variable structure feedback gains are responsible for the
transversality condition that makes the trajectory reach the sur-
face. Their stipulation is highly dependent upon the value of the
equivalent control.

Essentially due to the conflictive situation that may arise
among the input command actions. due to dynamic interaction in
the multiple input case, several approaches have been proposed
for the specification of multivariable feedback gains which lead
to sliding surface reachability. These methods group under two
categories: diagonalization (through either input space coordi-
nate transformation, or else through surface coordinate transfor-
mation) and the "hierarchy of controls® method [5][7]. In the
hierarchy of controls method the collective achievement of 8§ is
obtained as a consequence of sequentially ordered individually
efforts by the inputs to drive the state trajectory towards their
respective individual submanifold §; (though arbitrary, the
hierarchical order is assumed given). The reachability conditions
are enforced. and the necessary gains computed. for each input,
under the assumption of having all members in higher positions
of the hierarchy already in sliding regime. while those in lower
positions apply only one of a finite number of possible indivi-
dual feedback structures.

The diagonalization method through surface coordinates
transformation can be viewed as a rather restrictive decoupling
problem in which a diffeomorphic transformation of the form
o = Q(s) is sought in order lo obtain each coordinate o, affected
only by u;

e=92 1.0 + 8% Gyxa oDy
o~ s
N - (2.14)
=1L(x.0) + Gy{x.0)u = i Mx.0) + Z}bw(\l o) u,
=1

It we let A, denote the distribution Ag in the new coordinates

0 . o .
= |~ 1. then the condition lor input-surface coordinates

and g, ¢
82

decounling ix, in geometric terms

span g(x,;.0) C ﬁ A, (x,0) = O ker do, . (2.15)
If thix _condition is sallsﬂed with  ga(x,.0) # 0 and
span{g,} + 4, =T Mu, may proceed Lo create a sliding motion
on o =0. The problem for each submanifold reachability is

reduced to a ~ingle input problem in which the interactions may
b2 ignored. The individual achievements of $; result in full stid-
ing as it is easily seen from

d T _ m — m

—olo=2)06,=23)0l ~ o

dt i=1 =l T+ L,

n n
=7 0 (Lf, 50,00 F T ulg o= Y oLli;,0 <0,
=1 1= i=1

In the last equality we used the fact that g; € ker do, \ i ==J
o =0 is therefore a condxlmnally attractive manifold” [8).
before. the feedback gains for the i-th input. which guaramee
reachability of the particular §;. are computed taking as a refer-
ence level the i-th input equivalent control u, =~ ( see (2.12),

2.13)).

3. EXAMPLES

Example 3.1. Consider the system
==X = x(xf+xf—u): x;=x;—x,(x2+xf—u).  For
u = 1 this system has an asymptotically stable limit cycle on the
circle x{? + x7 = 1. This example shows that the limit cycle may
be reachable in finite time on any circle of radius r in the plane,
by means of a VSC.

In this case
f=(—x,—x.(xf+x22))32—1+(x,-x2(x1 +x3) aa and
g=x, % + X, 622 Ac(X)=SPan‘X1E+Xz 5(’2—2) is one

dimensional and involutive.

A transformation to regular form is accomplished b
describing the system in polar coordinates: p =+/x?+ x{;
8 = 1g71(xa/x,).
the system. The
= _6. + pJ _6__

90 dp

s=p=r be the surface coordinale equation with r > (), con-
stant. A sliding surface candidate. represented in this case by a

Then 'c% 0=1and .:_l p = —p(p? = u) describe

vector fields are now

=—p 2 while Ag = span{—p 9, Let

circle of radius r. is obtained when s =0. Then Ag= span{—%-}

and As = span{ ea } while p =5 + r. The equations for the slid-
ing motion are simply

.d_()=]=p—S
1

d r
d (= 2
T.\——(s+ (s +rP~—u].
The idEdl <hdmg conditions require that
=0and 3 ~rrr-u] D ¢ spanf 9 | which is only possible

il =u=0 ie. ug=
place on p=r.

and the ideal sliding dynamics take
It follows from the reachability conditions that

- the controller

a > r?  for
B <r? for

achieve sliding motions on s = (). In the original coordinales the
control law is then us=a >r? for x{+xf—~r2 <0 and
u=B>r?for x +xf—r* < 0. Since the trajectories reach 8§
traversally. the induced limit cycle is achieved in finite time (see
Figs. 2a. 2b. and 2c¢).

s<0

u= s>0

Example 3.2. (Sliding modes on the Torus)
Consider the system of equations

dx, _ . dxy _ o dx; _ oodxy

TR TR kR T
in R*. With u = constant, this system evolves on the direct pro-
duct of two. 2-dimensional circles. The motion is thus
representable as confined to a Torus in R3. This surface in turn
can be diffeomorphically represented in the plane R? by specify-
ing two angular coordinates 9, longitude, and 6,; latitude.
modulo 21r If additionally. a "pasting” of points in the square:
0 <8, <27:0 <0, <27 is exercised by identifying the points
(8,.0) and (6, 27) as well as the pair of points (0. 92) and
(2m.6;). The motion can be analyzed on this "mapping” of the
torus by means of the differential equations

2
= TuwtX;

6, = uw,

where 8, is the angle measured from x, towards x, in the plane
Xy . X> and similarly 0, is measured from x4 towards X3 in the
plane x3.x,. When u = +1 we have "inwards forward winding"
and with u =—1 we obtain "outwards forward w1nd1n5" Also

wW»
— >1 —<1
w 15

0, =w;

provides us with "fast winding" while

1
" " @ .
represents “slow winding.” let us assume —= > 1 in our exam-
[N

ple.



In this case { = w, R g =W 9

89, 36, ]

5 = 6,. s=0) describes the zero latitude greater circle of the Torus.
9
0,

requires

JAg = span{ej?—}. let

The tangent space to this submanifold is ¢ = span{ }. then,

6, =w.§= uwy the ideal sliding

ol 3 9y = - _
W) - + uw, € span{ 2-}. ie. uw, =0, ugp=0. Thus
] £ £ ¢

the Variable Structure Controller u = +1if 6, < O and u = -1 if
6, > 0 produces a sliding motion on 6, = 0 as desired (see I'ig.
3a).

A sliding motion can also be created around a closed or oth-
erwise dense winding line of the torus. In this case 8, = K6, for
0 < K <1 (deceleration of winding). Then s =6, — K68, and

8, = w ., §= =K, + uw,. Ag = span{% +K 53—: and

Ag = gpan{.a%.l. The ideal sliding conditions require
>

[+ gu € Ag. ie..

9 -9 . 9 9 8
w; ( +K -2-) + (—Kw, + uw,) € span{ +K 2}
190, T % : ¥ e T %,
[0}
= wyu = Kwy; then ugo =K w_l < 1, thus obtaining a decelera-

tion of the winding motion which is now ideally described by
6, =w,; .0, = Kw,. Reachability is accomplished then by the
cu=+1"for 8, < K6, and u = —1 for 8, > K6, (see Fig. 3b).
The following proposition is an easy consequence of well-known
Eesvjllls about differential equations on the Torus (see Arnold
12)).

Proposition 3.1. If K is rational then the sliding motion occurs
in a closed winding line (i.e.. open subsets of the Torus are not
reachable). Otherwise. the sliding submanifold is dense in the
Torus and every point of the Torus is made reachable.

4. CONCLUSIONS AND SUGGESTIONS
FOR FURTHER RESEARCH

In this article we have explored the possibility of using
differential geometric concepts in the treatment of the design
problem related to the induction of sliding regimes in systems
regulated by Variable Structure Controllers. The approach is
general enough to be directly applied to cases of nonlinear
smooth systems whose state naturally evolves on differentiable
manifolds embedded in R".

The interpretation, in geometric terms, of the key
ingredients lo be considered in the design problem: namely.

specification of the sliding submanifold in terms ol desirable ’

invariant behavior. the notion of the equivalent control and
finally. the local reachability conditions for the existence of a
sliding regime result in a convenient, simple and sufficiently gen-
eral methodology for the attack of this class of problerus. The
equivalent control is seen to play an essential role in the
specification ol the variable structure feedback gains by provid-
ing a reference level on which 1o assess the necessary feedback
control action that achieves submanifold reachability. The
approach also provides avenues in which the singular case can be
conveniently treated and understood.

A number ol issues deserve further attention in the future.
Among them, exploration of the consequences of local

controllability in the design problem. Applications to systms
evolving on Lie groups may be of interest in certain aerospace
applications. The possibilities of using the approach in the urea
of Power Systems has been only recently addressed in conreciion
with the design of feedback regulators of different nature. The
Variable Structure Control approach has been of significance in
this area for the case of linearized plants: thus, consideration i
the nonlinear problem from this viewpoint may prove fruitful.
Finally. the area of asymptotic observers for nonlinear systeris
with variable structure gains is open for contributions. The
geometric approach may hold the answers to many interesting
practical problems in this field.
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