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ABSTRACT

In this article a design method is proposed for the specification of
Pulse-Width-tlodwlation (PMI) feedback controllers of Nonlinear Delay Systems. The
design method is based on an average model of the PRI controlled system, derived by
an infinte sampling frequency asswmption which captures the essential qualitative
stability properties of the actual controlled system. Some examples are provided.

1. INTRODUCTION

Early contributions to the study of Pulse-width-modulation (PRI) controllers are
those of Tsypkin [1]. Further developments were contributed, later on, by Skoog ard
Blankenship (2]}, la Cava #¢f 3. [3] and many others. In all these works, emphasis
was primarily placed on the discrete-time aspects of such controllers

A different design approach [4],[S] bas been proposed which vwses the geometrical
properties of average PWMI controlled responses (obtained by an infinite frequency
sampling assumption). The results, aside from allowing exact analysis of average
responses, found an ideal equivalence with Tarisble Structwe controlled
trajectories undergoing c£liding motions on the integral manifold of the sverage PMI
system. The class of PWI systems treated in [4]-[S] corresponded to simgle ON-OFF
controlled switch (the control variable takes values in the discrete set {0,1}).

A related class of switch controlled systems is represented by those in which
the control variable takes values on the set {-1,0,+1} (See [2}). Typically, gas
reaction jets controlling recorientation, or detumbling, maneurers in artificial
satellites are expressible as systems of this class. Sowme torque actvators, used
for control of joint poisitions in robotic manipulators, are also of this type. The
controlled switch, in this case, is addressed as an ON-OFF-ON switch. Extending the
results of {S5] to nomlinear delay differential systems governed by PWMI controllers
of the ON-CFF-ON type, we propose to carry out the PRI controller specification on
the basis of the average model of the PMI controlled system. This model is obtained
by replacing the PWMI regqulator by means of a nonlinear memoryless saturation
controller while leaving the system delays unaltered. Generally, the proposed
design approach allows to totally circumvent the technical problems associated with
the wnbounded character of tbe PW{ operator and the meed for introducing low pass
multipliers cascading the PMI controller ([2]).

In Section 2 the average PWMI feedback controlled model is derived for general
nonlinear dynamical systems described by delay differential equations. In Section 2
a satellite sttitude control problem is presented. Section 4 contains the
conclusions and suggestions for futher work.

2. DEFINITIORS 4ND BASIC RESULTS

2.1 Pefirdtion of average PP controlled model.

We shall distinguish three kinds of delays affecting the bebavior of nonlinear
systems. These are: plant delays , sensor delays and actuateor delays
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Let ‘l'P be a strictly po'sitive constant. Consider a nonlinear delay differential

system controlled by a FWMI scheme based on the error signal. The zystem is assvmed
to be globally described in KR, as :

dx(t)/dt = £[x(t)] + Q-[x(t—Tp)] + glx(t)ln

¥ = b(x)
e =yq(t) - ¥
w = i PRI [e(ty) ] (2.1)

with f, g and § globally smooth vector fields. The function h is a smooth scalar
output function. The control input w is a discontinuous scalar control function

cbtained as the output of a8 Fulse-¥idth-tfodvlator excited by the error signal e. The

sampling process is assumed to take place at regularly spaced time intervals of
fixed duration T, i.e., ty,; = tx + T. M is a positive constant gain represernting

the maxamum allowable input strength.

The PWM{ control operator, PRIy [e], is characterized by (See [2] ):

signfe(ty)] for ty <t < bty +Tle(ty))T
PRI gle(ty)) = (2.2)
[i} elsewhere.

where Tle(ty)] is known as the duty ratio function defined by

Blectp)) for fe(tp)| < 1B
tle(ty)] = (Z.3)
1 for  le(ty)] > 1/P

with [} being a positive constant. Notice that :
Betty) for fe(tydl i 1/

Tle(ty) Isignle(ty)] = sate(ty) ,B] :=
signle(ty)] for leity)| > 1/ (2 4)

Proposition 2.1 &s the sampling frequency F := 1/ tends to infinity, the

description of the nonlinear controlled system (2.1) coincides with

dx(t)/dt = £[x(t)] + Q[x(to‘l’p)) + gixit)}y

¥ = b(x)
e=ya(t) - ¥ (2.5)
v = sat(e,f)

System (2.5) will be benceforth addressed as the aversge PMI controlled system.
Proof. Let I,b(t.) dentote the vector-valued function Iottb(x(c))dc, with ¢(x¥) being
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4 given smooth vector field on RM defining the flow of dx/dt = §(x). Notice that
the limit: lam p_,g [I“hot’l‘)—I@,(t.)]/T = o d I@(t)/dt = O O(x(t)). Similarly,
consider ${x(t-1)) for any fixed positive T. We let Iyt ry|(t) = [gt $ix(o-1)1do.
It follows that lim p_,5 [I‘, [x(t-T)] (t+T)—I¢ [x(t-TY] /T =4d I@ [x(t-T)} (tysdt =
$ [X(t-T)). The sampled state-response of the nonlinesr feedback system (2.1) can e
written, in terms of an equivalent integral equation, as :
x(tp+T) = x(tp) + Ip(tysT) - Ig(ty) + [Iﬂx(t-Tp)](tk*T) - I@-[x(t-‘l’p }(tk)]
+ [ Tg(tpetie(tp)]T) - Ig(ty)isign [e(ty)]

Therefore, according to the above expression, the limit

lim p_y0,4 -5t plxitys ) -x(ty)] = dx(t)/db

1]

lim 0,4 -t T H (b T)-Te(ty) ] + [IQ.[x(t-rp)] (ty+T)- Iﬁx(t-l‘p)](tk)]
+ I (Ig[tk+ Tleity))T] - Ig(tk']i sign (e(ty)] ) ¢}
£lx(t)] + ﬂx(t—"fp)] + gx(t)] H tle(t)] sign {e(t)])
fx(t)] + t[x(t—‘rp)]-p glx(t)] ¥ satfe(t),f] = .f(x) + @(::(t-‘rp,]] 4+ gixy v 1]

Remark The bebavior of the infinite frequency sampled delay Jdisfferential system
is then described by a norlinear delay differential system with a contiunous
piece-wise linear control v, generated as the output of a memoryless nonlinear

function of the saturation type. The saturation function, in turn, is excited by
tbe error signal e. In other words, to evaluvate the smooth average bebavior of the
gctval PMI controlled system, the FWMI controller is simply substituted by a
nonlinear memoryless saturating controller independently of the plant delays.

The fundamental gualitative stability characteristics of the actuval nonlinear
PMI controlled system (2.1) are entirely captured by the average model (2.5). In
order to show the yvalidity of this assertion, it will be first analyzed the nature
of the discrepancies among the open loop state trajectory respomses of both system
models, (2.1) and (2.5), when subject to the same arbitrary bounded measurable
input signal. Later on, the close loop behavior will also be treated.

Let e*(ty) = x(ty) - z(ty) be the discrepancy among the state x of the PRI
controlled system (2.1) and the state z of the average system (2.5) at the sampling
instant t). It will be assumed that the vector fields £(x) and $ sre globally
Lipschitz and that the vector field g(x) is globally bourded on R i.e., there
exist constants Ly , Lo and If such that JE{x(t)]-£[(z(t) I < Ly §=(td-=()f ,

N[x(t-fp)]-ﬂz(t-fp)]ll ¢ Lol x(t) - z(t) [ and  Jlgix)fl « & for all x and z in E®

Theorem 2.2 Under the above assumptions on the vector fields fix), #&x) amd g(x),

given s small positive constant ¢ there exists, for any sarbatrary findte time
interval, [0,NT), a sampling frequency Fy = 1/T; such that, if the inital states
discrepancy, e*(tq) = x(tg) - z(tg), of systems (2.1) and (2£.5) is norm bounded by
§, then the discreparcy e*(tg+FT) of the corresponding state responses, duve to the
same arbitrary bounded measurable input r(t) with |r(t)| < K for t € [tq,ty +NT],
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is norm bounded by (1+£)6, for any sampling frequency F > Fg.
Proof dccording to (2.1) and (2.5) one has

R(tpHT) = x(ty) + 1’,1:1:*"1‘ £(x(0))do + ;{k*" $ix(0-7,)}do
+ 1 f bt U (8T gex(o)) sign rity) do

2itpeT) = 2(ty) + 0T £2(00)40 + k5T fla(o-1p) 1o
+ j{kﬂ' g(2(0))sat{r(o),fldo

subtracting these expressions, one obtains :

(D) = e*(ty) + 4T (£1x(0))-£[2(0) }do + ET( $ix(o-1)))- $z(o-ty) ] do
Kk
+ 1 f{k“ll‘(tkm @(x(0)) sign r(ty) 46 - J’t‘:vk“' a(z(0))sat{r(s), B [0 )

Hence :
He*Ctes) | < B e*tpoll+ Ly ¥e*T fex(o) Jdo + 1p 52T || ex(o) || do
+ 1 f,]:kﬂlr(tk)l'l‘ g(x(6)) sign r(ty) 4o - [*%*T g(z(6))sat(r(c),[140
< f et + (Lysly) 5T | e*(o) || do
+ M { ftl:k*T I gtxto) Mo + 5%+ B fa(z(o)) Hir(e) 180}
¢l et(tll+ (L1 + L) It;k*'r fet(c)ldc +H (L +fK)T6E

By the Gronwall-Bellman lemma one has, after letting Ly =L; + Ly ,
let(tp+Tll £ [Her(t) B+ 8 (14PK)T 6 ] exp ( LaT 3

Using iteratively the above inequality for k=0,1,.. N , the following loose
estimate for the norm of the discrepancy e*(ty + NT) is essily obtained,

fer(ty+ WD)l < | mnﬁx)ms T +ll e*(tg) § | exp { L3NT )

1.e.. the discrepancy, at an arbitrary finite time tg + NT, among the sctuwal cpen

loop PWI state response and that of the average system remains bounded by an amount
determined by the initial states discrepancy, the system constants and the sampling
intervel T. The following trascendental equation, is easily obtained from the
previous equation:

(1+42) Sexp { -Laf T } = [ H(1+fK)NG T + &}

It is easy to see that becavse the right hand side term of this equation
momotonically increases with T from the value § at T = 0, while the left hand side

term monotonically decreases with T from the value (14¢)8 > 6 at T = 0, it has a
urigue solution for some T = Tg > 0. Hemce, given an initial discrepancy bound,

| oe*(to) I < 6, and a small positive comstant ¢, a sampling frequency Fg = 1/Ty
exists for which a preassigned error response bournd A can be obtained at any finite
later time tg + NT, || e*(ty+¥T) | <« A , with A being of the form (1+£)8. It
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follows that for any sampling frequency F > Fg ( ie., T ¢ Tg ) a states

discrepancy strictly bounded by ( 14¢)6 is obtained among the open loop state
responses at time tg + NT. D

The qualitative stability characteristics of the delay differentisl PWI
controlled system (2.1) are captured by its smooth infinite-frequency sampling
average model (2.5). In particular, a necessary condition for asymptotic stability
of the asctual PMI system (2.1) to the zero error manifold, is the asymptotic
stability of the average model to such surface. It is also obrious that if the
response of the average model (2.5) is asymptotically stable to e = 0, the actuval
PRI controlled response can be made to follow, arbitrarily close, the response of
the average model by suitably increasing of the sampling frequency in tbhe PW{
controller. Thus, modulo sufficiently large -but finite- sampling frequency, the
following theorem holds true.

Theorem 2.3 The closed loop PMI controlled system (2.1) is asymptotically stable
to the e = 0 wanifold if and only if the average PRI system (2.5) is asymptotically
stable to suwch manifold.

Proof The average model of the PRI controller establishes three disctintive regions
in the state space of the system. These are : the saturation regions S,y = { x : e

=-h(x) > 1 and Sy = {x:e=-hx)< -1/f } and the linearity, or boundary
layer reqaon Sp=x: -1/ e =-bixy 2 1/f )y .

In the saturation regions the actuval delay differential PWMI controlled system
(2.1) totally coincides with the average model (2.5). Hence, under exactly the same
functional and static initial conditions defined, respectively in -‘l’p ¢t ¢« 0 and
t = 0, the actval PRI system trajectories and those of the average PMI controlled
system entirely coincide. By virtue of a straightforward extension of the
continuity of solutions in the initial conditions, it follows that for arbitrarily
small discrepancies of the initial state functions or initial states, the
corresponding state trajectories of the actwal amd the average PMI systems remain
arbitrarily close to eack other in such regions.

¥ithin the boundary layer region, the actval PRI system is described by a two
position switch ( OF-OFF type ). Depending on the sign of the error signal tbhe PWMI
contrclled system is described as follows:
For e > 0 :
+1 for ty <t 2ty + T(e)l

£x) +4x(t-y)] + u gx);  uws {

dx/dt =

3 elsewhere
For e < 0 :

-1 for &y <t <ty + T(e)?
dxsdt = £(x) + @[x(t-fp)) + ugx) ; us= {

0 elsewhere

It can be shown that these systems exhibit global sliding motions about integral
manifolds of the average PWMI controlled system ( which in fact corresponds to the
idesl sliding dynamics of the equivalent sliding motion ). It follows that, within
the boundary layer region, the trajectories of the average PWMI controlled system
are followed, arbitrarily close, by the actual P controlled responses in the same
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marner that a sliding motion follows, on a given surfsce in the state space, the
trajectories of the corresponding ideal sliding dynsmics. Increasing of the
sampling frequency in, the PWI scheme dis totally equivalent to discarding
imperfections of the equivalent wvariable struwctuwe switch. In the limit, PWI
controlled trajectories would coincide with its average description in the same
manner that an actval sliding regime coincides with its ideal sliding dynamics. O

actuator and Sensor Delays

Let T and T be positive constants. We say that (2.1) bas actuwator delays

whenever the control function uw is of the form \J.(tk-k‘l'a) = i PRife(ty)}. The

controlled system is said to have zensor delays if e(t) = yqi(t) - y(t.-Ts). It is

easy to show that actuator delays and sensor delays, similarly to the case of plant
delays, do not affect the form of the average PWM! controller. In such cases, the
PM$ controller is still substituted by the saturation monlinearity ehile the blocks
representing, or containing, time delays remain unaltered in the average model.
This is easily seen to be & valid statement from the following straightforward
considerations.

Sensor delays : Let
e(ty) = yalty) - ¥(4-T) 1.e., elt) = ya(t) - y(-7)
then
lim 10,k -t (T [Tgtpetle(ty) IT) - Ig(ty)] } signle(ty))
Tl yq(t) - y(E-1.) ] g(x(t)) sign [ y4(t) - y(t-1) ]

t tle(t)) g(x(t)) sign [ e(t) ] =M sat(e(t),f ) g(x(t)) = g(x(t))v(t)

i.e., the form of the average controller is unaffected by the fact that sensor
delays are present in the feedback loop.

Actvator delays : In this case, the control function is given by

sig'n(e(tk-'ti)] for ty <t <« by +T[e(tk-r_3)]'l'

u(t) = PRI qle(ty-1,)] = {

¢ elsewhere.
hence ,
Lim 1o,0,t, >t THIET U gtxo))w(e)do
=lin 50,6 -5t iy Itktk*fle(tk-fa) g(x(0))d0 signle(ty-1,)]

= lim 10,8 -5t 1y ft‘k"[ tr-Tg + Tle(ty-T4) 1T g(x(0+1,))d0 signle(ty-T,))

= MTle(t-1,) 1g(x(t))signle(t-T,)] = gUx(t)) U sate(t-1.),B1 = g(x(t))¥(t-T,)

From the second line to the third line above, a cbange of the time integration
yariable G by 0~T, ®as performed while noting that the duty ratio, Tle(ty-1.))], i=
a fixed constant duwring the integration period and precisely determined at time
tk-Tﬁ. The average model of the PWI controller in a system subject to actuator

delays is still a memoryless saturation type of controller excited by delayed
errors. It is essy to see that the delsy operator and the saturation nonlinearity
commute with each other. The result follows. 1]
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2.3 Linesr Controlled Plants

For the case of linear controlled pPlants witbout delays, a vast amount of
input-output design methods can be directly used for PWI controller design based on
the average PW{ model. The design problem is reduced to finding the stabilizing
gain |3 correspording to the linear part of the saturation block in the classical
feedback configurstion shown in Figure 1. Among the available metbods to solve such
8 problem ome finds : tbe Small Bain Theorem, the Circle Criterionm, Describing
Function metbods, Myquist stability criterion. For linear rlants including finite
time delays, the Popov criterion is especially suitable for éarrying oumt an
input-output stabilizing desing based on the average PRI controlled model. All
these classical design techniques, readily fourd in the literature, are based on
well-known sufficient conditions for stability amd asymptotic stability of linear
feedback controlled plants.

Exemple. Consider the problem of designing a stabilizing PMI controller for a
distributed linear plant described by :

6(s) = e TS(sep)-l p>0

Let g,y (PMI) denote the gain of the average PMI controller. Then, ey (PRI = sup 4

2 0 Isat(e,f)] lef=1 a f . The Small Gain theorem leads to the following sufficient
cordition for asymptotic stability :

Gav(PMD) .swp o | e TI%(pajmyl) = Pp! <1 = Pep

One may instead use a particularization of tbe Circle Criterion for the design
case of the saturation controller. This criterion leads to :

ini g Re [ e I"T(psjmy-1] > -t

3.APPLICATIONS TO A SATELLITE ATTITUDE CONTROL PROBLEM

Here we consider a single-axis attitude control problem for a well knoen
linearized benchmark model representing a satellite plant ( the wmodel is taken from
Howe and Cavanaugh [6]). This model includes fast dynawical rate and position
sensors as well as a first order model for the actuator preceeded by a small pure
timé delay representing tbe gas jet reaction control system. The pitch angle 6 and
the pitch rate d8/dt are used in a PWMI feedback scheme designed to follow a
desirable command angle 8,. The P®I controlled model is sbown in a block diagram

form in Faqure 2. We assuwme that the reference pitch angle 8, 15 0.09 radians.

The PWMI controller design entitles the specification of the constant ﬁmd the
sampling frequency 1/T. A satisfactory design, based on the average PRI controlled
wodel, necessarily implies the use of high frequency sampling if basic qualitative
and quantitative features of the average designed response are to be captured by
the actual PMI controlled process, within arbitrarily small discrepancies. The
estimation of the necessary sampling frequency can be assessed from the results of
theorem 2.2 above. However, this issve, more related to response precision, can be
easily handled by extensive simulation and, thus, it will not concern us here. The

wore relevent task is, in owr view, constituted by the cboosing of the constant [3,
dve to its direct influence on tbe stability of the sverage closed loop system.
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For the case at hand, the closed loop system is guaranteed to be asymptotically
stable, sccording to & well known particularization of Sandberg's Circle Criterion,
if

-1/ ¢ infy Re[ G(jw)]

where B(jw) represents the complex transfer function of the single input-single
output open loop system, including tbe actuvator dynamics, actuator delay, and
sensor dynamics.

Figure 3. shows a Nyquist diagram of the open loop system for a normalized PWM1
slope gain of ﬁ: 1. Any positive wvalue of [3 smaller than, say, 1500 guarantees
asymptotic stability. Simulated asymptotically stable plant state average responses

are shown in Figure 4 corresponding to [3 = S50. The actual PMI responses do not

differ significantly from the average responses due to the low pass filter effect
of the actuvator dynamics.

4. CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this article & design procedure is proposed for the specification of
stabilizing feedback PWM{ controllers in linear and nonlinear delay differential
systems. It is showm that, under an infinite sampling frequency assumption, an
average model for the classical PMI ON-OFF-OF controller ic obtained by simply
replacing the discontinuous PWMI controller by a memoryless saturation type of
compensator. This average model was shown to capture the basic qualitative ( i e.
stability ) features of the actual PWMI controlled system. This allows to treat the
PMI design problem in a cleaner fashion than using traditional discrete-time
approximations. At the same time one totally circumvents the technical
difficulties sassociated to the fact that PR1 operators are indeed unbounded
operators on the Banach space of absolutely integrable functions. For the
particular case of linear controlled plants, the results of this paper make readily
suitable for PWMI controller design, a vast number of traditional input-output
design techniques, based on well-known sufficient conditions for asymptotic
satability. The resuvlts were applied to PMI controller specification for a seventh
order linearized satellite plant, incluwding actuator delays, in a pitch angle
attitude control problem of the reorientation type.

The results of the article can be easily extended to multivariable PRI’
controllers with, or without, delays. Connections arise among high-gain systems and
nonlinear average FPWI controlled systens when the saturation nonlinearity,
replacing the PWI controller, exhibits a large slope. This alsc explains some
equivalences among bigh gain controlled systems and variable structure systems
undergoing sliding motions. Interesting comnections may be expected, for the case
of linear PM{ controlled multivariable plants, with K. control theory.
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FIGURES

Figure 1. Average tiodel of Linear Plant Controlled by Pulse-Width-todulation
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Figure 2. A PRI Satellite Atttitude Feedback Control System



i +0.

~300T OQOad

real part

Figure 3. Ryquist plot of the open lecop linesrized system
{ PM{ operator gainm, (3, normalized to the value of 1 )

8.15

8.1 //\ pitch angular position
op ...._.(L._.-.\:..._.-..,..,..__ —
/X
oes| | // \
/
/ / K pitch rate
LS S

— P -
t

Fig. 4. Average state trajectory responses for ﬁ = 50

Acknowledgments This work was supported by the Consejo de Desarrolls Ciemtifico,
Humardstico y Tecnoldgico (CDCHT) of tbe Universidad de Los andes wrder Research
Grant I-280-87. The generous cuvpport of Dr. Julidn Aguirre ( Academic
Vice-President of the University) and Dr. Juan Pwag (General Chairmsn of the CICHT
} in making possible the presentation of this article is gratefully acknowledged.

330



