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Abstract

In this article s systematic method, of geometric nature,
is proposed for the design of Pulse-¥idth-tlodulated (PM)
control strategies in nonlinesr dynewic systems. Necessary
end sufficient corditions are presented for the existence of
& local integrel manifold of an ideal average system
associated with the PRI controlled plant. This invariant
senifold qualifies es & local sliding swface where ideal
sliding trajectories coincide with the average PWMI
oontrolled response, provided the equivalent control and the
duty ratio ocoincide s swooth feedback functioms.
Applications ©of the proposed mwethod are presented for the
feedback control design of Switchmode DC-to-DC  Power
Converters.

1. INTRODUCTION

A genersl equivalence is estadlished among the sliding
wnodes, resulting from s Variable Struwctuwre Conmtrol (VSC)
strategy (Wtkin,1978), and the response resulting from a
Pulse-Fidth-tiodulated (PRf) ocontrol schese in nonlinear
amlytic sytens.
basis for & geometric framework in which PR design problems
can be systematically trested via the specification of a
sliding surfsce on which the ideal sliding dynamics
coincides with & well defined aversge PW{ controlled
response of the systes.

Under the asswption of an infinite frequency duty cycle
an ideal average PWMI controlled response is precisely
defined. This ideal response is shown to play the same role
in PRI control strategies as the ideal sliding dynamics does
in ¥SC schewes. MNeoessary and sufficiency conditions are
presented for the existence of a locsal integral manifold
for the average PR ocontrolled response. This msanifold is
shosn to qualify &s & local sliding surfece for a ¥SC
strategy which produces exactly tbe same average response of
the: PRI oontrolled system. This equivalence identifies the
duty ratio of the F®f control option with the equivalest
costrol (Utkin, 1978) of the ¥SC scheme.

The average Dbebavior of the PRI oontrolled system is
obtained from the sytes wodel just by replacing the discrete
control input ( switch position fumction ) by s« smooth
feedback function of the state known as the dwty ratio .
The ides)l sliding dynamics, obtained from the ¥SC scheme, is
similarly obtsined by replacing the switch position function
by a smooth feedback input known ss the equivalest 1.

This idesl equivalence constitutes the

integral manifold of the average P controlled systes is
taken as & sliding surface for the Y¥SC option.
Conversely, the ideal sliding dymamics of the ¥SC scheme
adopts ss an integral samifold that of the average PRI
controlled system when the equivalent control is made to
coinoide with the corresponding duty ratio.

The above facts form the basis for a geometric metbod for
the design of P feedback control strategies thrpugh ¥5C
systews. The far simpler switching logic sm drsstically
reducad feedbsck hardware demands of the equivelent ¥5C
schewe make the approach especially attractive.

As an applications ares of the proposed theory, [y
DC-to-DC power converter circuit is analyzed under the
asstmptions of a constant duty ratio ( See Severns amd
Bloom, 1965, Itiddlebrook ard Cuk, 1981, Yenkatarameren &f
31, 1985 ). The computeation of a local invariant set is
considerably simplified by exploiting & time scale
separation property of the linear aversge PRI controlled
system (justified in terms of overdamped, nonoscillatory,
response). This allows the use of a linear slow manifold as
s sliding surface. This variety does not globally qualify as
«n integral manifold of the sverage system and therefore
only locsl stable sliding regimes exist on such s switching
surface.

Section II is devoted to present a genersl equivalence
among PRI and ¥SC schemes on which the design method is
based. Section III contains aspplicstions of the proposed
geometric method for PRI feedback ocontrol design in a
DC-to-DC switchmode power converter of the Boost type.
Section I¥ suswarizes the conclusions of the article.

11 BACKGROUND AND GENERAL RESULTS
Consider the nonlinear anelytic system defined in RP :
@21
with f£,g local smooth vector fields defined on an open
meigbborbood X of R The scalar control function u

represents a switch position function assumsed to take values
on the discrete set U= (0,1} .

X = £(x) + wg(x)

A common festure of the ¥YSC and P control schemes is
the discontinuwous charscter of the right hand side of (2.1)
Both schewes coincide in their essential features when
their corresponding sverage bebaviors are computed under the

The equivalent oontrol end the duty ratio coincide when the
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ption of, ri tively, infinitely fast switchings and
infinite frequency duty cycles. The rest of the section is
devoted to demonstrate this fact.

idi e )4

The sliding mode control of (2.1) by means of & VSC
schenc entitles the use of s feedback control law of the
form

.



{1 for s(x) > O
2.2)
0 for s(x) < O
vhero the smooth twtun - s(x) determines s “switching
switoe” or s ° sliding menifold " in K® defined s
(2.3)

Sa(l.kn‘ s(x) = 0 )

It is uwned that the gndunt of § , denoted by ds, is
nowhere 2ero in X, ie., § is constu\t rank. Also, it is

assumed the stu]m]lymglhr-nmll h:ncelncdly
istegrable (Boothby, 1973). S is oriented in such a wsy that

" ds points from the region where s(x) ¢ 0 towards t.ht where
s(x) > 0

Ve shll henceforth qualify a result or sssuaption as
local whenever x  is restricted to X , an open
neighborhood of K which bes non-empty intersection with
.

Mecessary apd sufficient conditions for
existence of a $liding wbde on § are satistied wbenever
the switching logic (2.2) and the controlled motion (2.1)
are suwch that :
hns_, +0Lt+q‘ <0 nnd ln‘_, oLegs > 0 ('24)
where lhs denctes th hrectml derivative of th
sliding surface cooréimate tunction ‘s in the direction o.t
the vooter(uld h dsodemtedby(ds h) :

]

. 1

t

Lﬂg_ 12 mcessarr condition for the existence of q‘

local sliding -otxon § , for the sdopted switching logi
(2. 2). u Wat ‘ ’

Lgs s ¢ ds, g> <0 "-n (25
locally oh 8. ' : '

Preof, ~ This is ismediete upon substrecting, on §, the
indqualities representing the existencq conditions (2.4),
and the hmnty of ‘the | directicial derivative operator
with respect to the sm of vector fields 0.

The condition L g% < 0 represents & transversality
copdition of the vector field ¢ with respect to the
surface $. Dutside its region of wvalidity, s sliding motion
- does mot exist with the sdopted switching logic.

dcoording to (2.2) ’
contrclled motion of (2.1) are defired everywhere in I
except at  the swisce of discontinuwity s,
 definitions bave been proposed to describe the solution of
(2.1),(2.2) when s sliding regime exists locally on S
Filippov (1964) defines sn aversge vector field, tangent
to the sliding surface, describing the idesl sliding
dynamics which gererates the corresponding ideal
trajectories. This average vector field is obtained by a
groaetTio aversge or onawex omabimatiom of the vector fields
defined on gach "side” of §. Utkin (1978) , on the other

hard, defines the sverage controlled trajectories in terans
of the response of tbe system to a swooth control function

known &8s the equivalest oomtrol which renders the slidisg
' surfece s & local istegrel mawifold - The equivalent

control, denoted by v,;_q(x) is obtained frow the
dnvariance ooadi tions .
s= 0,3 *leyuog $ 20 s (2.6)

The ijeal sliding dynamics is then goverred by :
%= £(x) + wgg(x) g(x) .M

_Filippov's and Ubkin's defimitions of sn idesl sliding mode

generally lead to different results in more generil -

3 £+ upg(x)g & Ards ie.,

the .‘local

the stete trajectories of the

Several |

«ds,f )|s_d = ms_,_", s, £ =limg . aLles >0

settings. However, tor the case at hand, they n‘e tohny
equivalent.

¥e denote Dby 4L°r ds the constant dimensional amd
involutive tangemt d&istribubiom sssociated with § and
defined as the n-1 dimensionsl subspace of the tangent
space to ! 7,X, at each point of § which is orthogonsl to
ds. Lor = (h s, h>=0)}. From the definition of the
ideal sliding dyramies (2.7) it follows immediately that : -
s, tﬁum(x) gr=s0 (2.8)
In other words, the smooth vector field represented by

(x)g nu be locally tangent to the sliding surface
.t each point of existence of the sliding regime. As o
consequence of this, the ideal sliding dypamios Ias as o
local integrsl manifold (invariant set) the surfsce 5.

Lewna 2 The equivalent control, if it locally exists, is
upique. i.e., tbe sliding manifold § uniquely determines
the equivalent control for the systes (2.1)

Froof: Let a1 (x)  be also an equivalent control
associated with a sliding wode locally created on S5. W
then bave from the definition of equivalent control : ds,f +
um(x)g>-<ds.t+ l(x)q»-O aMd  bence
(upg-vgqy )¢ ds, g > = 0. by usunpt.ion the
transversality conrdition is satisfied ¢ ds, ¢ > is non-2ero.
It follows that ugg = “EQI locelly o §. 10

Theor J_VQ A necesssry and sufficient comdition for the

existerce of & sliding mode on §  is that the equivelent
control satisfies ’ :

CACIER

Suppose & sliding motion exists on ' § .

[ '(25‘)

Proof Then, froa

. (2.8) the equivalent control Fi..s given by :

Ugg(x) = ~(bg )7 Ly s = - ((‘osfox)il" [yt | (2.10)

tlp‘ abave
. +0n the

From (2.4) and the trmurscnty eondition
qmnuty is locslly positiye, i. PA *vm(x)
other hand, using aguin (2.4) one obnm 5 )
(g Mgy s = Ag9) I(Les) + 1 = —upg(m) + 1 > 0 (2.41)
which implies gy ¢ 1, locally.

To prove the reverse implication of the theorem, let

' (2.9) bold truwe for a smooth ocontrol function vpg(*)

shick twns § into s locsl invarient manifold and assume:
that & sliding motion does not exist locally on S. Then,
the inequality : 0 ¢ 1 = upa(x) ¢ 1 3150 holds true.
By assunption, the smooth vector field generated by

#ill locally belong to the integrable distribution
associated with 5. In this region the following relation
will be satisfied :

ds, £+opg(x) g2 = wgg(x) <ds, £+ 9>
+(1-um)<ds gy = 9

It tollots pecessarily, that the quantities «s, £ + ¢ »
ard < df, .t > are opposite in signs on the sur.hcc S, The
linearity of the ipner product implies thatcds > can not be
zero and tbus the transversality oomdition is  locally
satisified since its sign can be arbitrarily established. We
then have : .

s, 2495 | = Ling 0 <d5,deg »= Limg g le g # <0

2.2
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-schene,

weguler, n-1 disensioral manifold X = { x & ®

which mesns that tbe control law (2.2) locslly creates a
sliding mode on S. This is o oontndmnon and hence the
Theren i3 proved. O

Rewark e pair of inequalities (2.9) deteraine, on §,
the region, or regions, of locel existence of s sliding
mode. The intersection of the open regions defined by each:
xnequnlit.y with both the sliding surface candidste $ and
the region of validity of the transversality conition
determine the portion on $ where s sliding mode exists.

The ¥5C law (2.2) acting on the system (2.1) schieves swh
a sliding motion ptouded tln initial state is close onough
to S.

%2 Geperalities about Pulge-®idth-todulated Coptrol

In o PW1 control optiom, the scalar control u is sntobed
once within ¢ dety oycle of fixed smll dwration A .
The instents of time at which the switchings occur are
determined by the sample vealue Of the state vector at the
begiring of each duty cycle. The fraction of the duty cycle
on which the control bolds the fixed value, say 1, is knomn
as the dwty ratio and it is denoted by D( x(t) ). The
duty ratio is wsually specified as & smooth function of the
state vector x. The duty ratio evidently satisfies 0 ¢
D(x) ¢ 1. Ona typical duty cycle interval, the eontrol
‘input w is defined as ( See Figwe. 1) :

»

|1 tor 't gt £ LaDx(E)) A
= o E
F3 tol

[} " for
. - 1. 13)

taDait)) b <t

it !olilo's thentl;t ] qmni‘i.x E
X(ted) = x(L) + f;‘*”(-"“”‘( £(x()) + glx(r)))de
% Prpgeepa ) &
= 5(4) + fHA x(D)an + ft“n('“))‘ gx()) &t

The ides) ‘sverage bedavior of the PMI controlled system |

response is odtained by mmng the duty oycle frequency
tend to infinity with the duty cyole length & spproaching
zero.In the liait,thé above relstion yields :

Cimg g [x(tA)-x(t) ] /b e

Ying o0/ [ R B4R f(x(uan + [HREON gxeny) )
ie., o
X's £(x) + D(x) g(x)

As the duty oycle frequency tends to infinity, the ideal
tverage dymamics of the P controlled system is represented
by the smooth response of tie syst.n (2.1) to the smooth
ocontrol function constituted by the duty ratio D(x) . The
duty ratio replaces the discrete control furction % in the
sene ‘sanner o3 the equivalent oontrol , of the ¥SC
replaces 4 in (2.1) to obtain (2.7).

¥o refer to (2.14) es the gverace PR controlled systes.

Definition 4 An n-1 dimensional menifold I is said to
be & local istegral sanifold, on an open neighborhood X of
, of the aversge PRI controlled systes (2.14) if for
sowd smooth 0 ¢ D(x) <« 1, there exists a Smooth
function -¢ : B® -» R defining « constent d:Lnens:m(m)l
e (x
» 0} , with gradient dr nowbere zero in X, and such that
locally o § ¢ .

t(xi + D(x) g(x) > = O
From the above definition it folloes that the duty ratio

(2.14)

<de , (2.15)

Dx) = - (<ds,@>) " V(eds, B> ) = - (Lgs)'i(l.!s )

; follows from Definition 4 tbat on }
“cde, £ @
" tbat  cdo,(D(x)-Dy(x))g > & (D(x)-Dy(x)) «ds, g > = 0. Sinces

.OR . Then, there exists positive smooth functions

satisfies :
i (2.16)

Botice that ¢ d o, g>= 0 mkes D(x) unbourded wunless
«d s , 1> is itself zero, in shich case £ + ug trivially
belongs to the involutive tangent distribution X de for
all u and thus the trajectories are locally constrained to
32  irrespectively of the control function u. We therefors
assume that, locelly on I, the quantity «d ¢, g > ¢ O.
From this aessumption, it follows that, without loss of
generality, e may consider < d ¢ , g >
quantity in the region of interest. To see this, suppose

«de,g > > 0 and consider the following alternative
definition of the integral manifold I = { x: oy(x) = ~ o(x)
= 0 }. On tbe region of interest we now bave : o , g =
¢de ,gr=-coy,grr 0 de, <doy g

< 0 From the sbove assumption and the definition of
the duty ratio, it follows thet in order to bave 08 < D(x).
< 1, uecessuily, <de, 2> > 6, locallyon 3% .

Lewms S If T is & locslly integral senifold for
(2.14) , and < dr,g > ¥ 0 locally on §, then I is also &
local integral manifold for X = !(x) + Dy(R) g(x) if
and only if D(x) = lll(x) in the region of 1:nterost

Proof ‘Sufficiency is obvious. %o prove necessity suppose.
Dy(x) # D(x) . locally on T , but assume that I 1is a
locsl integral manifold for both cortrolled systess. "It
= ¢ 4o, £+ D(x)g> =
(x)g » = 0. From this equality it is easy to see

by hypothsls o, '3 0,
locally on 3 .
tst-bhshed g

then, umstrily, D(x) a ﬁl(x)

A mssnry and sufficient conditi tor I te
be s Jocal integral manifold of (2.14) is thet locilly en
D
<do , £+g>¢ 0 and ¢ do "! » » 0
Broof, Let I . be s looal i.nhgnl mnifold for (2.14),
then ' £4D(x)g ntmns (2.-1%) !!Ii from ‘the doﬁnition ot
duty ratio (2.16) :

0 ~(do,g) " (cdo, ) = D(x) = —(<ds,9>)" (s, B) < 1
(2.18)

Using the hypothesis that ¢de, g > ¢ 0, it follows fros the
right band side of (2.18) that - «deo, £ > > ¢dv,g > and
therefore <do, £ + g > ¢ 0. On the otber hand, uwsing the
tirst :meq\mlity of (2.17 ), it follows that -<do,f> ¢ O
ie., ¢de, £> > 0.

To prove sufficiency, suppose (2.17) hoids true locally
a(x)
ard

b(x) such that on the region of interest.:

D alx)def e gy + b(X)de,ty & D (2.19)

It then follows, resrranging the sbove #xpression, that

<de , 2 4+a(x)(a(x)+ x) T'g> = 0 j.e, there
exists s smooth control function 0 ¢ P(x) =
l(!)[l(!)ih(!)]-l <1 suh that, locallyon 3% ,c¢do, £
+ D(x) g > =0 In otber words, in the region of
interest, I 1is a looal integral manifold of (2.14). O

In & similar form to the VSC case, equations (2.17)
determine the regions of existence of a loeal integral
wazifold for the aversge PRI controlled systes on 1.

2.3 Idesl Equivalence of ¥S and PWI control.

The following theorem deworstrates that local utognl
manifolds of the average PRI oontrolled system, if they

-3- .

as & megative

This is & cortradiction amd the 1 is-
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. valid.

oxist, qualify as ¢ looel sliding surfaces. When & sliding
regine is orested on such portions of the menifold, the
corresponding equivalent oontrol coincides with the duty
ratio. . .

Theorew 7 Let I be & local integrel manifold of (2.14).
Then, & sliding wode exists on I in the same region where
it qualifies s & looal integral manifold. Moreover, the
equivalent control corresponding to suwh s sliding motion
ooincides, locally with the duty oyloe.

Proof: Since I is an integral manifold for the average
PR controlled systes (2.14) , then Theorem ¢ spplies and
(2.17) Dolds true. It follows that locelly on § :

«de, f+4g > = li-'_no <do, £+g > = lim, .0 lf+g¢ ¢ 0

do,f > " lin_, o dof) = lin,_, gLlge >0

i.¢., the Variable Structure control law :
1 for e (2) > 0

U= (2.20)

0 for ¢ (x) < 0 )

used on systes (2.1) ocreates a sliding sode locelly on 3.

To prove the second part of the theorem, notice that if a'
sliding wmode -exists on I then, necessarily, the
transversality oondition e ,g >= 1 e « 0 1is
satistisd. By definition, ‘the oorrespoding equivalent
coptrol setisfies the inyariance conditionon I

(ﬂv,!+ugu(x)q:$ = 0 (2.21)
but this isplies that ugn(x) also qualities ss & duty retio.
Fro# the uniqueness of swoh & duty retio, shown in Lemma 5,

it follows that vgn(*) = D(x) locallyon 3 .- O ‘

: t . i o !
The copverse theores oopphous-th- equivalence between |

¥5C and PWI control scheses'in their respective ideslized
features.

=y . R e ¥
Theorem 8 If a local :lzd'ng sotiop exists on the n-i
disersional, regular swooth manifold $ = (x € K s(x) = 0 )
then, locally, $§ qualifies as an integral manifold for
the average PRI controlled system. Moreover, the duty ratio
corresponding to this aversge systes locally coincides with
the equivalent comtrol. Cren

Broof .  Suppose s sliding sotion locally exists on 5 |,
then (2.4) bolds true locally on § and bence the conditions
for Thaorem 6 are valid on §. Henoe, § qualifies as o
local integral wmanifold of the average PWI controlled
systen. Notice, furthermore, that from Theores 3, 0 <
Ygg (x) ¢ 1 is satistied in the region of interest. The
equivalent control also turns S imto & local integral
asnifold in the region shere the inequalities (2.17) are
By virtue of the uniqueness of the duty rstio, the
equivelent control mecessarily coincides with the duty ratio
a5 swooth functions of the state veotor. O

Theorens 7 and 8 allow us to conclude

fhe pecesswry and sufficient condition tor the locid
axistence of 1 31iding scde o ap n-1 disensioms] rwgular
suaold ¥ Is thet It alw locillr gwlifies i5 aa
Iategrel sanitodd sfor sa aversge ML controllad syséee 1a
the reg@on of exiztence of ¢be yliding sode. In thix ragion,
o aquiralent control and the Jdoty retio Eotally cozmcide.

It is, generelly spesking, very diffioult to cospute an
integral manifold for s system of nonlipear differential
equations. Mowéver, for the class of lineer time-invariant
systems exhibiting s two time scele separation property,
koown as singqularly pertuwrbed systess, affine verieties

containing the sloy eawifold of the system can De
explicitely computed with considerable simplicity (
Kokotovic, Khialil and O'Reilly 1986). Gemerally spesking,
hypersurfaces or affine varieties ocontaining slow sanifolds
are not, thenselves, global integrsl manifolds.

B |
111 SLIDING MODE CONTROL OF DC-TO-DC SVIWDE
POVER CONYERTERS ‘

2.1 Sliding_Hotions on the Slow Uanifold of the Boost
Converter )

Consider the Boost converter of Figure 2, where the state
variables are defined as: ¥ = I, = ¥ , sand
parameters ; b= E/ ok , wp= 14AC, § 2 1/RC . the
control “input® is represented by a discrete valued varisble
vw& (0,1} representing an ideal switch position.

;1 = WoXo + U ¥oxo + b
. (3.1}
Ay = WX -W Ao - W WX,y ’

As it was desonstrated in Section II of this article,
the average response of the systeam to a comstanmt duly retio
# in & PRI control scheme is obteined by replecing u'by the
constant value 0 ¢ p'¢ 1. The resulting system is governed
by & limsar time-imwarigst systea. The oquilihriu, point
of the average systes is given by the cpordigmtos :

%1gg = YOLUWINIZ | xge = Bl T @)

{ Tbe corresponding characteristic equation is giyen by

22 . oA el )2 'da - 0 (3.9
The roots A (), M(k) of this equation bavé negative resl
parts and bence, the aversge trajectories are asymptotically
stable tomrds the equilibrive point. The danping
coefficient [ of the'systew is § = w/{2 w(i- p)) ,
while the naturel frequency of the average systes coincides
with (1- p)wy . The value of the demping coetficient §
deternines the nature of the aversge response. Thus, for
values of ¢ ¢ 1 the response is oscillatory, while for
values of { »> | one of the wodes in the response, say i(u)
is overdsmped, while the other, X (p) represents s fast

transient. In this case both eigenvelues are resl and the
corresponding eigenlines translated to the equilidbrium point
qualify as local integral manifolds celled the slow and
fast mamifods respectively.  The damping coefficient is
slso & weasure of the ratio of the time constant of the
«output circuit wy » 1/RC to the naturel frequency w; of
the LC input circuit.

The affine variety conteining the slow manifold of the

different trajectories of (3.1), obtained from the above
fact, is given by any of the following expressions :
Sy={xa B2 o= xg 4 [(10e 1 in0x,

- BTt e (mE = 0 (3.9)
S"l ={x8& B o= X = [ M) + oi]‘l(l—u)voxl

- Pgwi+ey I ap(u0b ((1-w)we1™t = 0) (3.5

It is easy to see that the surface coordinate function in
(3.4) or (3.5) is a sclution, thanks to (3.3), of the
partial differential equation representing the manifold
-condition (2.13):

(350m) [Dwo(3-1)32] + (ds/mg) {(1-RIW Hy - w3xg) = 0

by



Particularizing the existence conmditions (2.17) of
Theorem 6 for the dynamical system (3.1) with u = p, leads,
to the following region of existencd of & local :u-tegril
manifold for the average PRI controlled systes :

15 200D [(1-p)wgey )t (3.6)

woxy < [(1-WIwy + %W 17 ( (1-w)me2ey + 2p()b e

The oopdition . «ds, g» < 0 is represented by an open
bewispace given by the inequality constraint :
x> = [(w) 7 ( a(0) + wy )y (3.8)

&s it was justified in the previous section we restict
our sttention to the region on §, where these constraints
(3.6)-(3.8) sre valid. This unbourded subset of R is
shosn in Figure 3. The local integral manifold is
constituted by the unbounded portion of S, to the right of
the pomt P; shown in that figure. S, & Sy represent the.
slow manifolds for u = 0 and u = | respoet:.uly

The uongn PIH trajectories locally evolve on the
iptegreal wanifold (3.4) or (3.5). Using these relationships,
the expressions for ;h average dyvamics result in !

31 = 400 (xl - v,hl(l—u)w,,l'2 )
iy = () ( 22 =% (it )

:'b:u:h represent uythtioguy stadle "sotion tonrds the
oqml-.\bnu point (3,2) °

igmv}e_h
Figure 4 4 depicts ‘simflated state trajectories ir Boost,
\copvcrtor for u's q, \{ =1 and a PRI control scheme &ith
- constant dllty, ratio ' = Da 05. The copponent Yalues of
thecuqunp L:ﬁql( €= 0 1pF , Ri=z 100 and E
20 Yolts. Here w= 10° and w = 5 x 104, e danping
eooﬁmxent { =2

. (3.9

kY

3.2 & Varieble Structure Control Aperosch

The preceeding developuents identified a portion of §
vhere & locel integral menifold exists for the average P’ﬁ
controlled trajectories. Yext , is taken as the
switching surface § for a V5C creating a l.ocal
sliding regine leading to stable equilibrium.

Sy+ (1 @R 52 x4 [(1-p)wl gy, o
= DLC-0% 1 sy (149,12 = 0 ) (3.10)
Using the definition of s ia (3.10), the integrable
distribution Xerds is given by :
| Rerds = span((1-w)w, 10 (w)ewy [ asmeye 2/0n) (3.11)

The invariance condition £ + nm(x) g & AXer dson s
= 0 translates into :

¥ [3(u )+ 17w x 420 )bwy [ (1) w0 ) 24b) (keugg(x) ) 0

ie.,

ugg = B (3.12)
which meens thet, slong the valid portion of § , the
average bebavior of the PRI controlled system and the idesl
sliding dyramics are totally equivelent. As expected, the
necessary and sufficient condtions for the existence of a
tliding wmode on , ~obtained from Theorsm 3 ( or,
equivalently, from oconditions {(2.4) ) lead to the
determination of the region of existence, totally coincident
with that found for the locel integral manifold of the
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aversage PR controlled systems. The variable structure
control law guaranteeing the existence of a slxdmg wotion
on S, is obteined from conditions (2.4) ss

"
o l for s > O
u = (3.13)
0 for s ¢ O
whenever ‘
) i X
{2, + %G00 [(1-0)w) 2 « boy™d ] 5 0 WCRD)
which Along s= 0 is equivalent to :
x5 > 2Gb((1-p)w e 17! L @as)

The existerce conditions (2.4) reproduce the regions
(3.6)end (3.7) previously oomputed in the PR{ case. A
sliding motion thus exists on S to the right of the point
Py in Figure 3.

The proposed approsch, using the slow wmenifold
characterized by a linear variety, exploits simple
expressions for the sliding surface and omnly involves
weasurement. of output voltage and input owrent while being
reslizable with operatioml smplifiers and resistors.

; IV CONCLUSIONS
[ . i
By esubli.shinq An . ideal  equivalerce amdng ycr;uple '
Structure srhdth—lhdulgud control | schq»w ., a
design prooeduro bas hoen found which yropqses th ¢rut1m

[

:of a'sliding regime pn the integral unﬂold d! an’ average -

PRI controlled systew. T;n sdvantages of o YSC optmn over |

" a' PRI control slternative, lies in the hrdmo suphcxt.y

necded for feedback synthesis apd closed. looy roblst.ness, It

on the contrary, & PR control scheme is stin pre.fered the

proposed design procedure yllows for the compubation of the .
necessary duty retio as 4 truly feedback control lar. The

duty ratio is obtained as the equivalent control sssociasted

with the prescribed sliding sprifold: Rhis result unifies
both spproaches and renders an equivalence which was used to

cast the design issues, associated with PMI  control

techniques, into & geometric framesork, with the advantages

of & more intuitive and fully systmuo uthodology

In realdistic applications, high troquency switchings or
high frequency duty cycles are necessry to approximate the
idesl Dbebavior exploiting the equivalence among both
approaches .

The method was used to obtain & Yariadle Structwre
Control law lesding to a sliding wode On an affine variety
containing tbe slow manifold of a IC-to-DC Switchmode Power
Converter. Such possibilities were derived from desirsble
time scale separation properties among the natural frequency
of LC input filter and the time constant associated with the
RC output circuit. Being only & local integral senifold, the
proposed affine variety does mot globally satisfy the
sliding mode existence corditions. However, the simplicity
of the approach wmakes it attractive for bardware
implementation since the switoh position is determined omly
from sign information ( i.e one bit dats ) alout & scalar
affine function of the converter’s state.
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