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ABSTRACT

The use of Cayley-Rodrigues attitude
parameters as kinematic variables is shown to
yield a globally linearized and decoupled model of
the equations of motion of a deformable body,
wherein the structural deformation state appears
only in the coefficients of the Inverse
transformation. It is then shown how commandsd
multi-axial attitude maneuvers can be encoded as
switching surfaces for a variable structure
control implementation of the corresponding
computed slew torques, automatically modulated in
response only to detected angular rate error
signs, for accurate tracking in the presence of
separately damped or even uncontrolled “(but
stable) structural deformations.

INTRODUCTION

The generation of maneuvéring commands for
nonlinearly coupled dynamical systems by inverting
the system dynamies has been gaining Inecreasing
attention in recent years, as in [1], and
references shown therein.

In particular for rotational dynamies it
shown in [2] that if the vector part of
attitude quaternion used in [3] is divided by
scalar part, the resulting Gibbsian vector of
Cayley-Rodrigues parameters can serve as an output
vector, which responds in linear and decoupled
fashion to an input vactor defined as its second
time derivative. Moreover, the torque synthesis
transformation {tself exhibits no singularity
whenever the attitude variables themselves are
bounded.

One difficulty In implementation is the
presence of slew-induced structural deformations
that would corrupt the accuracy of any control law
designed from the 1line-of-sight dynamics alone.

was
the
its

It has been found in {4], however, that the
general methods of global 1linearization and
decoupling yield a -partial inversion of the

dynamics of a flexible body. These results were
adapted from the guaternion formulation in [2] to
Rodrigues parameters in [5] and are extended here
to include translations.

Another difficulty to be addressed in using
such inverse dynamics methods 1lies in its
sensitivity to modeling inaccuracies, or else the
deliberate simplification of the inverse
transformations, for purposes of real time
computation. Nevertheless, it was reported in
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[4] that simply using the computed torques as
referance levels for chattering control yielded
good tracking results. That motivated the
jnvestigation of the possibility of combining
feedback linearization and decoupling by means of
Cayley-Rodrigues parameters, Wwith "variable
structure” control implementation of the resulting
computed torques. In the opresent paper, that
approach is extended from {6) to the case of
multiaxial slewing maneuvers for flexible hodies.

MATHEMATICAL MODEL =5
In this section the equations of motion of a
deformable body will be cast in such a form that
the coupling between position, attitude and
deformable states is made explicit.
Kinematics

The kinematics is expressed in terms of the

location, r, and the wvelocity, v, of the
undeformed center of mass of the vehicle, or
another center of the chosen line-of-sight

the angular
vector £ of
vectors of
as of

coordinate system when convenient:
rate, w, and an appropriate attitude
the commanded 1ine-of-sight; and the
anall structural deformations, n, as well
modal deformation rates, Y,

The kinematic equations in body coordinates
(i.e., undeformed principal axes for r,
v, w, £ and modal coordinates for n, Y) are then
shown below,

Pevirwxr, £=TEw =Y m
where w x denotes the matrix representing the
vector product operation expressed in the body

coordinates, and where T(f) is : a 3 x 3 matrix of

trigonometric functions of Euler angles; or a 4 x
3 matrix of linear functions of attitude
quaternion parameters; or a 3 x 3 matrix of

quadratic functions of Cayley-Rodrigues parameters

according to the cholce of kinematic variables g.
For multiaxial and large angular motion, the

parametrization of choice is that given by the

Gibbsian vector of Cayley-Rodrigues parameters:
that 1is, the present attitude relative to a
reference coordinate frame 1s described as

resulting from a virtual rotation of 6 radians
about a virtual axis e, with direction cosines ey
ey, € having the same values in the reference
(e.g. “inertial) frame as in the rotated (body)
frame {(hence the "Gibbsian vector" name). The
attitude Gibbs vector is then given as shown:

£ = e tan (15 8) (2)
its
parameters.
attitude vector £ 1s governed by Eq.
matrix T(E) as given below:

component s are the Cayley-Rodrigues
The time evolution of the resulting
(1) with the

(E) = 3T+ k8T + £x] (3)



In Eq. (3), I denotes the 3 x 3 identity
matrix; a superscript "T" denotes transposition so
that the second term is the dyadic matrix with
(1,3)-th  entry given by £,£:; while [E x] is
defined as [wx] 1in Eq. (1). %hg advantages over
quaternion kinematics lie in the invertibility
of T(g) and unique parametrization by £ of the
change-of-variables matrix A{f), from reference
frame to rotated frame: one has,

)™ =201+ €701 - £x) ()

AE) = 2014697701 + geT - gx] -1 (5)
where 5;2 o= ET €. In contrast, if § were the full
attitude quaternion then
T(E) would be non-invertible, and & as well as its
negative -f would yield the same rotation matrix
A. Moreover, the attitude vector § of Eq. (3) is
holonomic (i.e., wunconstrained), whereas the
attitude quateraion is of unit magnitude, making
it impossible to be regarded as a linear state
variable in the same manner as the translational
position vector r. The only caveat is the choice
of reference system: a target attitude can be
initially regarded as the reference orjentation.
If the initial orientation were to correspond to a
virtual rotation of $180 degrees about a relative
rotation axis e(0) then the initial Gibbs vector
would be infinite. In this case the reference
orientation for the maneuver can be redefined by a
rotation of the inertial frame by 90 degrees
about the initfal virtual rotation vector e(0).
In the new parametrization the initial attitude
will then be modeled by the Gibbs vector
£(0) = te(0), and the target attitude by the Gibbs

vector -g(final) = te(0), as can be easily
checked.
Dynamics
Following Wertz [7, Sec, 16.4.2] vehicle
motion {s commanded by a force f (including

Coriolis effects neglected in Wertz, and here) and
a torque 1, respectively causing translation and
rotation about the undeformed center of mass (or
more generally where the body attitude reference
frame is fixed. Attitude can be additionally (or
alternatively) commanded by changes of angular
momentum h produced by reaction wheels or control
moment gyros. Direct structural . deformation
management may also be possible by modal control
forces or torques u. Only amall deformation modes
will be presumed, and squared angular velocities
as well as products of translational and
rotational velocities (when small compared with
acceleration terms) will be neglected: then the
dynamic equations in the vehicle-fixed rotating

frame take the form given in [7, Sec. 16.4,2]
shown below,
mv +2ZY = f (6)
Jo + NV =1 -wx1-h )
2 NG e M su-CY-Kn (8

where m is the system mass; J its matrix of
moments of inertia (resolved along undeformed
principal axes); M, C, K are respectively the
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modal mass, damping and stiffness coefficients of
the elastic structure; while Z and N are the
coupling matrices between the elastic structure
and, respectively, the spacecraft frame's
translational and rotational motion. Finally, 1
stands for the total angular momentum, given
below:

l1=Jw+NY+h (9

The vector product of 1 with w accounts for
the rotation of the vehicle frame, and is retained
for illustration of dynamic nonlinearity, or for
the possibly asymmetric moments of {nertia.
Overdots denote time derivatives in the body-fixed
frame parametrizing the line of sight.

f, 1, h, v, w are modeled as 3 x 1 matrices in
terms of the body frame, while n, Y are modeled as
n x 1 matrices of modal coordinates, in terms of
appendage cantilevered mode shapes. If attitude
is controlled only by reaction wheels or CMG's it
is possible to model the total angular momentum 1
in terms of the attitude variables ¢, thereby
dispensing with the propagation of the wheel
dynamics, as follows: the total angular momentum
at the time to when external torques cease to be
applied is given in inertial coordinates by the
formula below, where 2 denotes the column matrix
of relative angular rates of three orthogonal

reaction wheels, and J' denotes the matrix of
axial wheel moment s of inertia:
If 1(t) =0 for t > t_ one will have 1(t,

inertial) = constant ® It follows that for t > t

one has in body axes: °

1(t) = 1(g(t)) := A(E(t))A(‘E(to))l(to) (10}

As shown in [3], Eq. (7) can then be replaced by:
(J - d90 = N = 1" - wx 1(g) ()

A more complete model would have all structural
parameters coupled with angular v2locity or
acceleration. Moreover, elastic slew-induced
excitation (here given by N'w in Eq. (3)), is in
fact a function of angular velocity as well as of
acceleration: ef [31], pp. 41-45. It will be
seen, however, that such refinements do not affect
the applicability thereto of the principle of
generating shaped maneuvering commands for line-
of-sight model following promoted herein,

DECOUPLED CONTROL

Without either single axis or small angle
slews, and without inertial symmetry assumptions,
it is still possible to obtain global decoupled
linear models of arbitrary vehicle motion, by
feedback: this is most simply accomplished by
employing the system generalized coordinates given

by Eq._ (12), but also with redefined system
inputs u, as shown below,
T
q = (e, €T, ’D (12)
= -T -T -T,T
u :=(ug, u,, u3) (13)
with component s u consisting of linear

combinations of up to the first two derivatives of

the . translation rotation, and deformation
variables as shown,
ﬁ1:+ r+ A1r'- + Byr (14)



Uy t= & ¢ A6 ¢ BE (15)

u, :=n + A_n + B 16

ug :=n 3" 3N (16)
with freely chosen coefficients Al' Bi‘

A convenient but 1inessential choice of
coefficients above is one that allows for
critically damped step responses to commanded
repositioning, reorientation and vibration
dnglng. Presuming a prescribed time constant of

A as well as a prenormalized modal mass matrix M
= I, in Eq. (8) (I, denoting the k x k identity
matrix), the equivalent linear system model will
have the same form as the single axis or small
angles model but with redefined coefficients:

Mag+Cq+Kq=u an

where one has:
M=, (18)
C = diaglA, Ay, AJ) = 24 diag Ig,. (19
K= dlaglB,, B,, B, - \diag Igon (20)
An  example of control design using the

decoupled model is that of a critically damped,
combined vehicle translation to a position Por
reorientation to an attitude Eo' as well as
structural re}?xation. all with "a common time
constant of A sec. The required controis are
the following step commands,

= 2, T T T, T

u(t) =2 (ro, Eo' 0) (21)
with outer loop correction for disturbances by any
standard means (e.g. PID, pole placement, LQR).

The regquired translational forces f, and
torques 1 - h by vehicle main drivers as well as
structural actuator forces or torques u, are
obtained from. u by solving Eqs. (14), (15) and
(17) for r, £, n and 1insertion thereof in the

dynamic equations (6), (7), (8). The resulting
computed forces and torques are given below:

T :T,T

£+ [nly; 0; 2] 4 - [2hmly;5 05 24 23°T, &7, A0 T

2 ;T T, T

0; 22216°T, ET ATy (22)

3i

=005 J TE)™T5 NI G-[0; 20dT(e)” ' aanaceT, &, AT

o 22 e a2 e, €f, D T -

wre @ o e e x e )
(23)

when only externally applied torques are used for

attitude maneuvers; or:

—tta[0; (=T NI G

-[0; 22(J=a0TE) 5 2 NIGT, &7, AD)T

to; 22-anr@)™"; 22T, €T, ah T -

-1

(=01 8 T e« 1 x ) E (2

when only momentum transfer wheel torques t1' are
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*T. T

used for attitude maneuvers; and
ue 020 N e e -
(aaz’; 2N 1ee) ™" anr -c1erT, &7, #THT .
-[xzzT; W27 T(E)-1: kzln = K](rT. ET. nT)-
Ve @ e T (25)

under the hypothesis of unit modal mass, M = In.

Use was made, in obtaining the formulas above, of

the following kinematic i{dentity, derived from
Eqs. (2) and (7):

. -17 T

w=TE) £ - ww§ (26}

Thus the relationship between the generalized

system forces ug given by Eq. (27) below, and the

transformed inputs u driving the equivalent linear

system given by Eq. (14) is seen to be of the form

T T

u - (T - mT, uHT = 6la)a - ala, @ (21

with G and g obtained by inspection of Eqs. (23)
through (26).

It should be noted that any other linear
guidance and control laws besides Eq. (22) can now
be directly applied to the nonlinear plant
cascaded with the nonlinear equalizer, or
linearizing and decoupling transformation, modeled
by Eq. (27).

For 1line-of-sight pointing, the control of
structural deformations is required only insofar
as instrument line-of-sight is deformed. This can
be done even in the absence of structural
actuators f(u = 0), provided the structural
deformations n and deformation rates Y thereby
excited can be measured, as done in [4]. It is
the complexity of real time computation of
controls such as Egqs. (22) through (25), as well
as 1its sensitivity to modeling errors, that
motivates the wuse of sliding modes, as |is
discussed next.

VARIABLE STRUCTURE CONTROL

A robust and more easily implementable
command generation task can be accomplished by
implementing only an estimate of the computed
torques or forces, but in an average sense by an
"overshoot and switch" 1logic triggered by the
detection of deviations from the desired maneuver,
called “"variable structure control", denoted
hereafter by VSC as in [6] and references
therein. The equations of motion are best handled
if expressed in the form given next.

State Space Model

The VSC method is best deseribed for systems
in the "regular form" of Eqs. (29), (30),

(28)

X, = F(xl)x2

Xy = flxy, x,) + G u (29)
T _T.T

where X = (x1, x2) is the system state and u the

input control vector. For rotational maneuvers

one may use the following state variables in terms

of Egs. (1), (7), (8),



!E& im‘ | 71
1 T(njr e 'LYJ' v
obtaining with no reaction wheels, i.e., h = O,
the following expressions for the case of external
torques and Vernier torques 1,

x (30)

lUA

F = diag {T(x1]), In} (31)
f1! 01
f = ‘ , G = (32)
RFY Cal
where I, s the identity matrix for n elastic
modes, while the entries of f and G are ‘as
follows:
-1
£, = =R (NMO[K|CIx, + x,0 x [J{NIx,} (33)
£, = -5 ([K|CIx, + NTO7 (x,, x [[NIx,)] (3W)
2 2 21 2
c, = RII|-WM"'3, G, = st-xT T (35)
1 3 T2 n
R=(d-N N, s=(M-ng N7 (36)
For torques 1' generated by servomotors
driving orthogonal reaction wheels, it is enough
to replace 1 by - 1' in the definition of the
control u, as well as replacing J by J - J' (J'
being given by the wheel inertias), as wel) as

[JIN]x2 by 1(x;4) (the system angular momentum
expressed In terms of the attitude variables in
accordance with Eq. (21)).

The variable structure control techniques are
still applicable when G in Eq. (29) is state-

dependent (but invertible as well as F).
Switching_Surface

A desired closed 1loop behavior of the
"kinematic" part x; of the state of the abstract
system given by Eqs. (46), (47) is presumed to be
modeled by Eq. (48) below.

X, = falxy) (37)

One example 13 the result of inserting the
step inputs given in Eq. (22) (omitting the first
input in the absence of translations) into Egs.
(16) and (17). If their critically damped version

is selected, the response of Xy = £ in
particular will be exponentially decreasing In
magnitude , towards a presumed fixed target
attitude £ , while Xyp =N will 1likewise rdecay
exponentially towards the undeformed

state (n = 0). Whichever choice of desired closed
loop kinematics, system inputs computed therefrom
will not exactly track the motion so commanded, as
is discussed below.

It is true that exogenous disturbances can be
handled by outer loop filters and regulators.
Nevertheless, plant modeling errors still affect
the inverse dynamics. The ensuing tracking error
is interpreted in VSC as a deviation of the system
state (x1, xz), from the switching surface S
defined below:
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S = {x]s t= x, = wlx,) = 0) (38)

2

-1
w(x1) = F(x1) fd(x1) (39)

In particular,
model glven by Egs.
simplified by setting
X 2= £y Xy im0, Woiw T (or -1'), for which F'
becomes T given by Eq. (l), and f becomes x, X
Jx, {or x5 x 1(x4)). 1In this case the switching
surface variable s in Eq. (38) is the error
between the actual and the ideal angular
velocity w(x,), for a desired maneuver.

The perturbed system 1is best studied when
expressed in the surface coordinates (x1, s),
ylelding Eqs. (41) and (42) below, by insertion of
the representation for X, In terms of xy and s
given by Eq. (40):

for rigid body motion the
(28) and (29) is further

X, = 8+ ulx) =8+ Fx) (40)

The transformed equations of motion then take the
form below,

rd(x1)

>‘(1 = fy(x,) + Flx)s (41)

Q-F(x,. 8) + Gu (42)

where f is given by Eq. (43):

Flx,s 8 = £0e, 8+ wx)) = [B2IF(,) (s + wlx,))
(43)

If G were state-dependent then G(xy, x,) would

likewise Dbe replaced by G(x1. s) obtained by
replacing x, by its expression in Eq. (44):
Glxy, 8) = Glxy, 8+ w(x,)) (44)

Equivalent Control

The system will evolve on ("glide along") the
surface S iIf the ideal 8liding mode conditions
given by Eqs. (46) are satisfied:

8=0,8=0 (4s)

Intuitively these conditfions mean the system
state 18 on the surface S and remains on it.

The reduced order feedback control that would
drive the system state along such a sliding mode
leocalled the equivalent control, denoted here by
uw ., The equivalent control, given below by Eq.
(46), is found by application of the sliding mode
conditions (45) to Eq. (42),

EQ

W - By, 07, 0 (46)

where f was defined by (43) and G = G for
present purposes.

It can be easily checked that the equivalent
control is exactly the control obtained by
feedback decoupling, whenever the sliding surface
is defined by the corresponding commanded closed
loop trajectories.

Initial conditions might not lie on the ideal
surface S. Moreover, if driven by the equivalent
control, the system state will generally deviate
from the sliding mode regim%Q due to modeling
errors in the computation of u This motivates

Eq.



the alternative VSC control
next.

strategy Aiscussed

VSC is implemented by a choice of control law
that counteracts deviations of the surface
tracking error s in Eq. (49) from zero. Such a
control law can be obtained by a choice of inputs
that satisfies the sliding mode  existence
conditions, which for a single input are given by
the intuitively clear relations (47):

1im 3<0, 1lilm s> 0 (47)
R -

8+*0 820

situations the
-by the Lyapunov

For general vector-valued
conditions (47) are replaced
condition below:

L qlsl)? = 2T 5 <0

(48)

The condition (48) (hence (U49)), is verified
by s when a control law of the following form is
used In Eqs. (#1), (42):

W= ulx,, 8) = -7 (F + Ksign(s)) (49)
Here "sign(s)" is the vector sign function
sign(s) = (slgn(s1), slgn(sz),...)T (50)

and K 1Is any positive definite weight matrix;
Indeed, one then gets:

& 11s|1? = -2s" kstgn(s) (51)
(Again G would be replaced by G from Eq. (44) if G
were state-dependent).

The VSC law u(x., 8) is a correction to the
equivalent control, Eo account for errors in its
computations: indeed, by setting s approximately
zero near the switching surface S, one finds by
inspection of Eqs. (46) and (49):

ulx,, 9) = uB%x) - ¢ 'ksign(s) (52)

The VSC gain K is experimentally set
sufficlently high to guarantee the overshooting of
the 1ideal surface S, thereby triggering the
swltchingE ogie. Only an estimate of the ideal
control u (x1) computed from Eqs. (23) or (24) is
therefore needed at_ each instant, although more
accurate values of u require less control.

It should be noted that the commanded state
trajectory (i.e., line-of-sight) is continuously
tracked, the control switching being precisely the
cause of such accurate tracking, fInasmuch as
control switching 1is triggered by incipient
tracking errors.

Multiplicative VSC Correction

A VSC law can also be constructed as a
multiplicative correction, rather than an additive
correction, to the equivalent control. To do this
it is first to be observed that control laws such
as Eq. (52) are of a switching form, generically
given by Eq. (53) below:
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f(x,) 8550

ulxy, 8) = (53)

u-(x1) if s<0

It is easily checked that the ideal sliding mode
conditions (46), when applied to the system modsl
(46), (47) excited by control law (54), lead to
the followjng characterization of the off-surface
controls u and "~

v cc B¢y (54)
A VSC law that can be easily shown to verify

the conditions (54) is as follows,

ulx,, 8 = =k [u"x)|sign (9) (55)

with k > 1 if G > 0, or with sign reversed if G <
0: indeed it i3 enough to test the cases
EQ > > >

LI 0, s e 0, G % 0.

Again only an estimate uEQ of uEQ is needed
in Eq. (55), since errors are detected by the
switching logic, and the gain k can be set
sufficiently 1larger than unity to guarantee
reachability of the switching sqﬁ{ace. Better
accuracy in the estimation of u such as the
computed torques has the effect of requiring
amaller VSC gain k, hence less control effort
required, and in practice less frequent switching.

Decoupled VSC

For vectg& inputs it 1s even possible to use
an estimate u of each scalar component of the
equivalent control, and select separate single
channel VSC gains ky for separate reachability of
sliding surfaces given by each component
w of the ideal w in Eq. (39),

Sl = {xlsl e Xy < mi(xl) = 0} (56)
ylelding the following control law,
~EQ
uilxys 8) = -k |u n (x1)|slgn(si) (57)
with the gains k; '"ex post facto" tuned to
guarantee surface reachability (not necessarily
simultaneously, although one does
have S = : S)
Intetchanéel coupling 1s thereby treated as a
disturbance, undifferentiated from plant or

parameter modeling errors, Inasmuch as tracking
accuracy 1s determined only by the switching
logic.

Chattering Suppression

Undesirable chattering, evident in either VSC
implementation, can be suppressed at the cost of
tracking accuracy. This can be done by
replacement of sliding surface reachability by
bounder layer reachability: that is, the sdystem
state (xq, x5) or (x;, 8) is required to be
maintained only in a dead zone about the ideal
syrface, within designer-selected
tolerance €. > 0 for each coordinated 8. The
required e-éccurate VSsC can be obtained by
replacement, in Eq. (52) or (57), of the sign(s)
function by the e-saturation function defined



below:
sign(s) if |s| > e
sate(s) 1= (58)
e 's if |s| <€
The resulting controllers have been

successfully employed in precision maneuvering of
robotic manipulators under the name of "suction
control,” in [8] and elsewhere.

APPLICATION TO RETARGETING MANEUVERS

For purposes such as line-of-sight
retargeting, a vastly simplified vsC
implementation 1{s possible, according to the

following procedure.
Retargeting Switching Surfaces

A 3-dimensional switching surface, in the 6~
dimensional rotational phase space of (£, w), is
selected fo correspond to tracking a target
attitude £ ,with exponentially decaying tracking
error £ - £ : the surfage variables gre obtained
by insertion of (£ - £ ) = -\(E - £) into Eq.
. The retargeting to a selected constant
orientation £' yields the three sliding surfaces
below (where different time constants Xl per axis
are permitted),

2__77 * * *
T, ) Bl =8 = A, 858, + 238,89
(59)
2. { * » *
%2 7 7,2 thtsh T Ral6  8) T aghEgl vy
'(60)
2_ » . * *
) 1—‘ 5‘2- [-A1EZE1 A8 8, * A3(£3 - E3)) *uy
(61)
with €2 e g8 o g2 0 2,
Retargeting Torque Estimates
The equivalent torques can be chosen as

estimates of the corresponding corrected torque
profiles.

At the price of possibly unnecessarily high
commanded torques, much cruder equivalent torques
can be used, by ignoring elastic deformations as
well as interchannel coupling, yielding Eq. (62),
for varjiable thruster torque actuators
(with A=y - x3 = ) for simplieity),

I 2 2,~2 2 * *

gq, 1(E) = 2 J1(1 + 51) g - El + 26151)(51 - Ei)
(62)

1, 2, Similar estimates can be

where i = 3.
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derived for reaction wheel actuators. Al so
different time constants A, can be used for each
rotation axis in the case of different actuator
torque ratings, or highly asymmetric inertias.

Such estimates need not be precise, however,
at the cost of the need for experimental tuning of
the VSC gains, either K = diag|k1l in Eq. (53)
(for additive VSC correction) or else in Eq. (56)
(for multiplicative VSC correction).

A functional block diagram of such a
simplified decoupled, multiplicatively corrected
VSC retargeting control system is shown in Figure
1, designed around a model of a deformable vehicle
commanded to undergo slewing maneuvers,

Example: VSC Retargeting Maneuver

Decoupled multiplicative VSC was used to
execute a reorientation of the vehicle model of
[4], [5), repeated elow, from the initial
attitude { = (1, 0, 0)" in_Eq. (2)). The time
constant was chosen to be ) = 10 seconds, which
should require rigid body torques of the order of
5 Newton meters. The structural parameters were
as follows:

J = d1ag(800, 400, 600) Kgm?
Five structural modes were assumed, with
normalized unit mass M = Iz and a common damping
ratio of ¢ = 0.05, which yields
C = diag (0.19, 0.41, 0.58, 0.60, 0.79)
and
K = diag(3.61, 16.81, 33.64, 36.00, 62,41)
in .consistent units, while the ecoupling matrix
from the elastic structural model (Eq. (8) with v

= 0 for no translation to the line-of-sight torque
equation (7) (again with v = 0) was:

10.¢ 0.5 0.1 1.0 0.0

N=0.5 2.0 10.9 0.5 0.0

0.2 0.0 0.8 0.5 0.5
No structural control was presumed, so that
slewing maneuver-induced structural deformations
such as that shown by Fig. 2 for the first modeled
elastic modes occurred. Nevertheless, the
commanded attitude variable §, decayed

exponentially to its zero target value, as shown
in Figure 3. The corresponding actual (simulated)
angular velocity profile 1s shown in Figure U,
wherein it is seen that the sliding mode was
attained in less than 5 seconds. Finally, the
corresponding VSC-corrected torque profile is
shown in Figure 5, where the switching activity
predicted by Eq. (57) is observed. The chosen VSC
gain was ky; = 1.3.

DISCUSSION

It has been shown how the choice of Cayley-
Rodrigues attitude parameters as kinematic
variables removes the singularity occurring in the
inverse dynamics transformations obtained by
feedback linearization with quaternions. It has
also been shown that such global linearization and



decoupling {s stil)l wvalid for 1line-of-sight
command following in the presence of uncontrolled
but damped structural deformations; but require
the availability of full state feedback).

Due to the difficulty of precise real time
generation of such deformation-corrected computed
slew torques, the alternative of variable
structure control implementation thereof was
imposed: it was shown that estimates of the
computed torques can be corrected either
additively or multiplicatively by switching the
direction of the applied torques in response to
changes in the signature pattern of the detected
errors between measured and ideal line-of-sight
slew rates, for accurate tracking in the presence
of torque profile computation errors.

A simulation example was given of variable
structure-implemented simplified torque profiles,
for accurate commanded exponentially stable
attitude maneuvers despite uncontrolled but stable
structural deformations.
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