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dbatzact

In this article the theory of Variable Structure Systems
(¥58), and tbeir associsted Sliding Regimes, is pro; as
a weans of dealing with the problem of enslog sigmal
‘tracking in Delta Modulation Circuits. Classical Delts
Hodulstion schemes (i.e., amslog, continwous-time encoding)
are treated from this generel viewpoint. The results are
easiliy extendable to modern amalog signel encoding.( i.e,
digita), disorete-time)

1. INTRODUCTION

$liding wode control of systess, on discontinuity
surfeces of the state space, Dbas been the subject of
susteined research during tbe last 30 years, mainly by
Soviet and East European researcbers ( Utkin [1],[2] Itkis
[3)). Recently, the technique has fourd reneved interest in
the United States in aress such as Robotics (Slotine and
Asads {4]), Aerospace problems (Sirs-Ramirez snd Dwyer [5])
and Power Electroniocs (Sirs-Ramirez [6]).

Sliding wode is the most important controlled behavier
of Yarisble Structure Systems (VSS), taking plece adout a
pre-specified switching manifold. The discontinuwous control
actions are geared to obtain state trajectories which
converge towards the sliding mandfold asnd are forced to
sdopt such surfece as an integral manmifold. The essential
feature is the robustness of the controlled motions with
respect to systems perameters and extermal perturbations,
while special desireble qualitative features (such as
stability) can be imposed on tbe constrained dymamics. The
constrained motions are schieved thanks to switchings,
among two different feedback laws, triggered by incipient
surfece overshoot. For & thorough swvey about the
theoretical and practicel achkievements of the discipline
_the reader is referred to a recent survey article by Utkin
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Section 2 of this article deals with a reapproacbeent to
classioal amelog signal emcoding im Delta Hodulation (D)
circuits ( Steele [8] ) via Variable Structure Systems
theory and their associated sliding modes. On-line analog
signal tracking is viewed as o probles of inMdwing s
sliding regime on & time-varying discontinuity surface
‘defined in the extended state space of the circuit. Such
isurface is directly defined in terms of the codification
error sigml. The existence conditions for a sliding
vegime, and the corresponding comoept of ideal (aversge)
sliding dynswics, maturally rederive end explsin the
overload oconditions, the overload frequency dependent
characteristics, the idling bebavior and step responses in
s number of practical encoder arrangesents incluling Linesr
Delts Modulation (LDH), Double Integrstion Delta Hodulation
(DID), Exponential Delts Hodulation (EDM), Delta-Sigma
todulstion (DSH), and the Sylabically Companded ( i.e.,
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adsptive ) Delta Modulstion schemes. Section 3 contains the
conclusions snd suggestions for further research.

2. SLIDING REGIMES IN DELTA MODULATION CIRCUITS
2.1 Generslities

Linear and adaptive DH schexes bhave been developed
since the end of World ¥ar II. A body of general theory was
lacking in the existing literature sbout Delta Modulation.
It is our hope to demonstrate tbat the theory of Variable
Structure Systems fills this gap.(See [8],[9)-[12]).

2.2 A Yariable Structure Systess todel for Continuous-Time
(Classical) Linear Delts todulation (LDH).

The basic scheme of LM encoding amd decoding circuits
is shown in Figure 2.1. In this circuit, the sigmal to be
encoded for trampsmission, x(t), is continuwously compared
with the state of the local decoder (integrator) to
generate an error signal e(t). The quantizer circuit
generstes s piecewise oonstent sigmal which is sampled
during a small sampling interval ¢ with sampling period
T. At the remote decoder, the resulting transmitted signal
‘L(t) is integrated and filtered to recover x(t). The
dynamical equations specifying the Dehavior of the
wodultstion process are :

e(t) = x(t) - y(t) = x(t) -°f L(t)dt (2.1)
Y signe(t) for k¥ <t < kKT + 1

L(t) = {
0 for XT +T 2 t ¢ (ke1)? (2.2)

The transmitted sigml L(t) is thus s sequence of
regularly spaced pulses of duwration T, frequency £ = 1/7,
and amplitude of 3 ¥ sccording to the sign of tbhe ervor
signal at the wmoment of sampling. The sigmal y(t) is thus
constituted by the sum of step functions of varying
polarity, regularly delsyed over the real lime, which
approximates the encoding signal x(t) within & quantization
(granularity) step of value & Vi=: & y ( =4x).

¥e may rvecast the tracking problem associated with LD
in terms of & sliding mode creation prodlem under certain
‘high  frequenoy seampling idealizations. The Dimary
transsission aspects will be bhence overlooked and deesed as
independent of the tracking aspects. It is sssumed that
suitadble teclinologicsl means are available to transduce the
high frequency outputs of the slidingwmode tracking process
into coded pulses suitadle for transsission.

Assumptiong 2.1: The Dbasic idealizations needed for s
Yariadle Structwre Control (¥SC) xodel of the modulatien
process are summarized below :

1)Pulse duration T of sampling process is infinitely small. '
2)Sampling frequency f := 1/T is infinitely large
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Using these assumptions the Dbasic ideal Variable
Structure Control (¥SC) model for LD is given by :

Systen Dymawics :
dy/dt =u ; wuve€ {-¥, ¥} (2.3)
Sliding Line
S={(yt) SR2: s(yt) =e(t) =x(t) ~y=0)} (2.4)
Existence Conditions:
limg_,,0 d5/dt = dx/dt - vt = dxAAt -V <0
limg_, _g 4874t = dx/dt - o~ = dx/dt + ¥ > O
The Yariable Structure control law :
u=L(t)= ¥Ysigns = V sign e(t) (2.5)

‘crestes & sliding motion on
sliding wode existence oond:tions, given by (l 4),
setisfied.

Theorem 2. g Amlog signal tracking is possidle via &
sliding regime creation if e only if for all ¢ :

are

=¥ ¢ ming dx/dt ¢ dx/dt < mexy dx/dt < + ¥ (2.6)
whose violation is the well known slope overload cosditiom

13]

Proot Immcdiate from above,
Appendix O

Under ideal sliding conditions,
obtains :

and the results in the

s=0 ,de/dt = 0, one

x(t) = y(t) 3 dx/dt = dy/dt (2.7}
i.e., ideal sliding is equivalent to perfect tracking of

the encoding signal.

Suwmarizing, the basic immcdiate conseguences of a ¥SC
approach to LD are the following :

1) Sigmal tracking is possible if snd only i! the slope
overload condition is violated.

2) For x(t) identicelly zero the existence conditions are
trivially satisfied and the tracking of “silence” is slways
socomplished in a chattering motion known &s the idling
respoms2. If x(t) = K = constant, the existence comditions
are again trivially satisfied and a sliding motion is
reached, from rest conditions, in finite tiwe t = ¥/K.
After this, the wmodulator exkibits aguin the idling
response.

3) A step input violates the existence conditions (slope
overload is trivially verified ) in the time interval
before the idling behavior starts.

4) For sinusoidel inputs x(t) = E; sin 2nf.t, the existence

conditions (2.6) translates into : 2ftf; Eg « ¥V ( ® yf ).
This is the well known overload frequency clerecteristic
for sinusoidel inputs in LD ( {8) pp. 10 ).

3) The sliding mode existence conditions demand knowledge
of the time derivative of the encoding input signel which
can only be known on line. This clearly points the need of
an  sdaptive schese wehich guarantees the wuse of an
appropiste on-line time-varying quantization limits, ¥(t),
-¥(t), computed on the basis of the derivative of the input
signsl x(t).

s(y,t) = 0 provided the

‘2.3 _Sliding tode

Figure 2.2 shows a computer simulated L
response to a sinusoidel input of frequency 2.25 KWz and,
smplitude E; = 0.1 n¥ . The chosen quatization limit is ¥ =
2 Yolts. The initial state of the local decoder ms set to
-0.1n¥.

_Aspects of Double Integration Delts
Hodulation (DID)

In order to achieve a faster tracking response of the
encoding signal on the part of local feedback decoder a
second integrator is sdded to the basic LD scheme. The
co-dec errangement is shown in Figwe 2.3. The sawpling
process is still assumed to satisfy tbe idealizations
presented in the previous section.

The dynamical system describing & DIDH scheme is simply :

dyj/dt = y3 ; dyg/dt = u; u € {(-¥ ¥} (2.8)

In the doble integration delta modulstion case it is
easy to show that a sliding wotion does not exist on & line
representing zero tracking error. Indeed, assume the.

sliding line is given by:

oI
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syp= e(t) = x(t) -y = 0 } (2.9) .

Sy = { (11.72) :

In this cese the system is not relative degree 1 (See
appendix) and & sliding regime does not exist. Hence, the
arrangesent is definitely not Dbased on ideal

sliding-mode tracking of the encoding signal.

Example 2.4 Figures 2.43-2.4b show oomputer simulated
responses, of a DILM{, to e« sinusoidal input of frequency
2.25KKz, amplitude Eg = 0.1 m¥ and quatization liwit ¥ = 2
Yolts. A switching line of the form (2.9) was used and the
initial state of the local decoder was set respectively to
-0.02 w¥. and -0.06x¥/sec. The figures verify that a
tracking sliding regime does not exist in this cese but
merely a limit-cycle type of oscillatory response of the
local decoder output around the encoding signal. The
encoding error is smaller as the initial condition for the
output integrator of the local decoder is chosen close to
the initial valve of the encoding signal.

In order to provide a sliding-mode based explanation of
DIN , consider instead & sliding line, defined in R4, by :

S2 = {(y1,72) : sz = ey(t) = c[x(t)-y4] -y2 = 0, ¢ >0 }

(2.10)

In this ocase the resulting systea with output s is
relative degree one. Hence, & sliding mode may exists on 5

by appropriste switching action. This modification of the
DIDM arrangement is widely known ss Predictive DIDM. [8]

Existence Conditions:
limg.,,0 dsg/dt = ¢ [dx(t)/dt -y2] - ¥ ¢ 0 ;
Yimg_, _g dsg/dt = o {dx(t)/dt -y2) + ¥ > O
i.e., the ¥5C law :

u=Ysignsy; = ¥ signeg(t) (2.11) -

creates & sliding motion on s3 = 0 provided the sliding
wode existence conditions, given by (A.4), are sstisfied.

Theorem 2.5 A sliding regime exists on S if and oniy if
the derivative tracking condition is verified:

=¥/ ¢ [dx(t)/dt -yo] < ¥/c (2.12)



Broof Imwcdiate from above, and the results in the
Appendix O

Under ideal sliding conditions sp = 0, dsp/dt = 0 one
‘obtains :

dyg/dt = -clyy-x(t)} , dyp/dt = -c[yp-dx/dt] (2.13)

i.e., ideally ¥y snd y; asymptotically track the enconding
signal x(t) and its tiwe derivative dx/dt, respectively.

2.4 _Sliding Mode Aspects of Expopential Delts Modulation

In an EDIf arrengesent the perfect integrator used in the
locel decoder of the LDM{ schewne is replaced by a “leaky”
integrator represented by an RC circuit. The encoder output
is obtained through s sample amd hold circuit usuvally
realized by & D-type Flip-Flop circuit ( (8], pp. 57 ). For
this resson, the previous idealizations about the mature of
the sampling process is no longer mneeded. Instesd, an
infinite frequency clock sigml is assuwed to drive the
Flip-Flop circuit. The basic encoder circuit is shown in
Figure 2.5 .

System Dynamios :
dy/dt = ~(1/RC) ¥y + (1/RC) u ; u €& {-V,¥} (2.14)
$liding line :

S={y: s= e =x(t) -y =0 } (2.1%)

Existence Conditions :

limg , 40 ds/dt = (dx/dt + (1/RC) y - (I/RC) ¥ ) <O
vlin;_, _gds/dt = (dx/dt + (1/BC) Y + (1/RC) V) > O
(2.16)

The varieble structure control lav¥ u = ¥ sign e

crestes s sliding regime on $ if and only if the following

existence condition is satisfied :

-¥ ¢ RCAx/dt +2 <« V. (2.17)

This condition is an immediate consequence of the fact.
that the idesl sliding conditions are represented by x(t)
= y(t) and the equivalent control velue is given by g =
RC ax/dt + ¥ RC dx/dt + x . )

For sinusoidal inputs x(t) = E sin 2nft the existence
cordition (2.17) leads to :

~¥ ¢ wing { 20f RC E cos (2nft) + E sin (20£t) } ¢ K

dx/dt + x < maxy { 2nf RC E cos (2nft) + E sin (2nft) } <
+ ¥

In order to find the extreme values of the composite
sigml, RC dx/dt + x, above, let w(t) = 21if RC E cos

(2nft) + E sin (2nft) , then taking the time derivative of
n(t), equating to zero, solving for the tiwe varisble and

substituting the result in the expression for m(t), the
maxinus smplitude of the sigmal RC dx/dt + x is given by
Ev1l 4+ (21‘!.!11(?)2 . The overload condition takes tbe well
known form :

E [ 1+ (20LRCY2 1172 ¢ v (2.18)

In terms of tbe tramsfer fumction of the RC circuwit,

H(s), condition (2.18) is equivalent to : E ¢ ¥ | H(j2nf) |
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with the complex nri;ble s substituted by

je = j20f (
8], pp. 62 ).
Example 2.6 TFigure 2.6a and 2.6b show, respectively, s

‘computer simulated EDH response to & sinusoidal input of

frequency 2.25 K¥z and amplitude E; = 0.1 a¥, amd its

,corresponding codification error signel. ¥ith R = 100 KQ

ad C = 10 uF, the quatization limit ¥ may be chosen,
according to (2.18), as ¥ = 2 Yolts. The initial state of
the local decoder was set to -0.2 w¥.

2.5 Sliding tiode Aspects of Delte-Siomws Modwlation (DRM)

Classical DSY srose naturally from the inconvenience of
on-line accurate measurement, or estimstion thereof, of the
time derivative of the encoding signal ( this was possible
to accosplish by using Delayed Linear Delta Modulation ).
DSM proposes to encode the time integral of the input
signsl i.e., an integrator is thus placed at the input of
the LD encoder ( Fig. 2.1). In this manner, the overlosd
conditions (2.6) are now given in terms of the origimel
signal amplitwde x(t), which is indeed on-line measwrable,
rather than its time derivative dx/dt. The input integrator
and the local feedback integrator can be replaced by a
single integrator preceeding the quantizer unit as shomn in
Figure 2.7. The remote decoder is thus substantially
simplified. ’

Using tbe ssme idealizations developed earlier, the

.eorrosponding ¥SC model to be considered in this case is

given by:
Systes Dymawmics :
de/dt = x(t) ~u, ua (-¥,7) (2.19)
Sliding surface :
S(e,t) = { s(e,t) =e(t)=0) (2.20)
The ¥SC law : .
u=l(t) = Vsigns(e,t) = ¥ ;19:; e(t) 2.21)

creates a sliding motion on s(e,t) = 0, provided the
sliding mwode existence conditions, given by (A.4), are
satistied.

Theorem 2.7 A sliding regime exists on § if and only if
the existence conditions:

limg_y,0 ds/dt = lim o _, ,pde/dt = x(t) - F <0 ;
limg , _gds/dt = lim o _, _gde/sdt = x(t) + ¥ > 0

sre satisfied., ie., for all t :

¥ cming x(t) < x(t) < max g x(t) < ¥ (2.22)
or briefly, for a11 t , |x(t)| ¢ Y.

Proof : Iwmediate from above,
Appendix O

The slope overload condition (2.6) is thus transformed
into an smplitude overload cosditionm.

and the results in the

For sinusoidal inputs, x(t) = Eg sin 2ff;t, the
overload condition (2.22) is frequency independent and of
the form Eg <Y (®y£f) (See [8] pp. 18).

The ideal sliding conditions,
represented by :

s=0 ,ds/dt = 0 , are



e= 0, uylt) = x(t). 2.23) .
Equation (2.23) simply weans that the ideally tnmitted_
signal is just the input signal x(t). )

The basic consequence of a sliding mode approach to DS
is the rederivation of the folowing known facts [8] :

1) Tdling bebavior of DSM, corresponding to zero input
response, is due to trivial satisfection of of sliding mode
existence conditions ( amplitude overload violation ). The
step response exhibits idle bebavior if amd only if the
step amplitude is within quantizer limits. .

2) Overload characteristics sre inMependent of the
frequency of the sinusoidal input and bence the DSH
coling-decoding process is suitadle for s wider range of
spplications.

Example 2.8 Figuwe 2.8 sbows a computer simulated DSH
codification error response to & sinusoidel input of

frequency 2.25KHz, aaplitude E; = 0.1 a¥ (also sbown in
the figure ). The quatization limit, satisfying 2.25, is ¥
= 2 Volts. The initiel state of the local decoder was set:
to -0.1 m?.

£:6 Sylabicelly Cowpanded Delts-Sigms Modulation (SCDR)

SCDSY constitutes an sdaptive scheme implemented on a
DS circuit. The local decoder is complemented with a
nonlinear circuit ehich includes a decoder for the
transmitted Dinsry signal (just « low-pass-filter), a
rectifier and an envelope detector folowed by & circuit
that rises the resulting signel to a ocertain positive
integral power n. A constant positive polarization sigmal,
A, is subsequently added and the resulting signal is
‘'wultiplied by the bimsry coded error sigml. The resulting
signl is compared with the amlog input sigmal and the
slope error is formed. Figure 2.9 shows the basic SCDSH
_encoder arrangement. (See [8) )

In the DS encoding the equivalent control, generating
_perfect tracking of the encoding signal integral, is simply
given by :

oEl = x(t) (2.24)
Using the varisble structure éontrol law (A.11),
U= (+Xoear® ] x(t) | )V sign e(t) (2.29)

the comditions for tbe existence of & sliding mode (A.4)
are trivially satisfied and bence tracking of the encoding
signal is possible through s sliding regime of the state of
the circuit. The SCDSHM arrangesent is thus a consequence of
the realization of the ¥SC law (2.25).

It instead of a SDY encoder & LD schese is used sbove,
x(t) is to be substituted, in (2.24) and (2.25), by the
time derivative of x(t). In the dicrete-tiwe cese with m =
0, the scheme is of utmost importance and it is intimately
related to the celebrated Song Algorithe (See (9] and [8]).

4. CONCLUSIONS

! It das been shown that Sliding regimes are relevant in
‘the amslysis and conceptwsl design of anmslog signal
tracking devices such as those performing snslog sigml
encoding for transmission over bimary communication
channels.

The necessary am sufficient comditions for the
existence of a sliding regime determine the capabilities of
the dynamic tracking arrangesent. In Delts . Hodulation

1114]
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[6] Sirs-Ramirez,

-systems, the slope overload comdition is shown to be
directly related to well known sliding regime existence
conditions. These, in turn, naturally point to the basic
need for an adaptive modulation scheme. It was also shown
that in Double Integration Delts Hodulation the zero error
condition, acting as sliding line, does not lead to a
sliding regime tracking the input signal. The reason being
8 global violation of the relstive degree condition. In’
this kind of sralog signal modulstion, it was shown that a
tracking sliding regime indeed existed on the sliding line
defined by the predictive metbod. Known results are also
rederived for the Exponential Delta IModulation and
Delta-Sigms modulation srrangements. In particular, the
overload cbarscteristics are shown to be frequency
dependent for the first case snd frequency independent for

‘the second case. Finally, the Sylabicelly Companded schemes

are naturally rederived using & general equivalent-control-
based variadle structure controller.

The discrete-time aspects of classical delta modulation,
with finite sampling frequencies, directly lead to o

.digital reslization of the encoding amd decoding parts of

tbe modulation process. A complete rederivation of known
results and some new ones, obtained as suitable extensions

.of ¥55 theory to disorete-time systems, will be presented

elsewhere.
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APPENDIX
generalities sbout §liding Regimes
Consider the linear, time invariant dynamical system

dy/dt = Ay + bu (A.1)

.with vy @ R®, The scalar control function u is assumed to

- take values on the discrete set U := {-¥,¥}. Discontinuwus

‘control actions are exercised on the systea sccording to.

the switching logic :

u= ¥ sign s(y) (A.2)
shere s(y) =0 defines the switching surface: .
S() = (y€R® : s(y,t) = cy = 0 ) @a.3)

»with ¢ an n-dimensional row vector.

‘pefinition A.1 {1]) A local Slidiwy Begime is said to exist
on S(y) if and only if, the controlled motion (A.1),(A.2)
is such that
limg, 40 d5/dt <0 and  limg_, gds/Adt >0 (A.4)

The trajectories converge, locally, towards the discon-
tinuity swface S(y) where they locally wundergo o
constraining chattering motion.

leans 4.2 [14) Tf & sliding motion exists on S$(y) then the
following transversality condition is locally verified:
chv 0 (A.S)

i.e., the system is relative degree ope with respect to the
output s(y).

Ideally, on s(y) = 0, the motions of the controlled
system can be described as if influenced by & smooth
feedback control function known as the gquivalent control .
Such & function is defined from the following jinvariance
conditions [3}:

ds/dt = 0 ; s=0 (A.6)

From (A.6), tbe eorréspondinq equivaleal coufrvol, here
dencted by vpn(x,t), is given by :

ug(r,t) = - (cb)~l[chy) an

The jdeal sliding dypamics is obtained from use of (A.7)
on (A.1), with tbe formal substitution of wu by veg(x,t).

This is the basis of the Equivaleat Comtrol Mebtod {1):

dy/dts [I -bc/chlAy (A.8)
Theorem 4.3 A sliding motion locally exists om S(y) if amd
only if locslly slong s(y) = 0 , the following condition is
satisfied

< ¥

-¥ < ugq(y) (A.9)

Broof:.

It is easy to see from (A.9) and (A.7) that the sliding
wotion is globel whenever c is a left eigenvector of A
(i.e., cA is proportiomal to ¢ ). It follows from (A.5)
and the PBH test that this bolds iff (A,b) is controlladle.

(See [13,14)).

Finally, we present prescriptions for a family of
varisble structure control laws which locally guarentee the
existence of a sliding motion on the discontinuity surface
S(y).
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Broposition A.4 If s local sliding regime exists on S(¥)
and upq(y) is mot identically zero on an open set of RR,

then there exists a oonstant K > 1 such that the switching
logic u= - K lvgq(y)| sign s(y) creates a local sliding

regime on S(¥).
Proof: Obvious from the existence condition (A.4). O

Since it is entirely possibdle that upg(x,t) E0, the:
following prescription, of importance in adaptive delta
produlation ceses, guard ageinst this possibility. The proof
of this proposition is left to tbe reader.

Let env z(x(t)) denote the function specified by :

ear Z(x(t)) = max{ supr ¢ £12(x(D)1, 12(x(t))|} (a.11)

By war® z(x(t)) is denoted the m-th power of the values
of enrz(x(t))

Proposition A.5 If s local sliding regime exists on 5(y,t)
tben there exists constants K> 1, &t > 0 and en integer m
2 1 such that the switching logic :

u= (+K ear® |ug(n)l) sign s(y) (A.12)
creates a local sliding regime on S(y).

Proof Immcdiate from the existence condition (A.9).
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Figure 2.1 Linesr Delta Modulation encoder circuit
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Figure 2.2 Typical sinusoidal output response of a
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Figure 2.3 Double Integration Delta Modulation
encoder and decoder circuits
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Figure 2.5 Exponential Delta Hodulation encoder
circuit
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Figure 2.6a Typical YSC-based EDH output response.
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Figure 2.6b Typical Y5C-iased EDM codification
error response.

Figure 2.7 Delta-Sigma Modulator and Denoduiafor
Circuits
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Figure 2.8 Typical ¥SC-based DSHM codification error
response
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Figure 2.9 Sylabically Companded Delta-Sigma
Hodulation



